
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Spatio-Temporal Diffusion Model for
Cellular Traffic Generation

Xiaosi Liu, Xiaowen Xu, Zhidan Liu, Senior Member, IEEE , Zhenjiang Li, Member, IEEE ,
and Kaishun Wu, Fellow, IEEE

Abstract—In the digital era, the increasing demand for network traffic necessitates strategic network infrastructure planning. Accurate
modeling of traffic demand through cellular traffic generation is crucial for optimizing base station deployment, enhancing network
efficiency, and fostering technological innovation. In this paper, we introduce STOUTER, a spatio-temporal diffusion model for cellular
traffic generation. STOUTER incorporates noise into traffic data through a forward diffusion process, followed by a reverse
reconstruction process to generate realistic cellular traffic. To effectively capture the spatio-temporal patterns inherent in cellular traffic,
we pre-train a temporal graph and a base station graph, and design the Spatio-Temporal Feature Fusion Module (STFFM). Leveraging
STFFM, we develop STUnet, which estimates noise levels during the reverse denoising process, successfully simulating the
spatio-temporal patterns and uncertainty variations in cellular traffic. Extensive experiments conducted on five cellular traffic datasets
across two regions demonstrate that STOUTER improves cellular traffic generation by 52.77% in terms of the Jensen-Shannon
Divergence (JSD) metric compared to existing models. These results indicate that STOUTER can generate cellular traffic distributions
that closely resemble real-world data, providing valuable support for downstream applications.

Index Terms—Cellular traffic, spatio-temporal graph, diffusion model, data generation
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1 INTRODUCTION

As a fundamental component of mobile wireless commu-
nication infrastructure, cellular networks serve as critical
enablers for advancing smart cities, Internet of Things (IoT),
autonomous driving, and telemedicine. The proliferation of
Fifth Generation (5G) technology has further cemented their
role as indispensable tools for modern information systems
[1], supporting massive device connectivity while deliver-
ing high-speed, low-latency communication and intelligent
cross-industry services [2]. Amidst accelerating societal dig-
italization, escalating traffic demands necessitate efficient
infrastructure operation and flexible resource allocation,
making optimal network planning and strategic resource
distribution persistent challenges [3]–[8].

Cellular traffic prediction has emerged as a key strategy
for dynamic resource allocation [9]–[12]. However, existing
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methods face two critical limitations: (1) dependence on
extensive historical traffic data for target areas leads to com-
putationally intensive processes and prohibitive prediction
latency, and (2) restricted access to real-time operator data
due to privacy concerns impedes practical implementation.
Adding to these issues, suboptimal base station deploy-
ments in many regions create additional complexities for
network optimization. Current deployment strategies —
including manual site selection [13], drone-assisted place-
ment [14], and shared infrastructure [15] — often prioritize
geographical factors over actual traffic demand patterns,
underscoring the need for more holistic solutions.

Synthetic cellular traffic generation offers a promising
alternative by simulating network behavior using open-
source data. While deep learning approaches like autore-
gressive CNNs [16] and GAN-based methods [17] have
demonstrated success in device-level traffic synthesis, their
scalability to large-scale base station deployments remains
constrained. Recent large-scale GAN variants [18], [19] in-
corporate urban knowledge graphs and multi-period clas-
sification but face practical barriers, including data acqui-
sition challenges [20], [21], mode collapse risks [22], [23],
and limited diversity in generated outputs [24]. Moreover,
existing methods predominantly model predefined spatio-
temporal patterns while neglecting inherent traffic uncer-
tainties within identical contexts.

In this paper, we propose a novel cellular traffic gen-
eration method capable of effectively capturing the spatio-
temporal characteristics of a region while simulating the
uncertainty in traffic fluctuations. This approach aims to
provide valuable data support for research on network
resource optimization and deployment. However, design-
ing such a method poses significant challenges due to the
complex patterns inherent in cellular traffic:
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• Long-term and short-term periodic patterns. Cellu-
lar traffic exhibits intricate temporal patterns, includ-
ing daily fluctuations that correlate with work and
recreational schedules, as well as weekly trends char-
acterized by distinct weekday and weekend usage
behaviors.

• Spatial patterns. Cellular traffic varies across dif-
ferent base stations due to differing human activity
levels. Densely populated areas typically experience
higher network traffic than sparsely populated ones,
complicating the delineation of work and residential
zones for each base station.

• Uncertainty pattern. Even within the same base sta-
tion or region, cellular traffic can exhibit significant
irregular fluctuations due to the unpredictable na-
ture of human activities. Variations in user demand
can arise from differing bandwidth requirements of
various applications and services.

To address these challenges, we present STOUTER,
a Spatio-Temporal diffusiOn model for cellUlar Traffic
genERation. First, we design a temporal graph structure
to represent the hourly and daily temporal relationships
in cellular traffic, enabling the capture of both short-term
and long-term periodic variations. Second, to distinguish
cellular traffic patterns among base stations in various re-
gions, we construct a base station graph that integrates Point
of Interest (POI) information and distance relationships be-
tween base stations. Third, to model uncertain fluctuations
in cellular traffic, we design a generative diffusion model
that incorporates spatio-temporal features into the traffic
generation process. During the denoising phase, we use an
initial Gaussian distribution to effectively simulate traffic
uncertainty. Additionally, we introduce the Spatio-Temporal
Feature Fusion Module (STFFM), which preserves traffic pe-
riodicity and base station-specific patterns during the gen-
eration process. This allows us to reconstruct cellular traffic
data with realistic spatio-temporal characteristics from an
initial Gaussian distribution characterized by uncertainty. In
summary, the contributions of our work are as follows:

• We propose a spatio-temporal diffusion model for
large-scale cellular traffic generation that simulates
uncertain variations effectively.

• We construct a temporal graph to model both long-
term and short-term traffic patterns, and develop
a base station graph to extract spatial traffic char-
acteristics, integrating these into the traffic genera-
tion process through STFFM within Spatio-Temporal
UNet (STUnet).

• Extensive experiments conducted on multiple real
cellular traffic datasets from two regions demon-
strate that STOUTER improves traffic generation by
52.77% in terms of the Jensen-Shannon Divergence
(JSD) metric compared to state-of-the-art methods,
indicating its capability to generate long-term data
closely resembling real traffic and providing valuable
support for downstream applications.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 introduces
the preliminary definitions and complex patterns of cellu-
lar traffic, following with an overview of our STOUTER

framework. Sections 4 and 5 elaborate the spatio-temporal
graph model and the diffusion-based traffic generation
model, respectively. Section 6 evaluates the performance of
STOUTER, and Section 7 finally concludes the paper.

2 RELATED WORK

2.1 Cellular traffic generation
Traditional methods primarily relied on mathematical mod-
els to generate cellular traffic. The traffic generators were
designed to synthesize data that closely resembled real-
world network traffic in a closed-loop manner [25], [26], and
the generated traffic data is mainly used for testing network
equipment, services, and security protocols [27], rather than
to assist in the deployment of cellular base stations.

Recently, some researchers have explored machine
learning-based approaches for traffic generation, such as
employing autoregressive models [16], [28] and GAN mod-
els [17], [29], [30] to synthesize cellular traffic data. Although
these methods protect data privacy while generating traffic
for a single device, they primarily focus on traffic generation
for a limited range or even one single network device. In
contrast, large-scale cellular traffic generation must consider
city-wide base station deployment. In our work, we take
into account the topological structure between base stations
at a city scale, allowing us to model the spatial relationships
among them effectively.

Some studies [18], [19] have proposed GAN methods
for generating city-scale cellular traffic, by leveraging urban
knowledge graphs to capture the spatial semantics of base
stations. For example, ADAPTIVE [18] addresses the issue
of limited historical data in 5G base station deployment
by designing a deep transfer learning framework for the
generation of cellular traffic. This framework transfers the
traffic knowledge graph from a source city to a target city,
allowing the GAN model to incorporate learned spatial
and temporal patterns. Hui et al. [19] developed a GAN
model that integrates multi-cycle patterns to simulate daily,
weekly, and long-term traffic cycle patterns, with the aim
of replicating the long-term performance of cellular traf-
fic. However, GAN-based traffic generation methods often
suffer from data instability [24]. Artifacts such as unreal-
istic or noisy data points may emerge, compromising the
practicality of the generated traffic data. In addition, during
training, GAN models are prone to mode collapse [22], [23],
which limits the diversity of generated data and hinders
their ability to fully capture the underlying distribution of
real-world cellular traffic.

Furthermore, STK-Diff [31] uses urban knowledge
graphs as semantic information and develops a spatio-
temporal knowledge-driven diffusion model for mobile traf-
fic generation. Urban knowledge graphs utilize graph struc-
tures to organize relationships between entities, such as user
behavior, spatio-temporal associations, and functional com-
plementarity. They require the integration of multi-source
data, such as trajectory data, socioeconomic indicators, and
text descriptions, and depend on domain knowledge to
build semantic relationships. Without domain knowledge,
these graphs are susceptible to semantic gaps [32]. Fur-
thermore, challenges such as data source limitations, pri-
vacy protection, and intellectual property restrictions make
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it difficult to obtain urban knowledge graphs [20], [21].
Therefore, OpenDiff [33] proposes a mobile traffic gener-
ation method based on publicly available data, including
population density, points of interest (POIs), and satellite
imagery. However, the dynamic nature of human activities
limits the reliability of such data, as statistical indicators like
population density may become outdated, failing to accu-
rately reflect real-time mobile traffic trends. POI is a fun-
damental data used to represent specific locations, and can
be easily accessed and downloaded from OpenStreetMap
[34] or other platforms. Different from previous works,
we integrate the spatial relationships of base stations with
surrounding POI information to extract potential spatial
patterns in cellular traffic, which provides a more compre-
hensive representation of real-world traffic dynamics.

2.2 Cellular traffic prediction
Cellular traffic prediction models forecast future traffic vol-
umes of base stations using historical data, aiding network
management and supporting various network applications.
Effective prediction requires not only temporal modeling of
traffic patterns at individual base stations but also the ability
to capture spatial dependencies and variations in future
traffic distributions within a given area [35].

LSTM-GPR [36] combines Long Short-Term Memory
(LSTM) networks with Gaussian Process Regression (GPR)
to predict traffic for individual cell base stations. CCSANet
[37] employs a convolutional LSTM and a self-attention
network based on correlation to predict traffic in com-
plex cellular networks. STA-GCN [9] and STEP [10] utilize
graph convolutional networks (GCNs) for spatio-temporal
predictions of cellular traffic, while ST-Tran [11] and ST-
InducedTrans [12] integrate time and space Transformer
modules for spatio-temporal cellular traffic prediction.

However, traffic prediction relies on a substantial
amount of historical data, which limits its applicability to
traffic generation task. Additionally, long-term predictions
may suffer from cumulative errors, leading to progressive
declines in model accuracy over extended time horizons.

2.3 Time series modeling based on diffusion model
Denoising Diffusion Probabilistic Models (DDPM) [38] are
generative models that reconstruct target data samples, such
as images or audio, by iteratively removing noise from noisy
inputs through a step-by-step denoising process. Diffusion
models have been extensively applied to time series pre-
diction [39], interpolation [40], [41], and data generation
[42], [43] due to their ability to model complex and high-
dimensional data distributions. Compared to GAN models,
diffusion models can produce more stable outputs and are
less prone to mode collapse. By iteratively refining random
noise, these models effectively restore the underlying data
distribution, improving both accuracy and quality in the
generated samples.

For example, DiffSTG [44] designs UGnet to apply diffu-
sion models to spatio-temporal graph prediction, address-
ing uncertainty and complex spatio-temporal dependencies
in data modeling. DiffTraj [45] employs diffusion models
for generating GPS trajectories, which tackles the privacy
issues in location-based data. KSTDiff [46] introduces a

(c) Hourly Internet traffic volume of Base Station 2. (b) Hourly Internet traffic volume of Base Station 1. 

(a) Daily Internet traffic volume of 2 base stations. 

Fig. 1: Statistics on (a) daily Internet traffic and (b, c) hourly
Internet traffic for two typical base stations, where ‘BS 1’
and ‘BS 2’ represent Base Station 1 and Base Station 2
respectively

.

knowledge-enhanced spatio-temporal diffusion model for
urban pedestrian flow prediction, enabling pedestrian flow
data generation without reliance on historical records.

Building on these advancements, our study applies gen-
erative diffusion models to large-scale cellular traffic gen-
eration in base stations, tackling the challenges of spatio-
temporal variability and uncertainty in network traffic.

3 PRELIMINARY

In this section, we first introduce the basic definitions and
complex patterns of cellular traffic. Then, we present the
overview of STOUTER.

3.1 Problem definition

Definition 1 (Base Station). Given an area where a large-
scale base station is deployed, the set of cellular base stations
is represented as B = {bi}Nbs

i=1 , where Nbs denotes the total
number of base stations.

Definition 2 (Cellular Traffic). Given a set of cellular
base stations, its corresponding cellular traffic data is de-
noted by X = {Xi}Nbs

i=1 . The traffic for the i-th base station
is represented by Xi = {xi,j}Nt

j=1, where Nt indicates the
length of the time series. The traffic for the i-th base station
during time period j is represented as xi,j = {vi,jk }Nts

k=1,
where Nts is the number of timestamps within each period.

For example, if each period corresponds to one day and
is divided into 24 time slots, then vi,jk refers to the network
traffic volume at the i-th base station during the k-th hour
on the j-th day.

Problem 1 (Cellular Traffic Generation). Based on the
definitions above, the cellular traffic generation problem is
defined as follows: given a base station bi and the target cellular
traffic generation period j, the corresponding cellular traffic xi,j

is generated. Our goal is to generate the cellular traffic X̂ for
the target cellular base stations B̂ within the specified time
period based on certain historical cellular traffic X and its
corresponding cellular base stations B. The objectiveness is
to minimize the distribution difference between X̂ and X.
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3.2 Complex patterns of cellular traffic

To analyze the complex patterns of cellular traffic, we vi-
sualized Internet traffic data from two typical base stations
in the Milan dataset (see more details about the dataset in
Section 6.1), as shown in Figure 1. Specifically, Figure 1(a)
illustrates the average daily traffic at these two base stations
from November 2 to January 1, 2014. Figure 1(b) and Figure
1(c) display traffic statistics over a 7-day period for each base
station, segmented into hourly intervals. Noting that these
traffic data are normalized by Min-Max normalization.

Pattern 1: Long-term and short-term periodic patterns.
Analysis of the two-month traffic data in Figure 1(a) reveals
that network traffic is lowest on Sundays (November 3,
10, 17, 24 and December 1, 8, 15, 22, 29), while midweek
traffic is consistently higher. This recurring weekly pattern
indicates long-term periodicity in cellular traffic. Similarly,
Figures 1(b) and 1(c) show consistent daily fluctuations,
where traffic peaks and declines follow a regular hourly pat-
tern, highlighting short-term periodicity. These observations
suggest that cellular traffic exhibits structured variations on
different time scales. Therefore, it is essential to effectively
capture both long-term trends and short-term fluctuations.
Relying solely on a single periodic pattern to represent
time periods may fail to fully capture these periodic depen-
dencies. Instead, a modeling approach that integrates both
long-term temporal patterns and short-term correlations is
necessary for an accurate representation of traffic.

Pattern 2: Spatial pattern. As shown in Figure 1(a), the
traffic volumes differ significantly between the two base
stations, with Base Station 1 experiencing lower network
traffic than Base Station 2. However, their overall traffic
trends remain similar, with less traffic on weekends com-
pared to weekdays. Additionally, Base Station 1 exhibits a
downward trend in traffic, whereas Base Station 2 shows an
opposite pattern, further highlighting spatial heterogeneity
in cellular traffic. This suggests that while base stations
may share global traffic trends, they also exhibit distinct
local variations. Effectively modeling both inter-station sim-
ilarities and local differences remains a key challenge in
cellular traffic generation, necessitating an approach that
can distinguish unique spatial patterns while preserving
overall correlations.

Pattern 3: Uncertainty pattern. As mentioned in Section
1, network traffic at the same base station within the same
time period exhibits inherent uncertainty. For example, in
Figure 1(a), while the weekly traffic patterns of a base station
remain similar in trend throughout four weeks, the actual
traffic volumes vary considerably. If a traffic generation
model accounts only for spatio-temporal patterns without
incorporating uncertainty, it will produce fixed-volume traf-
fic, failing to capture the natural fluctuations present in
real cellular traffic. Therefore, effective modeling of these
unpredictable variations is essential to ensure that generated
traffic accurately reflects both large-scale patterns and fine-
grained volume differences observed in real-world data.

3.3 Overview

Figure 2 illustrates the framework of STOUTER, which em-
ploys a denoising network that integrates spatio-temporal

Spatio-Temporal Graph Modeling
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GINTemporal Graph

Base Station Graph

Graph Autoencoder
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ℱ𝑠

Base stations

Time periods
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STUnet
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Fig. 2: Framework of STOUTER.

information to iteratively refine generated data and produce
large-scale cellular traffic data.

First, we build a temporal graph structure to capture
the underlying temporal periodic patterns by embedding
temporal graph nodes. Second, to differentiate the spatial
characteristics of various base station regions, we construct
a graph-based representation of base stations, encoding each
base station node using a graph autoencoder. Third, we
design a spatio-temporal denoising diffusion model and
introduce Spatio-Temporal UNet (STUnet) as the denois-
ing network. During training, STUnet first generates noisy
traffic data through the forward diffusion process. Then,
in the backward process, it recovers realistic traffic by pro-
gressively refining samples drawn from a random Gaussian
distribution, effectively simulating uncertainty in cellular
traffic. Leveraging temporal periodic patterns and spatial
base station representations, STUnet denoises the sampled
traffic data, ultimately generating realistic cellular traffic
that preserves inherent uncertainty patterns.

4 SPATIO-TEMPORAL GRAPH MODELING

In this section, we present the construction of the tempo-
ral graph and the base station graph, which capture the
temporal periodicity and spatial dependencies of cellular
traffic, respectively. We then utilize graph autoencoders to
obtain latent representations of the corresponding graph
nodes, preserving essential spatio-temporal features for
downstream traffic generation. As shown in Figure 3, the
encoder generates corresponding node representations for
the temporal graph and base station graph. The decoder

Encoder Decoder
Temporal Graph

Base Station Graph

Reconstructed Temporal Graph

Reconstructed Base Station Graph

Node Representations

Loss

Fig. 3: Spatio-temporal graph autoencoder.
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…

Fig. 4: The temporal graph, where the nodes consist of time
periods and the edges consist of two types: daily relation
and hourly relation.

then reconstructs the spatio-temporal graph. Finally, the
model is optimized by calculating the loss between the
reconstructed spatio-temporal graph and the original spatio-
temporal graph.

4.1 Temporal graph for time period encoding

To capture the temporal variations in cellular traffic, we
should consider its long-term and short-term characteristics.
To this end, we construct a temporal graph structure, as
illustrated in Figure 4.

We model hourly cellular traffic statistics as graph nodes,
where a single day is divided into 24 time periods, each cor-
responding to one of the 24 graph nodes. Adjacent temporal
nodes are connected by directed edges, representing the
short-term hourly progression of traffic throughout the day.
Additionally, to capture long-term temporal dependencies,
we introduce directed edges between the same hourly nodes
across different days within a week (Sunday to Saturday,
7 days). These connections encode the chronological rela-
tionships between corresponding time periods, effectively
modeling the recurring weekly traffic patterns.

Let Gt = (Vt,At,Ht) denote the temporal graph, where
Vt is the set of nodes, each corresponding to a one-hour
time period. At consists of the edges that describe con-
nections, which are categorized into two types: the first
type represents hour-level temporal relationships, capturing
sequential dependencies within a 24-hour cycle; the second
type represents daily-level temporal relationships, modeling
recurring traffic patterns across the same hour in different
days over a week. Ht is the initial representation of the
nodes, encoded using one-hot encoding.

The node representations for the temporal graph are
learned through a graph neural network (GNN), which
embeds and trains the nodes to capture their structural re-
lationships. To achieve this, we utilize the encoder-decoder
framework introduced in GraphMAE [47] to facilitate the
learning of these representations. Given its strong capability
in capturing graph structural information, we adopt the
Graph Isomorphism Network (GIN) [48] as both the graph
encoder and decoder in the learning process:

Ft = GINE(At,Ht),

Zt = GIND(At,Ft),
(1)

where Ft denotes the temporal node representation pro-
duced by the encoder, and the decoder generates the re-
stored node representation Zt.

4.2 Base station graph for spatial representation

Traffic patterns vary across different regions due to human
activity dynamics. To effectively differentiate cellular traffic
characteristics across base stations, we perform representa-
tion learning on cellular base stations and construct a base
station graph, which captures the spatial dependencies and
relationships among them.

Let Gs = (Vs,As,Hs) denote the base station graph,
where Vs represents the set of base station nodes and As de-
fines the adjacency relationships between base stations. The
duality of wireless network coverage (covered/uncovered)
fulfills the essential requirement for connectivity in real-
world scenarios. In particular, during cellular network
planning, binary edges can reduce the complexity of the
model and are more suitable for the topological analysis
of large-scale networks [49]. Consequently, an undirected
binary edge is established between two base stations if
their distance is less than a predefined threshold, denoted
as dBS . Hs represents the initial feature representation of
the base station graph. In large-scale urban base station
deployments, 99% of the base stations are located within
1 km of the nearest base station [50]. Therefore, we set the
threshold dBS = 1 km in our study.

Figure 5 illustrates the base station graph, where POIs
within each base station’s coverage area are categorized
into eight groups: Education, Medical, Public, Entertainment,
Traffic, Food, Shop, and Others. To generate the initial node
representations, we compute the number of POIs in each
category covered by a given base station, ensuring that the
spatial characteristics of different regions are well captured.

For base station graph representation learning, we em-
ploy an encoder-decoder model based on GNNs, following
a similar node embedding approach as used for temporal
graphs. Considering that GCNs [51] excel in node classifi-
cation tasks, we thus adopt GCNs as the encoder-decoder
architecture to learn the graph node representations of base
stations, i.e.:

Fs = GCNE(As,Hs),

Zs = GCND(As,Fs),
(2)

where Fs denotes the encoded base station node representa-
tion, and Zs denotes the reconstructed node representations
generated by the decoder.

4.3 Optimization function

To effectively pretrain the temporal graph and base station
graph, we optimize the encoders GINE and GCNE by
minimizing the scaled cosine error (SCE) loss function,
which ensures that the learned node representations retain
essential structural and feature information:

Lpre =
1

|V|
∑

vi∈V,hi∈H,zi∈Z

(
1− hT

i zi
∥hi∥ · ∥zi∥

)γ

, (3)

where the scaling factor γ > 1, vi represents the final node
embedding from Vt or Vs, hi denotes the original node
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Cover

Edge

Fig. 5: The base station graph, where the nodes consist
of base stations and eight types of POIs (i.e., Education,
Medical, Public, Entertainment, Traffic, Food, Shop, and
Others). Within the threshold dBS range, edges are estab-
lished between base stations, and base stations cover POIs.

feature from Ht or Hs, and zi is the restored node feature
from the decoder. We introduce a scaling factor to the cosine
error loss to assign higher weights to samples with larger
errors in the reconstructed representation.

5 DIFFUSION-BASED TRAFFIC GENERATION

In this section, we introduce a spatio-temporal diffusion
model for cellular traffic generation, incorporating both the
spatio-temporal patterns and the uncertainty pattern.

The diffusion model simulates traffic uncertainty
through a two-phase process: forward diffusion and reverse
denoising. In the forward process, the model progressively
injects noise into real traffic data, gradually transforming
it into a near-random prior distribution. In the reverse
process, the model starts from randomly sampled noise and
iteratively removes noise to reconstruct realistic traffic sam-
ples. To effectively capture uncertainty variations in traffic
data, we propose a cellular traffic generation method based
on a spatio-temporal diffusion framework. This method
employs two Markov chains: one is a forward Markov
chain that adds noise to real traffic data, mapping the real
traffic distribution to a predefined prior distribution (e.g., a
Gaussian distribution). The other is a reverse Markov chain
that reconstructs the true traffic distribution from the prior
distribution by iteratively refining generated traffic samples.
Given the complex spatio-temporal patterns of cellular traf-
fic, it is crucial to not only learn the noise patterns in traffic
generation but also to align the generated data with real-
world spatio-temporal structures during the denoising pro-
cess. To this end, we design STUnet to effectively guide the
traffic reconstruction process to preserve realistic patterns.

5.1 Forward cellular traffic noise adding process

In the forward diffusion process, cellular traffic data is
incrementally corrupted by adding noise. As noise accumu-
lates, the data distribution gradually approaches a Gaussian
distribution.

Given a real cellular traffic data sample x ∼ q(x) 1, we
generate a sequence of noisy traffic data x0 ∼ xT through
a forward Markov chain, where noise is progressively in-
troduced. The time steps for noise addition are indexed as
1 ∼ T , where x0 represents the original noise-free traffic
sample, and x1 ∼ xT denotes the traffic data with increasing
levels of noise. This process can be interpreted as gradually
erasing the spatio-temporal characteristics of the real traf-
fic distribution, such that the final state xT approximates
a Gaussian distribution. The process is described by the
following equation:

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1). (4)

The transition probability function in this diffusion pro-
cess follows a Gaussian distribution, where the mean is
µ =

√
1− βtxt−1 and the variance is σ2 = βt, i.e.:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (5)

where βt ∈ (0, 1) is a hyperparameter controlling the
diffusion intensity at time step t and I represents the
identity matrix. The sequence {β1, β2, ..., βT } is designed
to be increasing. As the time step t progresses, βt gradually
increases, resulting in more noise being added at each step.
We utilize linear scheduling to compute the intermediate
noise levels for the βt sequence, starting from a value of
10−4 and ending at 0.02. Using this Gaussian transition
kernel, we can derive the probability function q(xt|x0) at
any time step t ∈ {0, 1, ..., T}. Defining αt = 1 − βt and
αt =

∏t
i=0 ai, we have

q(xt|x0) = N
(
xt;

√
αtx0, (1− αt) I

)
. (6)

Consequently, the noisy traffic sample at time step t can
be computed by combining the original traffic data and
Gaussian noise:

xt =
√
αtx0 +

√
1− αtϵ, (7)

where ϵ ∼ N (0, I) denotes the added Gaussian noise.

5.2 Reverse cellular traffic data denoising process

In the reverse process, we first sample a random Gaussian
distribution to serve as the initial state for the generated
cellular traffic. Then, we iteratively refine the traffic data
through a reverse denoising operation to restore the ex-
pected distribution.

Since directly computing q(x0|x1:T ) is intractable, we
follow Denoising Diffusion Probabilistic Models (DDPM)
[38], which define the reverse process as a Markov chain
parameterized by a neural network. We thus train a neural
network pθ to model this reverse denoising process.

Given an initial Gaussian-distributed sample xT , the
reverse diffusion process from time step T to 0 follows:

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt),

pθ(xt−1|xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) .

(8)

1. To simplify the presentation, we omit the superscript of xi,j as x.
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Fig. 6: Denoising network for the noise level prediction in reverse denoising process. Figure (a) provides an overview of
the STUnet framework. Figure (b) depicts the internal structural composition of each STUnet block. Figure (c) illustrates
the STFFM, which is used for learning the spatio-temporal patterns of cellular traffic.

Based on Equation (6), assuming that x0 is known, the
posterior distribution can be expressed as:

q(xt−1 | xt, x0) = N
(
xt−1; µ̃(xt, x0), β̃tI

)
. (9)

Meanwhile, with the Bayesian formula, we have:

q(xt−1|xt, x0) =
q(xt, xt−1, x0)

q(xt, x0)

=
q(xt|xt−1, x0) · q(xt−1, x0)

q(xt|x0) · q(x0)

=
q(xt|xt−1, x0) · q(xt−1|x0) · q(x0)

q(xt|x0) · q(x0)

=
q(xt|xt−1, x0) · q(xt−1|x0)

q(xt|x0)
.

(10)

According to Equation (6), we can determine q(xt−1|x0) and
q(xt|x0). By combining this information with Equations (7),
(9) and (10), we can derive

µ̃t =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵt

)
,

β̃t =
1− ᾱt−1

1− ᾱt
βt,

(11)

where β̃t can be computed directly from the diffusion hy-
perparameter βt. Therefore, the mean µθ(xt, t) in Equation
(8) is computed as:

µθ =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, (12)

where θ represents the trainable parameters of the denoising
neural network. ϵθ(xt, t) is the estimated noise component,
learned by STUnet, which we introduce later.

Finally, cellular traffic data is reconstructed at t = 0 by
iteratively applying the reverse Markov chain to remove
noise step by step.

5.3 Spatio-temporal fusion denoising network

5.3.1 Spatio-temporal Unet
To facilitate the reverse denoising process of the spatio-
temporal diffusion model, we design the Spatio-Temporal
UNet (STUnet) , as illustrated in Figure 6(a). Within STUnet,
we introduce the Spatio-Temporal Feature Fusion Module
(STFFM), which guides the model in capturing temporal
periodic patterns and spatial patterns of cellular traffic.

The STUnet framework consists of two main compo-
nents: an encoder that corresponds to the down-sampling
process (from Down-Block to Mid-Block) and a decoder
that corresponds to the up-sampling process (from Mid-
Block to Up-Block). In the Down-Block, extracted features
are cropped during down-sampling, while in the Up-Block,
the decoder concatenates these cropped features for output.
Finally, the predicted ϵθ(xt, t) = STUnet(xT , t) is produced
via a convolutional layer.

5.3.2 Spatio-temporal Unet Blocks
Figure 6(b) illustrates the three core components of STUnet:
Down-Block, Mid-Block, and Up-Block. STUnet consists of
Down-Block and Up-Block networks with the same number
of layers, which are connected by Mid-Block. Each STUnet
block is composed of STFFM and attention networks. The
Down-Block ultimately outputs through a down-sampling
convolutional layer, while the Up-Block reconstructs the fi-
nal traffic data through an up-sampling convolutional layer.
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In the Mid-Block, the attention network between the
two STFFMs is implemented using a multi-head attention
mechanism. This mechanism projects the sequence informa-
tion encoded by the encoder into multiple subspaces and
extracts various semantic information output by the STFFM.
In our work, we set the number of attention heads to 4,
allowing us to focus on the diverse features of the input,
including historical traffic, time step, spatial semantics, and
temporal semantics. Given xin ∈ Rn×m represents the
intermediate layer input of STUnet Blocks, where m and n
denote the feature dimension and sequence length of the
cellular traffic, respectively. The attention network in the
Mid-Block can be expressed as:

Qi = xinW
Q
i ,

Ki = xinW
K
i ,

Vi = xinW
V
i ,

hei = softmax

(
QiK

T
i√

dk

)
Vi,

MHAtt(Q,K, V ) = Concat({hei}4i=1)W
O,

(13)

where i ∈ {1, 2, 3, 4} and dk = m/4 represent the sequence
number and feature dimension of each attention head.
WQ

i ,WK
i ,WV

i ∈ Rm×dk and WO ∈ Rm×m are learnable
parameter matrices.

In the Down-Block and Up-Block, the attention network
following the two STFFMs is implemented using a multi-
head linear attention mechanism. This approach reduces the
computational complexity of the attention layer during the
multi-layer encoding and decoding process while effectively
capturing the coarse-grained semantic information of the
cellular traffic. Each head of the linear attention mechanism
can be expressed as:

Q̂i = Softmax(Qi, dim = −2),

K̂i = Softmax(Ki, dim = −1),

LAtt(Qi,Ki, Vi) = Q̂i ·
(
K̂T

i Vi

)
,

(14)

where Q̂i and K̂i denote the normalization of the query
in the feature dimension and the normalization of the key
in the sequence dimension, respectively. The importance
weights of spatio-temporal features, time step features, and
historical traffic features are dynamically adjusted through
the multi-head attention layers in STUnet.

5.3.3 Spatio-temporal feature fusion module
As depicted in Figure 6(c), the temporal graph Gt and
base station graph Gs are pre-trained to obtain the corre-
sponding time period representation Ft and base station
representation Fs, which serve as spatio-temporal priors
for the generated traffic data. To enhance the denoising
learning, we design the spatio-temporal feature fusion mod-
ule (STFFM) for each residual block in STUnet, combining
the extracted spatio-temporal information with the diffusion
step information t to guide the restoration process.

We employ sinusoidal position encoding to represent
the step position information TSEmb for diffusion steps.
Subsequently, we utilize a multilayer perceptron (MLP) to
embed the diffusion step t:

TSEmb = MLP (SinPosEmb (t)) . (15)

Given base station embedding Fs and time period embed-
ding Ft, the spatio-temporal representation Fst is generated
by a fully connected layer. Then Fst is combined with
the diffusion step information to serve as guidance for the
diffusion generation process:

Fst = FC (TSEmb + FC (Concat (Fs,Ft))) , (16)

For a given randomly sampled xT , the model first ap-
plies a convolution operation and then integrates it with the
learned spatio-temporal representation to predict the final
noise:

x̂in = Conv (xin) ,

xout = ELU (x̂in + Conv (x̂in + Fst)) .
(17)

where xin is the input to the current network layer, while
xout is the output for the next layer. ELU(·) represents the
Exponential Linear Unit (ELU) activation function, which
improves stability in training. Conv(·) denotes the convolu-
tion operation, essential for feature extraction.

Finally, during the up-sampling process, the output from
the corresponding down-sampling residual block is cropped
and concatenated, ensuring accurate feature reconstruction.

5.4 Optimization function
During network training, STUnet is optimized by mini-
mizing the difference between the predicted traffic noise
and the actual traffic noise. Given the real noisy data as
ϵ, ϵ is sampled by Gaussian distribution ϵ ∼ N (0, I). By
incorporating ϵ, the values of xt at time step t can be
computed using Equation (7). The noise component ϵt is
then calculated as follows:

ϵt =
(
1−

√
αt

)
x0 −

√
1− αtϵ. (18)

Given that ϵθ(xt, t) denotes the predicted noise component
at time step t, as generated by the STUnet, we train the
spatio-temporal fusion denoising network using the L1 loss
function, which is defined as:

L = Ex0,ϵt

[
||ϵt − ϵθ(xt, t)||2

]
. (19)

6 PERFORMANCE EVALUATION

In this section, we conduct extensive experiments and anal-
ysis to validate the effectiveness of our STOUTER using the
real-world public datasets.

6.1 Experimental settings
6.1.1 Datasets
We conduct experiments using the public communication
dataset known as Call Detailed Records (CDRs) from Italy,
curated and provided by the Semantics and Knowledge
Innovation Lab. The datasets cover two regions: commu-
nication data from Milan and Trentino [52]. For both the
Milan and Trentino datasets, five types of traffic information
are recorded in detail: Internet, Received-SMS, Sent-SMS,
Incoming-Call, and Outgoing-Call. Specifically, Internet indi-
cates the network usage for Internet accessing, Incoming-
Call and Outgoing-Call correspond to voice call data, and
Received-SMS and Sent-SMS correspond to SMS communi-
cation data. Milan dataset collection period spanned from
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TABLE 1: Statistics about the datasets of Milan and Trentino.

Dataset Data type # of BSs

Milan

Internet 9905
SMS 9916

Received-SMS 10000
Sent-SMS 9916

Call 8376
Incoming-Call 9901
Outgoing-Call 9856

Trentino

Internet 4754
SMS 5698

Received-SMS 6258
Sent-SMS 5698

Call 3209
Incoming-Call 5551
Outgoing-Call 5142

November 1, 2013, to January 1, 2014. Trentino dataset
collection period spanned from November 1, 2013, to De-
cember 30, 2013.

We divide the base station areas according to the grid
systems provided in the datasets. In Milan, the number of
designated base station areas is 10,000, while in Trentino,
it is 11,466. In addition, some existing studies [37] have
merged the sent and received data for traffic analysis
tasks. We also use Call (aggregated from Incoming-Call
and Outgoing-Call) and SMS (aggregated from Received-
SMS and Sent-SMS) as experimental datasets. After data
preprocessing, the detailed information of the experimental
dataset is presented in Table 1.

6.1.2 Baselines

We compare our model against two categories of cellular
traffic generation methods, that is GAN-based and VAE-based
methods. Additionally, to verify the effectiveness of our
proposed STUnet, we also compare the diffusion model
approach with WaveNet-based [53] as the denoising network
framework. The baseline methods are described below.

• TCN-GAN [18]: Generative Adversarial Network
(GAN) consists of two components: a generator and
a discriminator. The generator transforms a random
noise vector, which is typically sampled from a prior
distribution such as a Gaussian distribution, into re-
alistic data samples. The discriminator distinguishes
between synthetic traffic samples generated by the
generator and real traffic data. In this method, we
exclude the classification of long-term and short-term
periodic traffic as well as the urban knowledge graph
and instead adopt the core TCN-GAN network struc-
ture for cellular traffic generation.

• VAE [54]: Variational Autoencoder (VAE) consists
of two components: an encoder and a decoder. The
encoder maps the input data to a low-dimensional
latent space, while the decoder reconstructs the vec-
tors from the latent space back to the original data.
This method originally employs a hybrid convolu-
tional VAE for text generation. In our experiments,
we adapt this model for cellular traffic generation
by modifying its architecture to accommodate traffic
data characteristics.

• DiffWave [53]: DiffWave is a diffusion model pri-
marily used for audio generation. It features a non-
autoregressive structure, which effectively leverages
the strong capabilities of sound wave modeling. In
our experiments, we use WaveNet from DiffWave as
the denoising network for a diffusion model based
cellular traffic generation method.

Due to DiffTraj [45] focusing on GPS trajectory gener-
ation and lacking the necessary information to construct
knowledge graphs, we cannot directly compare our method
with DiffTraj, KSTDiff [46], STK-Diff [31], and DiffSTG [44].

6.1.3 Evaluation metrics

To measure the numerical discrepancy between the gener-
ated cellular traffic and real traffic data, we employ com-
monly used error metrics, including Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE).

Let Xg and Xr denote the generated traffic and the
real traffic across all distributions, respectively. As defined
in Section 3.1, X g

i and X r
i represent the generated traffic

and the real traffic of the i-th base station. Thus, MAE is
calculated as:

MAE(Xg,Xr) =
1

n

n∑
i=1

|X g
i −X r

i |, (20)

and RMSE is calculated as:

RMSE(Xg,Xr) =

√√√√ 1

n

n∑
i=1

(X g
i −X r

i )
2, (21)

where n is the total number of base stations.
Additionally, we ultilize Jensen-Shannon Divergence (JSD)

[55] to evaluate the similarity between probability distribu-
tions of generated and real traffic. JSD is a symmetric diver-
gence measure based on Kullback-Leibler (KL) divergence,
making it well-suited for comparing two distributions. The
KL divergence between the generated traffic and the real
traffic can be expressed as:

KL(Xg ∥ Xr) =
∑
i

Xg(i) log
Xg(i)

Xr(i)
. (22)

The JSD between Xg and Xr is then calculated as:

JSD(Xg,Xr) =
KL(Xg ∥ Xm) +KL(Xr ∥ Xm)

2
, (23)

where Xm =
Xg+Xr

2 denotes the average distribution
between Xg and Xr.

6.1.4 Implementation

All experiments were executed on a server equipped with an
NVIDIA GeForce RTX 3090 GPU (64 GB VRAM), an Intel(R)
Core(TM) i7-10700K CPU (3.80 GHz), 80 GB of system RAM,
and implemented using Python 3.7 with the PyTorch deep
learning framework.
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TABLE 2: Performance comparisons of our proposed STOUTER and baseline methods using the metrics of MAE, RMSE,
and JSD (×10−4). Detailed results for Incoming-Call, Outgoing-Call, Received-SMS, and Sent-SMS datasets from Milan and
Trentino. The optimal results are highlighted in bold and the suboptimal results are underlined.

Methods

Milan

Incoming-Call Outgoing-Call Received-SMS Sent-SMS

MAE RMSE JSD MAE RMSE JSD MAE RMSE JSD MAE RMSE JSD

TCN-GAN 0.1282 0.1887 1.9996 0.2300 0.2752 3.9110 0.2393 0.3487 4.7695 0.2142 0.2640 2.0356
VAE 0.0717 0.0935 0.4032 0.1023 0.1411 0.7663 0.0219 0.0469 0.3288 0.0885 0.1156 0.5220

DiffWave 0.0787 0.0993 0.4366 0.0970 0.1326 0.6977 0.0286 0.0518 0.3372 0.0849 0.1119 0.5068
STOUTER 0.0689 0.0894 0.3837 0.0809 0.1120 0.5336 0.0189 0.0459 0.3295 0.0772 0.1017 0.4353

Methods

Trentino

Incoming-Call Outgoing-Call Received-SMS Sent-SMS

MAE RMSE JSD MAE RMSE JSD MAE RMSE JSD MAE RMSE JSD

TCN-GAN 0.1913 0.2326 1.9676 0.2005 0.2612 2.7834 0.1972 0.2941 3.8463 0.1438 0.1709 1.1441
VAE 0.0725 0.0936 0.3818 0.1040 0.1441 0.8057 0.0301 0.0575 0.3991 0.0914 0.1169 0.4767

DiffWave 0.0839 0.1040 0.4633 0.0984 0.1362 0.7088 0.0325 0.0620 0.4216 0.1047 0.1326 0.5529
STOUTER 0.0720 0.0909 0.3608 0.0820 0.1105 0.5320 0.0268 0.0564 0.4006 0.0824 0.1056 0.4262

TABLE 3: Performance comparisons of our proposed STOUTER and baseline methods using the metrics of MAE, RMSE,
and JSD (×10−4). Detailed results for Internet, Call, and SMS datasets from Milan and Trentino. The optimal results are
highlighted in bold and the suboptimal results are underlined.

Methods

Milan

Internet Call SMS

MAE RMSE JSD MAE RMSE JSD MAE RMSE JSD

TCN-GAN 0.4183 0.4693 2.6895 0.1357 0.1598 1.0161 0.2714 0.4335 9.2472
VAE 0.1057 0.1444 0.8017 0.0818 0.1071 0.4765 0.0612 0.0735 0.2652

DiffWave 0.1329 0.1707 0.9199 0.0860 0.1086 0.5573 0.0721 0.0837 0.2213
STOUTER 0.0781 0.1088 0.4843 0.0697 0.0925 0.3963 0.0583 0.0715 0.1997

Methods

Trentino

Internet Call SMS

MAE RMSE JSD MAE RMSE JSD MAE RMSE JSD

TCN-GAN 0.4786 0.5312 2.9059 0.1267 0.1488 0.8921 0.0977 0.1103 0.3402
VAE 0.1044 0.1440 0.7938 0.0810 0.1018 0.3520 0.0721 0.0896 0.3369

DiffWave 0.0986 0.1348 0.8333 0.0809 0.1005 0.5050 0.1540 0.1668 0.4479
STOUTER 0.0827 0.1139 0.5196 0.0719 0.0915 0.3076 0.0613 0.0808 0.3380

6.2 Overall performance

Table 2 and Table 3 presents the results of the performance
evaluation of our model compared to baseline models in
multiple datasets from Milan and Trentino. Specifically, Ta-
ble 2 presents the evaluation results for the Incoming-Call,
Outgoing-Call, Received-SMS, and Sent-SMS datasets. Table
3 presents the evaluation results for the Internet, Call and
SMS datasets.

The results show that our method outperforms the base-
lines over the metrics of MAE, RMSE, and JSD. For example,
on the Internet traffic datasets from Milan and Trentino,
our model on average improves MAE by 19.23%, RMSE by
18.35%, and JSD by 52.77%, when compared to the baselines.

In contrast, TCN-GAN exhibits the worst performance
among the models. This is mainly due to the instability
of GAN-generated data, which lacks consistency without
strong guidance signals such as knowledge graphs and de-
tailed traffic cycle patterns. Meanwhile, VAE and DiffWave
demonstrate varying strengths in different datasets. How-
ever, their performance is not consistently superior across
all datasets, leading to dataset-dependent biases.

TABLE 4: Comparisons of model overheads.

Methods Parameters (M ) Training time (×104s) Inference time (s)

TCN-GAN 3.3821 13.0474 0.0468
VAE 1.1238 4.4291 0.0159

DiffWave 1.0051 7.5435 0.1082
STOUTER 2.9525 6.5966 0.3783

Our method achieves suboptimal results on the JSD
metric for the Received-SMS datasets from both regions
and the SMS dataset from Trentino. This is due to the
high randomness in the Received-SMS dataset compared to
other datasets, where cellular traffic patterns exhibit weak
correlations over different time periods and base stations,
making distribution modeling more challenging. Since our
model integrates spatio-temporal information via STFFM, it
introduces less stochastic variability compared to VAE. De-
spite this, our model consistently achieves the best overall
performance in other datasets.

We analyze the time and space complexity of our pro-
posed model and baseline models using the Trentino Inter-
net dataset, including comparisons on model parameters,
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(a) MAE of Milan datasets (b) RMSE of Milan datasets (c) JSD (× 10−4) of Milan datasets

(f) JSD (× 10−4) of Trentino datasets(e) RMSE of Trentino datasets(d) MAE of Trentino datasets

Fig. 7: Performance impact of temporal graph and base station graph for Internet, Call, SMS, Incoming-call (‘Call-In’ for
short), Outgoing-Call (‘Call-Out’ for short), Received-SMS (‘SMS-In’ for short), and Sent-SMS (‘SMS-Out’ for short) datasets
from Milan and Trentino.

training time, and inference time. As shown in Table 4, the
TCN-GAN method has the most parameters due to its dual
network design (generator and discriminator). STOUTER’s
spatio-temporal fusion module, utilizing a multi-layer U-
Net, results in slightly more parameters than VAE and
DiffWave. Training times show that TCN-GAN takes the
longest, while STOUTER’s is slightly higher than VAE’s due
to its complex denoising structure. For inference cost, with
a batch size of 128, diffusion model-based methods require
longer times than TCN-GAN and VAE.

Overall, while STOUTER incurs slightly more memory
overhead and inference time, it achieves much better gen-
eration results. Given that the purpose of cellular traffic
generation is often to create more data for research in areas
with limited datasets, the demand for real-time performance
could not be high. Therefore, the trade-off of increased in-
ference time for more realistic generated data is acceptable.

6.3 Ablation study and variants analysis

6.3.1 Ablation of spatio-temporal graph module
To access the impact of temporal graph representation
learning and base station graph representation learning on
the model’s performance, we conduct ablation experiments
by comparing STOUTER with three modified versions:
STOUTER without the time period representation (denoted
as w/o TG), STOUTER without the base station repre-
sentation (denoted as w/o BSG), and STOUTER without
both the time period and base station representations (de-
noted as w/o ST). By evaluating these variants, we analyze
how spatio-temporal feature learning enhances the diffusion
model’s ability to generate realistic cellular traffic patterns.

We present the performance comparison of these models
across three evaluation metrics (MAE, RMSE, and JSD) on
the Milan and Trentino datasets in Figure 7. The results

indicate that removing the temporal and base station graph
representation modules degrades performance. Notably, for
the SMS data, the optimization effect on JSD is relatively
weaker. This is particularly evident in the Received-SMS
dataset, where the spatio-temporal correlation of the overall
traffic behavior patterns is inherently weak, limiting the
effectiveness of the spatio-temporal model in learning its
distribution. Despite this, for other metrics, our model con-
sistently demonstrates superior performance, validating the
importance of integrating spatio-temporal representations
in cellular traffic generation.

6.3.2 Variants of spatio-temporal graph modeling

When modeling spatio-temporal graphs, we employed the
GIN [48] graph autoencoder for temporal graphs and the
GCN [51] graph autoencoder for base station graphs. To
assess their effectiveness, we conducted a variant analysis of
graph neural networks. For temporal graphs, we compared
three graph node encoding methods: GAT [56], GCN, and
GraphSAGE [57]. For base station graphs, we evaluated
three variant methods: GAT, GIN, and GraphSAGE.

The results are presented in Table 5. Our methods
demonstrate superiority over other variant methods, achiev-
ing an improvement of at least 1.74% across various metrics.
The GIN model, with its strong ability to capture graph
structural information, effectively identifies both long-term
and short-term periodicity in temporal graphs. Meanwhile,
for the base station graph, modeling the correlations among
surrounding base stations is crucial. The GCN excels in
this regard by effectively capturing the connections between
base station nodes and using the features of neighboring
nodes to update the representation of each graph node.
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TABLE 5: Performance comparisons of model variants using different graph modeling methods over metrics of MAE,
RMSE, and JSD (×10−4). The optimal results are highlighted in bold and the suboptimal results are underlined.

Graph Type Variants Milan Trentino

MAE RMSE JSD MAE RMSE JSD

Temporal Graph
GAT 0.0850 0.1123 0.5334 0.0874 0.1208 0.5738
GCN 0.0847 0.1122 0.5352 0.0853 0.1181 0.5577

GraphSAGE 0.0820 0.1111 0.5308 0.0855 0.1173 0.5636

Base Station Graph
GAT 0.0889 0.1177 0.5392 0.0905 0.1249 0.612
GIN 0.0815 0.1112 0.5313 0.0846 0.1172 0.5521

GraphSAGE 0.0808 0.1107 0.5271 0.0852 0.1166 0.5623

Ours 0.0781 0.1088 0.4843 0.0827 0.1139 0.5196

TABLE 6: Performance comparisons of model variants for
fusion mechanisms within the STFFM using the metrics of
MAE, RMSE, and JSD (×10−4). The optimal results are high-
lighted in bold and the suboptimal results are underlined.

Variants Milan Trentino

MAE RMSE JSD MAE RMSE JSD

WeightFu 0.0838 0.1128 0.5497 0.0954 0.1309 0.7360
GateFu 0.0824 0.1128 0.5368 0.0827 0.1145 0.5089

CrossAtt 0.0998 0.1340 0.7089 0.1015 0.1320 0.6998
DecFu 0.1169 0.1540 1.0059 0.0982 0.1317 0.7352

Ours 0.0781 0.1088 0.4843 0.0827 0.1139 0.5196

6.3.3 Variants of fusion mechanism
In STFFM, we utilize concatenation and fully connected
layers for spatio-temporal feature fusion. To evaluate the ef-
fectiveness of feature fusion, we analyze several variants of
dynamic feature fusion methods, including dynamic weight
fusion (WeightFu) [58], gated mechanism fusion (GateFu)
[58], cross-attention mechanism (CrossAtt) [59], and decou-
pled fusion (DecFu) [60]. The experimental results of the
fusion mechanism variants are summarized in Table 6.

Our method effectively retains original temporal and
spatio features, leveraging a fully connected layer for com-
plex spatio-temporal interactions. Compared to GateFu,
which has weaker feature interaction modeling but lower
computational complexity, and WeightFu, better for strong
local correlations, our approach excels in capturing long-
term traffic features. CrossAtt struggles with noise due to
its large parameters, leading to poor performance, while
DecFu risks disrupting crucial interactions. Overall, STFFM
enhances feature extraction using multi-head attention.

6.4 Parameter study
During training the diffusion model, the diffusion step plays
a crucial role in determining the performance of the model.
The diffusion step refers to the number of iterations during
which noise is added in the forward process and subse-
quently removed in the reverse process. This parameter
directly impacts the quality of generated traffic data. We
conduct sensitivity experiments on the diffusion step using
the Internet datasets from Milan and Trentino.

Figure 8 shows the performance trends of the model
under different diffusion step values by varying t = from
10 to 1000. Our findings indicate that a higher diffusion step
improves model performance, leading to generated traffic

(a) MAE of Milan Internet (b) MAE of Trentino Internet

(c) RMSE of Milan Internet (d) RMSE of Trentino Internet

(e) JSD (× 10−4) of Milan Internet (f) JSD (× 10−4) of Trentino Internet

Fig. 8: Performance comparison of different diffusion steps.

data that more closely aligns with real traffic patterns. In
addition, stability thresholds vary by dataset. In the Milan
Internet dataset, performance metrics stabilize at t = 600.
In the Trentino Internet dataset, stability is achieved at
t = 800. Overall, increasing the diffusion step enhances data
generation quality, but beyond a certain threshold, further
increases yield diminishing improvements.

6.5 Visualization
We conduct a visualization analysis of long-term generated
traffic using the Trentino Internet dataset. Figure 9 presents
the visualization results for one month. We compare our
STOUTER with three baselines: DiffWave [53], TCN-GAN
[18], and VAE [54].
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(a) Visualization of STOUTER in Trentino Internet (b) Visualization of DiffWave in Trentino Internet

(c) Visualization of TCN-GAN in Trentino Internet (d) Visualization of VAE in Trentino Internet

Fig. 9: Visualization comparison on the generated traffic in Trentino’s Internet dataset, where ‘Generated traffic’ represents
the traffic generated by different generation models (i.e., STOUTER, DiffWave, TCN-GAN, and VAE), and the ‘Ground
Truth’ represents the real traffic.

Figure 9 reveals that the Internet traffic generated by
DiffWave and VAE struggles to capture the periodic patterns
of real traffic, resulting in significant deviations where the
generated traffic is substantially larger or smaller than the
actual traffic during certain hours. The traffic generated
by TCN-GAN is generally cluttered and does not align
with the real traffic trends, with only a small portion of
the generated data closely matching the actual values. In
contrast, our method effectively reconstructs the overall
trend of real Internet traffic, with only a few instances
showing relatively minor deviations. We calculated the indi-
cators for the visualization samples. It shows that STOUTER
(MAE:0.18, RMSE:0.2558) outperforms VAE (MAE:0.2923,
RMSE:0.4528), DiffWave (MAE:0.2359, RMSE:0.3384), and
TCN-GAN (MAE:1.5976, RMSE:2.5625). It indicates that
STOUTER has a better understanding of traffic uncertainty
and can minimize significant deviations from true values.

6.6 Case study

To evaluate the usability of the generated cellular traffic
data, we perform traffic prediction modeling using the
Internet datasets from Milan and Trentino. We employ Long
Short-Term Memory (LSTM) networks [36] as the traffic pre-
dictor. The experimental training set consists of generated
traffic data, while real traffic data is used for testing and
validation. To facilitate effective comparison, we also train
the model using real traffic data and contrast the results
with those obtained from training on generated data.

Figure 10 illustrates the prediction results over the
following week, evaluated using two metrics: MAE and
RMSE. It is evident that the prediction model trained on
real traffic data achieves the best performance across both
datasets. Furthermore, our model outperforms other gener-
ative methods, producing traffic data that yield prediction
errors within 0.1 of the model trained on real data in both
MAE and RMSE. These results confirm that the cellular

(a) MAE of  Milan Internet (b) RMSE of Milan Internet

(c) MAE of  Trentino Internet (d) RMSE of  Trentino Internet

Fig. 10: Performance of traffic prediction modeling using the
Internet datasets from Milan and Trentino.

traffic data generated by STOUTER is highly usable, making
it a viable alternative to real traffic data for supporting
downstream applications. In addition, Accurate traffic fore-
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casting enables network operators to effectively deploy base
stations in high-traffic areas, optimize resource allocation,
and enhance network capacity and coverage. By training
the predictor with traffic data generated by STOUTER, fore-
casting accuracy can be improved, providing more reliable
data support for base station deployment.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose STOUTER, a novel spatio-
temporal fusion diffusion model for cellular traffic gen-
eration. This approach incorporates spatio-temporal rela-
tionships into diffusion model-based cellular traffic gen-
eration process, and thus can produce realistic and high-
quality synthetic traffic data. We validate the performance of
STOUTER through extensive experiments on large-scale and
real-world cellular traffic datasets. The results demonstrate
significant performance improvements in various metrics
compared to existing generative models, and confirm that
STOUTER-generated traffic closely aligns with real distri-
butions, making it highly effective for downstream applica-
tions such as network optimization, traffic prediction, and
resource allocation.

In future work, we would like to explore the diverse
characteristics of cellular traffic to generate more realistic
traffic patterns when multi-source datasets, including me-
teorology, population, events, and disasters, are available.
Additionally, STOUTER requires historical data for training
when generating cellular traffic, we thus consider using
transfer learning to apply knowledge from data-rich areas
to regions lacking data support for cellular traffic generation
studies. Furthermore, we will evaluate the effectiveness of
STOUTER in assisting with network planning if feasible.
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[56] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[57] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., 2017.

[58] X. Ma, J. Yang, T. Hong, M. Ma, Z. Zhao, T. Feng, and W. Zhang,
“STNet: Spatial and temporal feature fusion network for change
detection in remote sensing images,” in IEEE ICME, 2023, pp.
2195–2200.

[59] S. Fan, Q. Dong, F. Zhu, Y. Lv, P. Ye, and F.-Y. Wang, “SCF-Net:
Learning spatial contextual features for large-scale point cloud
segmentation,” in CVPR, 2021, pp. 14 504–14 513.

[60] G. Wang, F. Fan, S. Shi, S. An, X. Cao, W. Ge, F. Yu, Q. Wang,
X. Han, S. Tan, Y. Tan, and Z. Wang, “Multi modality fusion
transformer with spatio-temporal feature aggregation module for
psychiatric disorder diagnosis,” Computerized Medical Imaging and
Graphics, vol. 114, p. 102368, 2024.

Xiaosi Liu received the B.E. degree in Software
Engineering from Nanchang University, Nan-
chang, China, in 2022. She is currently a Mas-
ter’s degree student at the College of Computer
Science and Software Engineering, Shenzhen
University, Shenzhen, China, under the super-
vision of Dr. Zhidan Liu. Her research interests
include spatio-temporal data analysis and urban
computing.

Xiaowen Xu received the B.E. degree in Com-
puter Science and Technology from Shenzhen
University, Shenzhen, China, in 2023. She is
currently a first-year PhD student in Intelligient
Transportation at The Hong Kong University of
Science and Technology (GZ), China, under the
supervision of Dr. Zhidan Liu. Her research inter-
ests are in the areas of trajectory data analysis
and mobile computing.

Zhidan Liu (Senior Member, IEEE) received the
Ph.D. degree in computer science and technol-
ogy from Zhejiang University, Hangzhou, China,
in 2014. After that, he worked as a Research
Fellow at Nanyang Technological University, Sin-
gapore, and a faculty member at the College
of Computer Science and Software Engineer-
ing, Shenzhen University, Shenzhen, China. He
is currently an Assistant Professor at Intelli-
gent Transportation Thrust, System Hub, The
Hong Kong University of Science and Technol-

ogy (Guangzhou). His research interests include the Internet of Things,
mobile computing, urban computing, and big data analytic. He is a
senior member of IEEE and CCF.

Zhenjiang Li (Member, IEEE) received the BE
degree from Xi’an Jiaotong University, Xi’an,
China, in 2007, and the MPhil and Ph.D. de-
grees from the Hong Kong University of Science
and Technology, Hong Kong, China, in 2009 and
2012, respectively. He is currently an associate
professor with the Department of Computer Sci-
ence, City University of Hong Kong. His research
interests include the Internet of Things, edge AI
systems, and smart sensing.

Kaishun Wu received his Ph.D. degree in Com-
puter Science and Engineering at The Hong
Kong University of Science and Technology. Be-
fore joining HKUST(GZ) as a Full Professor at
DSA Thrust and IoT Thrust in 2022, he was a
distinguished Professor and Director of Guang-
dong Provincial Wireless Big Data and Future
Network Engineering Center at Shenzhen Uni-
versity. Prof. Wu is an active researcher with
more than 200 papers published in major inter-
national academic journals and conferences, as

well as more than 100 invention patents, including 12 from the USA.
He received the 2012 Hong Kong Young Scientist Award, and the 2014
Hong Kong ICT Awards: Best Innovation, and 2014 IEEE ComSoc Asia-
Pacific Outstanding Young Researcher Award. He is a Fellow of IEEE,
IET, and AAIA.


