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Joint Order Dispatching and Vehicle Repositioning

for Dynamic
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Abstract—Dynamic ridesharing has gained significant attention
in recent years. However, existing ridesharing studies often focus
on optimizing order dispatching and vehicle repositioning sepa-
rately, leading to short-sighted decisions and underutilization of the
ridesharing potential. In this paper, we propose a novel joint opti-
mization framework called JODR. By coordinating order dispatch-
ing and vehicle repositioning, JODR enhances ridesharing efficiency
while ensuring high-quality service. The core idea of JODR is to dis-
patch ride orders with high demand in specific mobility directions
to vehicles with sufficient available capacity, effectively balancing
future supply and demand in those directions. To achieve this, we
introduce a novel mobility value function that can predict the long-
term mobility value of matching an order with its travel direction.
By considering orders’ directional mobility values, service quality
assessments, and available vehicle capacities, JODR formulates the
order dispatching as a minimum-cost maximum-flow problem to
derive the optimal order-vehicle assignments. Furthermore, the
value function helps the intelligent repositioning of idle vehicles.
Extensive experiments conducted on a large real-world dataset
demonstrate the superiority of JODR over state-of-the-art methods
across various performance metrics. These experimental results
validate the effectiveness of JODR in improving the ridesharing
efficiency and experience.

Index Terms—Dynamic ridesharing, order dispatching, vehicle
repositioning, mobility value.
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I. INTRODUCTION

YNAMIC ridesharing services, offered by platforms like

Uber [2] and Didi Chuxing [1], allow multiple riders with
similar itineraries and schedules to share a single vehicle to reach
their respective destinations. With the wide adoption of dynamic
ridesharing, this form of shared mobility has fundamentally
transformed urban transportation, offering convenient and ef-
ficient alternatives to traditional modes of travel. Moreover, it
brings forth various advantages for urban cities, such as allevi-
ating traffic congestion and reducing energy consumption [52].
The fundamental goal of ridesharing systems is to efficiently
connect available vehicles (i.e., supply) and spatio-temporally
distributed orders (i.e., demand), so that to maximize the number
of served orders while guaranteeing the service quality. If a
ridesharing system can maintains supply-demand equilibrium
for the long term, the vehicle supply could well serve all orders
in time, thereby maximizing the order completion rate. Such
an objective is mainly determined by two essential tasks, i.e.,
order dispatching and vehicle repositioning, both of which have
great influences on the balance of supply and demand [42].
Specifically, order dispatching aims to match orders with suit-
able vehicles, where each vehicle owns remaining capacity for
sharing and the riders already in this vehicle have similar travel
route with the matched new order [24], [31]. Intuitively, the
decision of each order dispatching directly impacts the spatial
distribution of vehicle supply, which in turn affects the out-
come of future order dispatching decisions. On the other hand,
vehicle repositioning involves relocating idle or underutilized
vehicles to the areas where they are more likely to receive
future orders. This approach can potentially help reduce riders’
waiting time, increase vehicle utilization, and improve overall
system efficiency [19]. Therefore, order dispatching and vehicle
repositioning are intricately linked in dynamic ridesharing where
the orders dynamically appear. Effective coordination between
these two tasks plays a pivotal role in guaranteeing a seamless
and optimized ridesharing experience for both riders and drivers.
Despite numerous research efforts aimed at enhancing dy-
namic ridesharing, the majority of these works tend to opti-
mize the two tasks separately. Some existing studies focus on
improving order dispatching performance by optimizing spe-
cific objectives [4], [17], [24], [32], [43], [44], while others
concentrate on developing vehicle repositioning strategies that
redistribute vacant vehicles based on perceived supply and de-
mand [19], [26], [37], [53], [57]. However, the former works
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often overlook the long-term impact of each order dispatching
decision and neglect the crucial role of vehicle repositioning
in balancing supply and demand. Meanwhile, the latter works
primarily consider repositioning idle vehicles and overlook the
redistribution of underutilized vehicles. Consequently, previ-
ous approaches tend to make short-sighted decisions, failing
to unleash the full potential of ridesharing. Although some
works [5], [12], [40] consider joint optimization of order dis-
patching and vehicle repositioning, focusing on ride-hailing
services where each vehicle serves one order. However, dy-
namic ridesharing is much more complex, as vehicles can
serve multiple orders simultaneously, making these methods
inapplicable.
To this end, we propose JODR, a Joint Order Dispatching and
vehicle Repositioning framework. JODR is designed to optimize
ridesharing efficiency while ensuring high-quality service. By
utilizing a batch-based processing model, JODR collects a set
of orders within a sliding time window and then dispatches
them to suitable vehicles, effectively coordinating tasks of order
dispatching and vehicle repositioning.
The core idea of JODR revolves around dispatching orders with
high demand in specific travel directions to these suitable vehi-
cles with sufficient capacity. By doing so, JODR aims to balance
future supply and demand in those directions. During the order
dispatching process, several factors are considered, including
future demand in the order’s travel direction, additional detour
and waiting time caused by ridesharing, and the remaining
capacity of each vehicle. This approach enables implicit reposi-
tioning of vehicle supply through deliberate order dispatching.
A key element enabling this idea is the novel mobility value
function V(-). To model directional state changes in ridesharing
activities, we employ the Markov Decision Process framework.
Specifically, we utilize a deep reinforcement learning model’s
value network [35] to approximate the function V(-), which
predicts the long-term mobility value of matching an order in
its travel direction. Furthermore, we formulate the order-vehicle
matching problem as a minimum-cost maximum-flow problem
in network flow [8]. By applying optimization methods, we
can derive the optimal order-vehicle assignments. Moreover,
leveraging the insight of function V(-) on identifying valuable
travel directions, we enhance supply-demand equilibrium by
explicitly repositioning idle vehicles towards directions with
anticipated high future demand.
In summary, we make the following key contributions:
® We analyze the limitations of existing ridesharing studies,
and formulate the joint optimization problem of order
dispatching and vehicle reposition in dynamic ridesharing.

® We propose JODR, an innovative solution that effectively
coordinates the two tasks of order dispatching and vehicle
repositioning. By achieving a supply-demand equilibrium,
JODR enhances ridesharing efficiency while ensuring high-
quality service.

¢ To implement JODR, we introduce a novel mobility value

function capable of predicting the potential mobility values
for different travel directions. We further model the order
dispatching as a minimum-cost maximum-flow problem to
determine the optimal order-vehicle assignments.
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® We conduct extensive experiments on a large real-world
dataset to investigate the efficiency and effectiveness of
JODR under various comparison and parameter settings.
Experimental results demonstrate that JODR significantly
outperforms state-of-the-art methods across a wide range
of performance metrics.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III introduces the prelimi-
nary of ridesharing and the problem statement. We elaborate
and evaluate JODR’s design in Sections IV and V, respectively.
Finally, Section VI concludes this paper.

II. RELATED WORK

Unlike traditional static ridesharing, a.k.a. carpooling [55],
where the information of both riders and shared vehicles is
known in advance, dynamic ridesharing has to serve dynamically
appearing ride orders by properly arranging shared vehicles [17],
[24], [31], [43], [44]. Dynamic ridesharing is more aligned with
real-world shared mobility applications, hence is our main focus.
In this paper, we will particularly review the related works from
two aspects, i.e., order dispatching and vehicle repositioning,
which are the two major operations on determining the efficiency
of ridesharing.

Order dispatching: Compared to ride-hailing that generally
provides on-demand service for individual orders [39], [42],
order dispatching in dynamic ridesharing is more challenging,
as it involves multiple orders sharing a single vehicle to travel
together and split the cost of the trip [18]. By matching orders
with available vehicles, order dispatching aims to optimize the
overall system efficiency while satisfying the requirements of
all riders in terms of waiting time, detour costs, and the dead-
lines of arriving at destinations [4], [24], [25], [31], [32], [43],
[44]. Existing works on ridesharing order dispatching can be
categorized into real-time and batch-based methods.

Based on the first-come-first-served principle, real-time so-
lutions assigns each order to an available vehicle right upon
receiving the order [17], [24], [25], [29], [30], [31], [32], [43],
[46]. For each newly coming order, these methods first search
a set of candidate vehicles, and then determine the best vehicle
to serve this order based on some objectives [27]. For example,
Zheng et al. [31], [32] present T-Share, which first searches
the candidate vehicles through grid index and then dispatches
this order to the one with the minimum increased travel dis-
tance. To improve 7-Share, Ma et al. [30] further incorporates
quality-of-service as the constraint for order dispatching. In
addition, Liu et al. [24], [25] develop a mobility-aware rideshar-
ing system called mT-Share. It constructs index structures for
orders and vehicles by exploiting both geographical information
and travel directions to refine candidate searching, and further
optimizes the route planning to improve computation efficiency.
Inserting an order’s origin and destination into a vehicle’s route
without changing its current schedule is a key operation for
dynamic ridesharing. Tong et al. [44] thus propose an inser-
tion operator that uses a greedy strategy for route planning,
and further improve the insertion operation by considering
both online and predicted orders [43]. In particular, Wang et
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al. [46] have explored a special ridesharing scenario with
meeting points. While real-time methods can swiftly respond
to each order, they often face limitations in accessing timely
information during the decision-making stage. As a result, these
methods may overlook closely timed information about orders
and vehicles, leading to missed opportunities for making optimal
decisions.

Different from the real-time solutions, batch-based meth-
ods [4], [6], [58], [59] instead wait for a certain time interval,
which decides the batch size, before matching received orders
with available vehicles. Alonso-Mora et al. [4] propose a
two-step approach that first groups orders that can be shared,
and then assigns each group to an available vehicle using the
bipartite matching algorithm by minimizing the total travel
distance while serving all orders. In fact, the bipartite matching
algorithm has been adopted by various batch-based methods,
yet with different objectives, e.g., maximizing the platform’s
revenue [58], [59], or minimizing total travel distances [6].
Nevertheless, these methods typically involve enumerating all
possible groups of orders and validating the feasibility of each
order group’s matching with an available vehicle. This process
incurs high time complexity and significant response delays. The
batch size largely determines the computation efficiency [43].
Different from these works, we divide a batch of orders based on
their travel directions, which can reduce computation overheads
greatly. Moreover, by jointly considering both order assignments
and vehicle repositioning, we achieve substantial enhancements
in ridesharing performance.

Vehicle repositioning: This task primarily focuses on opti-
mizing the distribution and relocation of idle or underutilized
vehicles to areas with high future demand [38]. We classify
existing vehicle repositioning works into two categories, namely
explicit and implicit methods. Specifically, explicit methods
proactively dispatch idle vehicles across different areas, while
implicit methods indirectly redistribute idle or underutilized
vehicles through demand-aware order dispatching.

For explicit vehicle repositioning, traditional methods usu-
ally focus on recommending cruising routes [23] or popular
locations [54] for vacant taxis, where they may find passengers
easily. With the wide availability of mobility data, numerous
data-driven approaches have been proposed. These works build
supply and demand models by using historical data [33], and
exploit different techniques, e.g., receding horizon control [34]
or combinatorial optimization [51], to dispatch idle vehicles
based on their real-time locations and the predictions from the
trained supply/demand models.

Recently, many works tend to study the system-level vehicle
repositioning for better fleet managements [38]. In particular, the
majority of these works exploit deep reinforcement learning [35]
to derive model-free vehicle repositioning policies [13], [14],
[15], [16], [19], [22], [26], [37], [48], [49], [50], [53], [57].
For example, Lin et al. [19] propose a contextual multi-agent
reinforcement learning framework to achieve explicit coordi-
nation among vehicles. In addition, Liu et al. [26] present a
context-aware vehicle repositioning model by considering rich
traffic contexts, e.g., road connectivity and external factors. Our
work differs from these works by incorporating both explicit
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TABLE I
SUMMARY OF KEY NOTATIONS

Notation | Description

Gr =< V9, &Er > The directed graph of a road network
G A set of grids for the road network G
r A ride order

w A shared vehicle

Asw The size of a sliding time window

v(-) A value function

v A mobility vector

C A mobility cluster

T, A set of candidate vehicles for order r
9 The grid-level mobility vector

Gy =< Vy,Er > | The flow network

U(i,j The capacity of edge (i, j) in flow network
C(i,7) The cost of edge (i, j) in flow network

and implicit vehicle repositioning strategies to a sustainable
supply-demand balance over the long term.

There exist much fewer works that have considered implicit
vehicle repositioning in ridesharing [3], [11], [20], [21], [24],
[25], [43]. For example, Lin et al. [21] develop a probabilistic
demand-aware framework for order-vehicle assignments and
routing, aiming to maximize expected number of served orders
given the probability distributions of future demand. In addition,
mT-Share [24], [25] calculates a probability map from historical
order distributions and proposes a probabilistic routing to guide
shared vehicles to meet potential riders. Similarly, Al-Abbasi et
al. [3] incorporate historical travel demand and deep learning
models to implicitly dispatch vehicles. Different from them, we
achieve fine-grained implicit vehicle repositioning by consider-
ing the travel directions of orders.

Furthermore, Ge et al. [10] utilize elastic dummy orders
to promote or restrain ridesharing through order association
dispatching, in hope of achieving the supply-demand equilib-
rium. Guo et al. [11] integrate vehicle routing and order-vehicle
assignments to optimize both operation cost and service quality
for autonomous mobility-on-demand systems. Zhou et al. [56]
present a robust optimization based joint order dispatch and
repositioning framework, while it is applied for car-sharing
rather than ridesharing. Our work differs from these works by
jointly considering order dispatching and vehicle repositioning
to improve the efficiency and experience of dynamic ridesharing.

III. PROBLEM STATEMENT

In this section, we first present some definitions, and then
motivate our work with vivid examples. Finally, we formulate
the joint optimization problem of order dispatching and vehi-
cle repositioning in the dynamic ridesharing scenario. Table I
presents the key notations used in this paper.

A. Definitions

Definition 1. (Road Network): A road network is denoted by
a directed graph G, = < V,., £, > with a vertex set V. and an
edge set &,.. Each edge (u,v) € &, is associated with a weight,
indicating the travel time between vertex u and v.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on March 20,2025 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: JOINT ORDER DISPATCHING AND VEHICLE REPOSITIONING FOR DYNAMIC RIDESHARING

To enhance order dispatching and vehicle repositioning, the
platform typically segments the road network into distinct zones.
Instead of utilizing complex clustering algorithms to create these
zones, we employ a simple yet effective method that organizes
the road network into uniform grids as a set G, similar as
previous works [32], [43], [44].

Definition 2. (Ride Order): A ride order is represented as
r =<ty o, d.,e., c. >, where vertex o, € V, and d, € V,
are the origin and destination of the ride order, respectively.
In addition, order r is released at time ¢,. with size c,., and ought
to be fulfilled ahead time e, by delivering the ¢, riders of order
r from origin o, to destination d,..

Definition 3. (Shared Vehicle): A shared vehicle is repre-
sented as w =< £,,, Sy, Cy >, where ¢, indicates the current
location of vehicle w, while S, and C,, are the schedule and
capacity of vehicle w, respectively.

In practice, a shared vehicle w is guided by the ridesharing
platform to serve suitable ride orders, following a well-planned
schedule S,,. In addition, we denote R, the set of ride orders
currently being served by vehicle w.

Definition 4. (Schedule): The schedule of a shared vehicle
w is denoted as Sy, = (ly,¢1,...,L,), which comprises an
ordered sequence of origins and destinations of orders in R,,.
A schedule is valid if (i) Vr € R, o, should precede d,. in the
schedule; (ii) Vr € R, vehicle w should deliver riders of order
r to destination d,. no later than the deadline e,; (iii) At any time,
the total number of riders does not exceed the capacity C,, of
vehicle w, i.e., ZTGRw cr < Clp.

In real-world, orders usually come in a streaming fashion.
Previous studies have demonstrated that the batch-based or-
der dispatching methods generally perform better than these
real-time based methods on finding the optimal order-vehicle
assignments [4], [47]. Therefore, in this study we adopt the
batch-based processing model, which collects a batch of ride
orders within a sliding time window of size Ay, and then
dispatches them to available vehicles.

B. Motivation

Despite the extensive research on ridesharing, the majority of
previous studies tend to focus on the separate optimization of
two crucial tasks: order dispatching and vehicle repositioning.
However, this isolated approach fails to achieve a sustainable
supply-demand equilibrium in the long run, which is essential
for optimizing ridesharing efficiency. Most previous order dis-
patching methods exhibit a myopic perspective, while vehicle
repositioning methods often underutilize the capacities of all
shared vehicles.

We explain above arguments using an example as shown
in Fig. 1. Assume that two orders, i.e., 7; and ry, have been
sequentially received by the ridesharing platform within the
same sliding time window, and they have the same destination,
marked by a red flag in Fig. 1. Within their searching range,
there are two candidate vehicles, i.e., w; and ws, whose route,
indicated by the solid blue line, also terminates at the red flag.
Both vehicles have the same capacity as 4, while there are already
3 riders in vehicle wy and 1 rider in vehicle ws. To serve order
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Fig. 1. A motivation example, where dashed circles represent the searching
range, and the number a /c alongside each shared vehicle w indicates the number
a of riders already on board and the capacity c of vehicle w.

r1, a vehicle’s route has to be rescheduled to the blue dashed
line. While serving order 5 does not alter the vehicle’s route,
remaining as the solid blue line.

For the real-time order dispatching methods, since order
comes first, it is prioritized. By optimizing some metric (e.g.,
minimizing the waiting time), r; might be assigned to vehicle
w1, and ro would be matched with vehicle ws. While for the
batch-based methods, since both orders fall within the same time
window, existing methods generally generate some potential
order groups (e.g., {r1}, {r2}, {r1, r2} in this example), and
then validate each group by trying to insert its orders into each
vehicle’s schedule. Although batch-based methods may find the
optimal order-vehicle assignments, they usually incur extensive
computations, leading to delayed responses.

Some studies demonstrate that it is necessary to take future
travel demand into consideration when dispatching the current
orders to vehicles [20], [21], [24], [43]. Fig. 1 shows that there are
two newly coming orders, i.e., r3 with 1 rider and r4 with 2 riders,
along the blue dashed line. As a result, if dispatching vehicle w,
to serve order 71, as guided by existing methods, vehicle w;
cannot serve the subsequent orders 3 and r4 due to its full load.
In this case, the best solution turn to be that we dispatch ws serve
r1 and wy to serve ro. As vehicle wy has sufficient available
capacity, it could successfully serve both orders r3 and r4 later.
This arrangement maximizes the utilization of shared vehicles.
However, it relies heavily on the availability of information
regarding vehicles and orders, including both current data and
future potential demand.

Hence, it is reasonable to expect the existence of a value func-
tion V(+) that can predict the future demand value of matching an
order, thereby facilitating intelligent coordination between order
dispatching and vehicle repositioning. Previous approaches have
implicitly approximated the function V() by calculating the
probability of meeting future orders [11], [20], [21], [23], [24],
[25], [43], [54]. However, such probabilistic methods tend to
be inefficient. This is because, from a vehicle’s perspective,
relying solely on the probabilities does not provide sufficient
information to determine whether future orders can be shared
with the current order and vehicle or not.
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Unlike previous works, this paper takes a different approach
by considering the value of an order’s travel direction. This
choice is motivated by several factors. First, urban mobility
exhibits distinct origin-destination patterns, as highlighted in
studies on human mobility [41]. These patterns indirectly clas-
sify travel demand into different mobility directions. Second,
previous ridesharing research [24], [25] has shown that incorpo-
rating mobility information, such as travel directions, is crucial
for optimizing order-vehicle matching. Feasible and optimal
matches are more likely to occur between orders and vehicles
traveling in similar directions. Therefore, a value function V(-)
that can predict the potential mobility values of different travel
directions can provide valuable guidance for both tasks. By
following the suggestions provided by V(-), the ridesharing
platform can not only dispatch current orders to vehicles but
also implicitly adjust the distribution of vehicle supply to better
cater to future travel demand.

C. Problem Definition

To improve the long-term system efficiency, we consider the
joint optimization problem of order dispatching and vehicle
reposition (JODR for short) in dynamic ridesharing with the
assistance of potential value function V(-).

Definition 5. (JODR Problem): Given a set W of vehicles and
aset R of ride orders that dynamically arrive within a sliding time
window on a road network G,., by leveraging a value function
V(-), the JODR problem aims to find the optimal matching of ride
orders and vehicles, such that the total future value (R, W) is
maximized, i.e.,

FR, W)= maxz Z V((r,w)), )]

(r,w)
reR weW

subject to each optimal matching (r,w) meets the feasibility
condition that the schedule S, for w serving r is valid.

The order dispatching problem in dynamic ridesharing has
been proven to be NP-hard in previous studies [6], [43], [44].
Consequently, the JODR problem, which involves dispatching
both current and future orders, can be even more challenging.
Addressing this problem involves tackling several challenges:

First, the batch-based order dispatching model, while capable
of finding optimal order-vehicle assignments, often leads to huge
computation overheads. Improving computation efficiency is
crucial for providing high-quality service.

Second, although the idea of value function V(+) is appealing,
instantiating such a function is challenging due to dynamic
nature of ridesharing. The multitude of possible travel directions
further complicates the design of V(-).

Third, effectively managing available vehicles with varying
remaining capacities to fulfill a batch of orders, each associated
with distinct potential demand values, is a complex task. Achiev-
ing the optimal solution necessitates comprehensive modeling
of both orders and vehicles.

IV. DESIGN OF JODR

In this section, we first present the overview of JODR design,
and then elaborate the design of each module.
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Fig. 2.

A. Overview

JODR operates by utilizing real-time information of shared
vehicles and ride orders to dispatch and redistribute available
vehicles for serving dynamically arriving orders. The main
objective of JODR is to provide quality guaranteed ridesharing
service while balancing vehicle supply and travel demand. Fig. 2
illustrates the framework of JODR, consisting of three major
modules, namely Candidate Matching, Mobility Value Function,
and Value Aware Dispatcher.

® The Candidate Matching module searches a set of candi-
date vehicles for each order that is received within current
sliding time window by leveraging mobility information
and geographical locations of both vehicles and orders. A
pair (r,w) of ride order r and candidate shared vehicle
w is termed as a matching that assumes w could serve 7.
JODR assesses the service quality of matching (r,w) by
spuriously inserting 7 into w’s schedule S,, to calculate
the matching cost measured by the sum of additional detour
time and waiting time cased by ridesharing.

e To predict the long-term mobility value of a specific travel
direction, JODR leverages a deep reinforcement learning
(DRL) model’s value network in its Mobility Value Func-
tion module. In practical usage, this module utilizes mobil-
ity information from an order or a shared vehicle to gener-
ate the directional state. This state is then fed into the value
network of the DRL model to produce a value, representing
the predicted long-term mobility value associated with that
particular travel direction. The value network serves as the
value function V(+) and is derived through offline training
on historical ridesharing trip data.

® Given all possible matchings and their respective costs and
mobility values, the Value Aware Dispatcher module will
dispatch each order to the most suitable vehicle over the
long run. To this end, JODR formulates the order dispatch-
ing as a minimum-cost maximum-flow (MCMF) problem,
and solves it via optimization methods. Furthermore, this
module explicitly redistributes idle vehicles to neighboring
grids under the guidance of value function V(+), anticipating
to serve future orders quickly.
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B. Candidate Matching

Compared with real-time order dispatching, the batch-based
solutions involve more orders and vehicles to be processed,
incurring much more computations. To speed up the response
on orders, JODR refines the set of candidate vehicles for each
order and evaluates each possible matching of an order and an
available vehicle. To this end, JODR divides a batch of orders
and available vehicles into multiple clusters based on their travel
directions. We refer to such a cluster as mobility cluster, as it
is formed by leveraging the mobility information of orders and
vehicles. Then, JODR determines the set of candidate vehicles for
each order within the same mobility cluster by exploiting their
geographic locations. Lastly, JODR investigates possible vehicle
schedules to calculate the detour time and waiting time for each
matching.

1) Mobility clustering: Intuitively, riders with similar travel
directions could share a vehicle, while riders who have distinct
travel directions should never be considered for ridesharing as
they will introduce significant detours. Therefore, we think that
mobility information is essential for finding the most suitable
vehicle to serve an order. Based on this intuition, we propose
the concept of mobility vector that facilitates the division of a
batch of orders and available vehicles into mobility clusters.

Definition 6. (Mobility Vector): Mobility vector ¥ is a vector
representation of an object’s travel direction, pointing from the
origin to the destination.

Therefore, mobility vector ¥, of a ride order r is represented
using its origin o, and destination d,., i.e., V,, =< o,,d, >. In
addition, mobility vector v, of a vehicle w with riders can be
derived by using vehicle w’s current location /,, as the origin
and the average destination ¢,4, which is the geometric center
of all riders’ destinations, i.e., V,, =< £y, Lgq >.

To identify the ride orders that can share a vehicle in terms of
travel direction, a straightforward approach is to applying some
hierarchical agglomerative clustering algorithms [36] to group
orders based on their mobility vectors. By initializing each order
as an individual cluster, agglomerative clustering recursively
merges pair of clusters in a bottom-up manner until a single
cluster remains. This approach, however, is computationally
expensive, and inevitably prolongs the response time.

Instead, we devise a simple yet efficient mobility clustering
method. We arrange all orders according to their release time,
and classify them into mobility clusters in a sequential manner.
Specifically, the first incoming order forms the initial mobility
cluster, and each subsequent order is either added to an existing
mobility cluster or forms a new one by itself. For each mobility
cluster C;, we calculate a representative vector V¢, , whose origin
and destination are the average values of origins and destinations
of all orders belonging to cluster C;, respectively. When a sub-
sequent order r appears, we calculate the directional similarity
between r’s mobility vector ¥,. and the representative vector v,
of each mobility cluster C;. To be specific, we employ cosine
similarity to calculate the directional similarity « between v,
and v¢,, i.e.,

Vi s Vg,

X= ST =
172 > [[¥e,

. 2)
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For each order r, we calculate its directional similarity with
all existing mobility clusters, and choose the mobility cluster
C,, which has the maximum similarity o, with r, for further
consideration. If o, > A where A is a predefined parameter, order
r is considered to be highly similar to the travel direction of
orders already present in cluster C,. In such a case, r is added
to C,; Otherwise, r will form a new mobility cluster on its own.
We repeat above operations for all orders in the batch until each
order has been assigned to one mobility cluster.

After clustering the ride orders, we then assign the available
vehicles to existing mobility clusters based on their own mobility
vectors. For each available vehicle w, we also compute its
directional similarity with all mobility clusters using cosine
similarity, and add w to the cluster having the largest directional
similarity with w. Note that we have no similarity constraint on
adding vehicles into existing mobility clusters.

2) Candidate searching: For each order r, we determine a
set T, of candidate vehicles using constraints on both travel
direction and geographic location. On the aspect of geographic
location, we first determine order ’s locating grid g,., and then
search candidate vehicles for r from g, and g,’s neighboring
grids, denoted as set G,.. For each grid g € G,., we retrieve a list
g.L,, of available vehicles, which are currently locating within
grid g. On the aspect of travel direction, we first determine the
mobility cluster C,. that contains order 7, and then pick out the
available vehicles in cluster C,., denoted as C,.L,,. Then we
establish the set T,. of candidate vehicles for order r as follows:

T, = {Ugeq, 9-Lw} NCr.Ly. 3)

Applying both directional and geographic constraints allows for
the early elimination of invalid vehicles from the candidate set,
resulting in significant computation cost reductions for the order
dispatching task.

3) Candidate assessment: Considering the quality of service,
we assess each matching (r, w) with a matching cost, which is
estimated as the sum of additional detour time and waiting time
incurred when vehicle w serves order r. To derive this cost, we
employ an insertion algorithm proposed in [24] to calculate the
detour time and waiting time for each matching (7, w). Briefly,
by spuriously inserting origin o, and destination d,. of order
r into candidate vehicle w’s schedule S,,, we enumerate all
feasible new schedules that enable w to serve r, and calculate
detour and waiting time for each feasible new schedule. Finally,
we choose the minimum sum of detour and waiting time as the
matching cost for matching (r, w).

C. Mobility Value Function

We consider the ridesharing platform as an agent that utilizes
information from both orders and vehicles to achieve a supply-
demand equilibrium through efficient execution of order dis-
patching and vehicle repositioning tasks. The decision-making
process of the agent can be modeled as a Markov Decision
Process (MDP), which provides a robust framework for solving
decision problems in uncertain environments. By defining a set
of states, actions, rewards, and state transitions, we formulate

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on March 20,2025 at 08:41:11 UTC from IEEE Xplore. Restrictions apply.



2634

the MDP problem for both order dispatching and vehicle repo-
sitioning in the dynamic ridesharing context.

1) Directional State: To prune the extremely large spatio-
temporal space involved in ridesharing, we discrete the di-
mensions of both time and geographic locations. Specifically,
considering the patterns exhibiting in human mobility across
time of the day and day of the week [26], [41], [51], we divide
the time of each day into a series of time frames with size
of 5 minutes. In addition, we consider the grid-level mobility
vectors for both orders and shared vehicles, so as to simplify the
computational complexity. For example, an object (e.g., an order
or a vehicle) travels from grid 4 to gird 10, then its grid-level
mobility vector is denoted as v¢ =< 4,10 >.

Different from previous works that mainly capture vehicle
states [ 15], we propose directional state that encodes ridesharing
activity information on different travel directions, which are
represented by grid-level mobility vectors. Specifically, we rep-
resent the directional state using a tuple as s =< V9, tf, dw >,
where v9 is a grid-level mobility vector constructed according
to a given object’s mobility information, ¢f is the time frame
index, and dw is the day of the week when the state occurs.
There exist totally four types of directional states as follows.

® Dispatching state indicates that along some given direction
an order has just been dispatched with a vehicle. Given
the assigned order r, we represent the state’s grid-level
mobility vector as V9 =< g, , gq, >, where g,, and g,
are the grids where order r’s origin o, and destination d,.
locate, respectively.

® Serving state indicates that along some given direction a
vehicle w is now delivering on-board riders by following
the predefined schedule. Hence, we represent the state’s
grid-level mobility vector as V9 =< ¢y, §aa >, Where gy,
is vehicle w’s locating grid and g,4 is the grid where the
average destination of all orders locates.

e [dle state indicates that along some given direction a vehi-
cle w is now vacant, and the grid-level mobility vector of
that travel direction is denoted as V9 =< gy, g >.

® Repositioning state indicates that along some given direc-
tion a vehicle w is vacant and has been redistributed by the
agent. We represent the travel direction using w’s grid-level
mobility vector as v9 =< g, grar >, Where giq, is the
target grid determined by the agent.

The four kinds of directional states are denoted as set Sg;qp,

Sservs Sidle, and Syepo, respectively.

2) Action: Given current state, the agent may accordingly
apply some action, either assigning an order to a vehicle or
repositioning an idle vehicle. To optimize vehicle redistribution
effectively, we restrict the target repositioning areas for a vehicle
to include its current grid and the neighboring grids.

3) State Transition: A state transition represents the transfer
of previous state s, to current state s, after applying some
action. Considering the actions that may affect vehicles’ travel
directions, there exist nine kinds of transitions among the four
state types, as illustrated in Fig. 3. For a given concerned travel
direction, we describe these sate transitions as follows:

D Siare — Saisp: A vehicle traveling along the given direc-
tion is dispatched with a new order when it is idle;
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The state transitions among four types of states.

®

Fig. 3.

@ Sidie = Srepo: If a vehicle has been vacant for a time
frame, i.e., 5 minutes, along the given travel direction, it will be
redistributed to another direction by setting a target grid;

© Srepo = Sidle: A vehicle arrives at the redistributed target
grid while there are no suitable orders, then the vehicle will
become idle;

® Srepo — Saisp: A vehicle is traveling to the repositioning
target grid along the given direction, while the agent dispatches
a new order to this vehicle;

(® Sudisp — Saisp: A vehicle is consecutively dispatched with
new orders within a time frame along the given direction;

(©) Sdisp = Sserv: If nonew order is dispatched within a time
frame after picking up the previously assigned order, the vehicle
will deliver on-board riders along the given direction;

(@ Sserv — Sserv: If no new order is dispatched to a vehicle
that serves riders within a time frame, this vehicle will keep
driving along the given travel direction;

Sserv — Saisp: A vehicle is dispatched with a new order
when it is serving orders along the given travel direction;

(9 Sserv — Siqle: After the vehicle has successfully deliv-
ered all riders to their destinations respectively, the vehicle will
become idle and still drive along the given direction.

4) Reward: When a state is changed, it is rewarded accord-
ingly. For the purpose of balancing supply and demand among
different travel directions, we only set positive rewards for the
following kinds of state transitions, i.e., Sigie — Sdisp> Sserv —
Saisp> and Sg;sp — Sqisp, Which can bring valuable changes to
the ridesharing system, while giving zero reward to the rest of
state transitions. The intuition behind these reward settings is to
make the mobility value function V(-) encourage proactive order
dispatching and thus capture the potential long-term values of
all grid-level mobility vectors.

In this paper, we employ value network of a deep rein-
forcement learning model [35] to serve as the mobility value
function V(-), which computes the long-term mobility value,
i.e., expected discounted reward, in some travel direction at
any given time. By leveraging massive historical trip data that
contains rich information of ridesharing orders and trips, we
replay the ridesharing activities and collect all state transitions,
denoted as 7. Later, we use these state transitions to train the
value network. Specifically, we denote 7, as the set of state
transitions receiving positive rewards, and 7, = 7\7, is used
to denote the set of state transitions with zero reward. For each
state transition Sy, — Scy, in set 7, we update value network
using the one-step temporal-difference (TD) method as

{VG (Scur) =1+ ’YVG (Spre) v (Spre — Scur) S 7;” (4)

V0 (Scur) =0 + 7V9 (Sp'r'e) v (Sp'r'e — Scu’r) S 7;a
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Algorithm 1: Value Network Training.

1 Input: transition set 7, discounted factor ~;

2 Initialize value network Vo with random parameter 6;

Initialize target value network Vg with same parameter
of Vg;

w

4 for epi = 1 to max-episodes do

5 Sample a batch of samples (spre, Scur, reward) from
T;

6 Estimate mobility value Vg (spre);

7 Estimate expected mobility value reward +
’YVG (Scur )r

8 Compute TD-error 6 using Equation (5);
9 Update Q-network parameters using gradient
descent to minimize the loss in Equation (6);

10 if time to update the target value network then
11 L Update parameters of Vg to match parameters of
Vo;

where ~ is the discounted factor and # represents the model
parameters. Accordingly, we obtain the TD error as

_ 1+ 7V0 (Spre) - VG(Scur) v (Spre — scur) S
’YVG (Spre) - V@(Scur) v (Spre — Scur) S

A

4)

Based on above one-step TD method, we update the value

network Vy(-) of the neural network approximation using the

bootstrapping form of existing Deep Q-learning methods [35]
by minimizing TD squared error for all state transitions, i.e.,

>

(Spre ~>Sm,7-)€7;

LD

(Spre—Scur)€T

m@in L (T, 9) = (1 + Vg (Sp're) —Vy (Scur))

(’YVO (Spre) - V@ (Scur)) .

(6)

Algorithm 1 presents the whole training process for a value
network Vy(-). We adopt Double Q-learning [45] to resolve
the overestimation problem and obtain better training stability.
The training involves sampling transitions, estimating mobility
values, and updating network parameters 6 iteratively. A target
network is periodically aligned to stabilize training and thereby
enhance the network’s ability to predict mobility values.

After model training, we treat the learned Vg () as the mobility
value function. By inputting a directional state s, function Vy(s)
returns the long-term mobility value along that travel direction,
which is employed for order dispatching and vehicle reposition-
ing in the ridesharing context.

D. Value Aware Dispatcher

The dispatcher intelligently matches orders with suitable ve-
hicles and redistributes idle vehicles to achieve a sustainable
supply-demand equilibrium. Both of these tasks are facilitated
by the utilization of mobility value function Vg (-).

1) MCMF Based Order Dispatching: Traditional ride-
hailing works [39], [42] usually formulate the order dispatching
as a bipartite matching problem, and attempt to maximize the

2635

utility by leveraging Kuhn-Munkras (KM) algorithm [9]. How-
ever, the KM algorithm can only match one order to one vehicle
atatime, and as aresultis not suitable for the order dispatching in
batch-based ridesharing, where multiple orders within the same
batch may still be served by one vehicle.

Different from prior works, we model the order-vehicle
matching in ridesharing as a minimum-cost maximum-flow
(MCMF) problem to maximize the capacity utilization of all
shared vehicles. The MCMF problem is a classic optimization
and decision problem in the graph theory, which aims to find
the most cost-efficient way to transport flow through a network.
Typically, the flow network can be represented as a directed
graph Gy =< Vy, &y > with a source vertex s € Vy and a sink
vertex k € V¢, and each edge (4, j) € &y is associated with a
capacity and a cost. Formally, we formulate order dispatching
problem in ridesharing as an MCMF problem as follows:

o Vertices and edges: Except the source s and sink &, the
remaining vertices in the set V; can be classified into
two categories, i.e., order vertices and vehicle vertices,
which encompass all candidate vehicles for the orders of
current batch. There exists a directed edge from source
s to each order vertex, and these edges are denoted as
source edges £7. Similarly, there exists a directed edge
from each candidate vehicle vertex to the sink vertex k,
and such edges are represented as sink edges £ J’f . For each
order-vehicle matching (r, w), there exists a directed edge
from r’s corresponding vertex to w’s corresponding vertex.
The set of edges between order vertices and vehicle vertices
is denoted as £ In summary, given a batch of orders R
and their candidate vehicle set T, the vertices and edges in
the flow network G are defined as

& = Als;r)lr € Ry,

£f = {(w,k) |w e T},

Ef ={(r,w) |r eR;we T},
Ep=EjUEFUER,

Vy =RUTU{s}U{k}. )

e FEdge capacity: The capacity U (i, j) of each edge (i,7) €
& represents the maximum flow that can pass through. In
the ridesharing context, we set the capacity values for edges
in £ as U(4, j) = 1. This is because each order can only
be matched once. In addition, the capacity values for edges
in £ ]’f are determined based on the respective candidate
vehicle’s remaining seat amount, implying the number of
orders the vehicle can be matched with. Lastly, the capacity
values for edges 8}’“’ are set to 1, indicating that each order
can be matched with only one vehicle. Therefore, the edge
capacity in Gy is summarized as

1 Ve = (s,1) € &%,
U(i,j) =41 Ve = (r,w) € £, ®)
wore  Ve=(w,k) € 5]’?,
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where w.rc represents the remaining capacity of candidate
vehicle w for serving more orders.

® FEdge cost: The cost C(i, j) of each edge (i,7) € £ rep-
resents the cost incurred per unit flow passing through that
edge. To redistribute vehicles more efficiently and provide
high-quality service, we consider four factors in calculating
edge costs, including the long-term mobility value of order
r’stravel direction, remaining capacity of candidate vehicle
w, detour time and waiting time that are incurred when
vehicle w is dispatched to serve order r. Therefore, the
edge cost C'(3, j) is given as follows:

C(Zvj> =—-1x VG(Scur) X (CI)C + \Ilwd)7 (9)

where Vg (Scy) represents the long-term mobility value
along order 7’s travel direction, and ®. is vehicle w’s
remaining capacity rate that is set as
. 1
0 if0<n <7,
el 1
0.8 if 3 <y <

D, = 2 (10
0.9 if 3 <ny, <3, )
LO i mu > 4,

where 7, = 5" is arate between remaining capacity and

original capacitu}]/ for vehicle w. The purpose of setting ®.
in this way is to effectively redistribute vehicles that have
more empty seats towards mobility directions with higher
demand.

Meanwhile, we use W,,4 to measure vehicle w’s service
quality for order r. To make ¥4 fall within the range
of (0,1) and accurately reflect the differences on service
quality among various candidate vehicles, we propose a
ranking-based method to calculate ¥,,; for each edge
(ryw) € E}w. Note that, we employ the matching cost, i.e.,
the sum of waiting time and detour time, as the measure
for evaluating service quality. With the derived waiting
time and detour time calculated in Section IV-B for each
matching (r,w), we compute the matching costs for all
candidate vehicles in T,.. Then, we sort candidate vehicles
into a list according to their matching costs in an ascending
order, and define a function Rank(w) that can return
vehicle w’s rank in the sorted list. Finally, we compute
U,,q for each edge (r,w) as

1
- Rank(w) x Z‘Trl 1

Jj=1j

1D

‘Ilwd

Fig. 4 shows a sample modeling of order-vehicle matching in
ridesharing for four orders and four candidate vehicles within
a sliding time window. Based on above definitions and model-
ing, we transform the order-vehicle matching into the MCMF
problem with its objective as

min Z C(i,7) - flow(i, j),

(i,5)€Ey

12)

where flow(i, j) represents the flow passing on edge (,7) €
Er. This objective is subject to the following constraints:
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source s sink k

[ ]
Ty

Fig.4. Modeling order-vehicle matching as the MCMF problem, where (a, b)
associated with each edge represents that the edge has capacity a and cost b, and
w.rc indicates the remaining capacity of vehicle w.

— Non-negativity: The flow on each edge (7, j) must be non-

negative, i.e.,
flow(i,j) >0, ¥(i,j) € &. (13)

— Capacity constraint: The flow on each edge (i,j) € &
must not exceed its edge capacity, i.e.,

flow(i,j) < Ui, j), V(i,j) € &,

where vertex ¢ and j are neither source s nor sink k.
— Flow conservation: For each vertex i (except source s and
sink k), its total inflow must equal total outflow, i.e.,

> flow(x,iy= " flow(i,*), Vi€ Vs \ {s,k}.

(%,9)€€5 (i,%)e€5

(14)

5)
This constraint should also be applied to the source s and
sink k, such that the flow into source s must be equal to the
flow out of sink k.

To solve this MCMF problem, we make use of the network
simplex algorithm [7], [8], which has been specifically designed
to leverage the characteristics of flow network G ;. By maintain-
ing a spanning tree of edges, this algorithm iteratively adjusts the
flow within the network, ensuring both feasibility and optimality
at each step, to minimize the total cost [8].

2) Idle Vehicle Repositioning: In order to address the issue
of vehicles remaining vacant for extended periods, ridesharing
platforms need to proactively redistribute these idle vehicles to
areas with anticipated high future demand. To achieve this, JODR
explicitly redistributes vehicles that have been vacant for a time
frame, i.e., 5 minutes. To minimize repositioning costs, the target
repositioning areas for a vehicle are limited to its current grid
and neighboring grids.

To identify the travel directions with high future demand,
JODR utilizes the mobility value function Vy(-). For an idle
vehicle w located in grid g,,,, the possible target grids are denoted
as set G,,. For each grid g; € G,,, a dummy order r; is created,
originating from grid g,, and terminating at grid g;. Considering
the dummy matching (r;,w), we define the directional state
s; =< V9, tf,dw >, where V9 =< g, g; > is the grid-level
mobility vector, ¢ f and dw denote the current time frame index
and day of the week. The function Vy(s;) is then employed to
estimate the value of the dummy matching. Similarly, values
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Fig. 5. Statistic on the number of orders across the day.

are calculated for all dummy orders targeting different grids in
set G,,. The grid with the highest value may be chosen as the
repositioning destination for idle vehicle w.

However, such an approach may blindly dispatch all idle
vehicles within a grid to the same destination grid, which poten-
tially disrupt the supply-demand equilibrium. To mitigate this
issue, we propose a probabilistic method. Specifically, we utilize
the Softmax function to transform the mobility values into a
probability distribution, which is defined as

eVo(si)

p(gi) = m» (16)

where p(g; ) represents the repositioning probability to candidate
grid g;, s; and s; represent the states for repositioning to grid
g; and g;, respectively. In addition, the denominator in (16)
is the sum of exponential mobility values for all grids in set
G- Based on this distribution, we sample destination grids for
idle vehicle w. This probabilistic approach ensures that travel
directions with higher mobility values have a higher likelihood
of being selected, thereby aligning the repositioning strategies
with underlying mobility dynamics.

V. EVALUATION

In this section, we evaluate the performance of JODR using a
large real-world trajectory dataset.

A. Experimental Setup

Dataset: We conduct data-driven experiments using a large-
scale anonymized trajectory dataset publicly released by the
Didi GAIA Initiative.! This dataset comprises a total of 7065907
ridesharing transactions collected in November 2016 within the
downtown area of Chengdu city, China. Each transaction entry
includes a transaction ID, vehicle ID, and ride order details. The
ride order information consists of the release time, pick-up loca-
tion, and drop-off location, represented by latitude and longitude
coordinates. To provide insights into the data, we analyze the
average hourly order volume, as depicted in Fig. 5. The analysis
reveals a gradual increase in the number of orders between
6:30AM and 2:30PM, highlighting the growing demand during
this period. This finding emphasizes the importance of effective

Thttps://outreach.didichuxing.com/research/opendata/
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order dispatching and vehicle repositioning during these hours.
Consequently, we focus our experiments on the data falling
within this specific period.

Since the dataset only includes records of served ride orders,
unserved orders are not captured. To address this limitation and
enrich experimental data, we generate synthetic ride orders using
the method outlined in previous work [28]. To simulate practical
ride-hailing service transactions, this method is designed to learn
the distribution of real-world orders on the road network over
time of the day and the mobility patterns of ride-hailing vehicles.
For more details on synthetic order generation, please refer
to [28]. Furthermore, we keep the data of last week for testing,
and the remaining data are used for model training.

We have downloaded the road information of Chengdu city
from OpenStreetMap,” and model the road network as a graph
Gr(Vr, &), which consists of 21440 vertices and 466330 edges.
Additionally, we divide the road network into 72 grids, with a
uniform size about 1.16 km x 1.16 km.

Compared methods: We compare JODR with the following
state-of-the-art methods.

® pGreedyDP [44]: It utilizes grids to index both orders and
vehicles, and proposes a greedy insertion strategy. Each
order is sequentially assigned to the vehicle, whose new
route has the minimum increased travel time.

e mT-Share [24]: It employs geographical information and
travel directions to index orders and vehicles, and leverages
these indexes to filter out irrelevant candidate vehicles.
It also sequentially dispatches each order to the vehicle
with the minimum increased cost. Additionally, it develops
a probabilistic routing scheme to guide vehicles to meet
predicted future orders along specific routes.

® Prohpet [43]: 1t also constructs the grid index for orders
and vehicles, and proposes a new insertion operator that
can handle both online orders and predicted future orders.
The insertion based order assignments is solved through a
dynamic programming algorithm.

® PNAS [4]: It periodically plans assignments for the batch
of orders collected within a sliding time window, and dy-
namically generates optimal routes for available vehicles.
It initiates with a greedy assignment and iteratively refines
the assignment through constrained optimization.

pGreedyDP, mT-Share, and Prohpet are real-time solutions,
while PNAS is a batch-based solution. Since Prohpet has already
considered the future orders and PNAS has its own idle vehicle
repositioning mechanism, we thus enhance pGreedyDP and mT-
Share by incorporating an additional idle vehicle repositioning
component, which dispatches each idle vehicle to one random
neighboring grid or remains this vehicle cruising within its
current grid.

Evaluation metrics: We evaluate all the methods using the
following performance metrics.

® Number of served orders represents the number of orders
that have been successfully fulfilled.

Zhttp://www.openstreetmap.org/
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TABLE II
THE MAJOR PARAMETER SETTINGS, WHERE THE DEFAULT VALUE OF EACH
PARAMETER IS MARKED IN BOLD

Parameter | Value
# of vehicles 500, 1000, 1500, 2000, 2500
Vehicle capacity 3,4,6,8,10

Flexible factor p

Threshold A

Sliding window size Agy,
Average riders per order ¢,

11,12,1.3,14,15,1.6,1.7,1.8,1.9,2.0
0.867, 0.707, 0.500, 0.259,

2,5,10,20

1.0,15,2.0,25,3.0

® Number of served ridesharing orders captures the number
of orders that share a vehicle with other orders, aiming to
assess vehicle utilization in ridesharing.

® Number of idle vehicle repositioning quantifies the reposi-
tioning times vehicles have been redistributed while being
idle within a time frame, i.e., 5 minutes.

® Average detour time represents the mean additional travel
time when compared to no ridesharing for all served orders.

® Average waiting time is calculated as the average time
difference between the pick-up time of orders and their
respective release time.

® Average response time is the average processing time for
dispatching an order to the suitable vehicle.

e Frequency of seat occupancy SO; = K indicates that dur-
ing the entire dispatching process of all vehicles, there
were totally K instances where ¢ passengers were grouped
together in the same vehicle.

Implementation: We implement JODR and all the compared
methods using Python. In line with prior research, each order r’s
origin and destination are pre-mapped to the nearest vertex in
graph G,.. The delivery deadline e,. for each order r is determined
using a flexible factor p, which quantifies the additional travel
cost riders are willing to tolerate compared to the shortest path.
The shared vehicles are initialized at random vertices within
graph G,., and when delivering riders, they are obligated to
adhere strictly to the scheduled pick-up and drop-off sequence
and the planned routes. Similar as previous works [24], [25],
[31], [44], we assume a uniform driving speed of 30 km /h for
all vehicles. Additionally, candidate vehicles of each order r are
only searched within several grids, including the grid g, where
order r locates and g, ’s neighboring grids. The major parameter
settings are listed in Table II.

All experiments are conducted on a server equipped with
an Intel Core i19-12900K CPU@3.20GHz and 32GB of RAM.
To accelerate route planning, we pre-compute the travel costs
between any two vertices in graph G, and cache the results in
memory for quick retrieval across all methods. Each experimen-
tal configuration is executed 6 times, and only the average results
are reported in this section.

B. Performance Comparison

We compare the performance of all methods by varying the
number of vehicles from 500 to 2500, with a step as 500.

Fig. 6(a) shows that all methods can serve more orders with
an increase in the number of vehicles. Across different vehicle
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Fig. 6. Performance comparison among different methods by varying the
number of shared vehicles.

quantities, JODR consistently serves the most orders, attributing
to the implicit vehicle repositioning during order dispatching.
This is because JODR’s implicit repositioning allows vehicles
with sufficient capacity cater to orders associated with higher
future demand in certain travel directions, thereby preemptively
balancing the supply and demand across different travel direc-
tions. It is particularly crucial when the number of vehicles is
limited. Taking the case of 1500 vehicles as an example, JODR
can serve 12.89% and 17.01% more orders compared to Prohpet
and PNAS, the two state-of-the-art works.

To validate whether our design facilitates more orders partici-
pating in the ridesharing service, we report the number of served
ridesharing orders in Fig. 6(b). It shows that JODR surpasses all
the other methods across different settings. Compared to the
four methods, JODR increases the number of served ridesharing
orders by an average of 125.71%, 122.91%, 121.98%, 116.34%
and 143.06%, respectively, under the five vehicle quantity set-
tings. Remarkably, compared to PNAS, JODR serves 113.80%
more ridesharing orders with only 500 vehicles, and can be up
to 275.93% more with 2500 vehicles.

To better understand the ridesharing performances of different
methods, we conduct an in-depth exploration on the vehicle
schedules, and present detailed statistics on the frequency of seat
occupancy in Table III. Generally, two or more orders sharing a
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TABLE III
PERFORMANCE COMPARISON ON THE FREQUENCY OF SEAT OCCUPANCY BY
'VARYING THE NUMBER OF SHARED VEHICLES

Seat occupancy

# of vehicles Method

SOy SOz SO2 SO

pGreedyDP 4 86 1958 13989

mT-Share 66 1088 9063 9228

500 Prohpet 80 839 5634 11117

PNAS 8 262 4392 13200

JODR 96 1394 9485 8956

pGreedyDP 5 180 4246 28371

mT-Share 84 1721 16511 20251

1000 Prohpet 148 1471 10565 23499
PNAS 11 387 7492 27261

JODR 167 2547 17985 19340

pGreedyDP 9 342 7102 42003

mT-Share 81 1789 20504 33187

1500 Prohpet 167 1855 13966 36300
PNAS 12 410 9114 40911

JODR 206 3515 24516 30789

pGreedyDP 13 549 10805 52664

mT-Share 42 1304 20313 47538

2000 Prohpet 169 1947 15672 48425
PNAS 4 331 9090 52831

JODR 158 3829 27060 40785

pGreedyDP 18 696 13041 56494

mT-Share 11 525 13358 63516

2500 Prohpet 165 1858 15677 57449
PNAS 6 224 7581 62180

JODR 110 3608 27592 46639

The best results for ridesharing cases are marked in bold.

vehicle can be viewed as a ridesharing case. Table III shows that
the case where one vehicle serves one order is the most com-
mon scenario, while JODR demonstrates exceptional capability
for matching multiple orders with one vehicle. Achieving full
utilization of a vehicle’s seats can be challenging. For instance,
when four orders are accommodated in one single vehicle with a
capacity of four, we observe that JODR consistently achieves the
highest success rate in such scenarios. Among the 15 potential
ridesharing cases, such as those with a seat occupancy of at least
2, JODR has emerged as the top performer, winning the first place
in 13 instances.

Fig. 6(c) reports the average response time of all methods.
As a batch-based method, PNAS has the largest response time
as it needs to iteratively optimize the arrangements for a batch
of orders. While our JODR, as another batch-based solution, is
on average 95.12% faster than PNAS on dispatching orders,
which confirms the effectiveness of mobility clusters by group-
ing orders based on their travel directions. As pGreedyDP and
mT-Share simply assign incoming orders to suitable vehicles,
without considering future demand, they can respond orders
rapidly. Another real-time method Prohpet, which considers the
predicted future orders, takes a bit longer response time, even
on average 66.82% slower than JODR.

We compare the waiting time of all methods in Fig. 6(d).
In general, more vehicles potentially allow each method to
find a nearby vehicle to serve each order, and thus the waiting
time can be reduced. PNAS shows the shortest waiting time,
while Prohpet has the largest one. The other three methods, i.e.,
pGreedyDP, mT-Share, and JODR, have close waiting time, with
a difference < 0.2 minutes.
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Fig. 7. Impact of flexible factor p on the performance.

Fig. 6(e) shows the performance comparison on average
detour time. m7-Share matches vehicles with orders traveling
on similar directions, and thus derives the fewest detour time.
PNAS prefers to match orders with vehicles that have short travel
distances and few ridesharing orders, thereby holding the second
place. Furthermore, their detour time is less affected by the
vehicle quantity. In contrary, Prohpet considers future orders
in the route planning, resulting in the largest detour time. As a
batch-based method, JODR has a moderate detour time among
the five methods. Its detour time slightly increases with more
vehicles, as it continuously redistributes vehicles during order
dispatching. From Fig. 6(e), we find that JODR reduces detour
time by up to 57.92% compared to Prohpet, having the largest
gap with 500 vehicles. Compared to pGreedyDP, JODR reduces
detour time by 32.95%, while serving 323.76% more ridesharing
orders with 500 vehicles.

Finally, Fig. 6(f) presents the times of idle vehicle reposi-
tioning for pGreedyDP, mT-Share, and JODR. We see that JODR
is more proactive on explicit repositioning than the other two
methods, and thus has more idle vehicle repositioning actions,
which are important for providing high-quality service.

C. Detailed Evaluation

Impact of flexible factor p: We perform experiments to in-
vestigate the impact of flexible factor p, while keeping other
settings as the default values. As shown in Fig. 7(a), as factor p
increases, the number of served orders for each method improves
accordingly. This is because all methods have more flexibility
on order-vehicle matching when riders can tolerate more detour
costs. We find that JODR outperforms the other methods in
the settings where p is small, especially when p falls within
[1.1,1.4]. On average, JODR can offer an improvement of 10.83%
than the four methods across this range. At the specific value
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p = 1.1, our JODR exhibits a remarkable performance increase
of 27.05% when compared to PNAS, indicating that JODR still
works well even riders have extremely rigorous requirements
on the detour costs. Fig. 7(b) shows that on the aspect of
total served ridesharing orders, JODR significantly exceeds the
quantities observed in all other compared methods across all
values of p. In particular, JODR exhibits average improvement
of 418.76%, 234.16%, 116.17%, and 63.04% than the four
methods when setting p as 1.1, 1.2, 1.3, and 1.4, respectively.
This excellent performance attributes to JODR’s unique de-
sign that encourages vehicles to share seats among multiple
orders.

Despite JODR’s ability to accommodate a greater number of
orders in ridesharing service, it does not result in a significant
increase in detour and waiting time, as the evidences shown
in Fig. 7(c) and (d). When compared to the four methods,
JODR exhibits a relatively gradual increase in detour time. In
fact, we observe that JODR even outperforms pGreedyDP and
Prohpet, with a reduction of 5.01% and 28.20% in detour time,
respectively, when p = 1.3. Furthermore, Fig. 7(d) shows that
JODR generally outperforms the four compared methods in terms
of waiting time when p < 1.5. This range is considered normal
for real-world ridesharing systems.

Impact of vehicles capacity: In this experiment, we vary
vehicle capacity as 3, 6, 8, and 10, and meanwhile appropriately
adjust flexible factor p as 1.3, 1.5, 1.6, and 1.7, respectively.
The reason for such an adjustment is because a larger vehicle
capacity allows more orders share one vehicle, while requir-
ing loose requirement on the detour constraint. When vehicle
capacity is enlarged, the same number of vehicles has much
more seat supply, enabling them to serve more orders. As shown
in Fig. 8(a), each method can serve more orders with a larger
vehicle capacity. The observation also holds for the number of
served ridesharing orders, as shown in Fig. 8(b). We find that
JODR is still more efficient in serving much more orders than
other methods, especially when the total seat supply is limited.
Taking vehicle capacity of 3 as an example, JODR can serve an
average of 12.26% more orders and 107.70% more ridesharing
orders than the other four methods.

Impact of average riders per order: We study the impact of
parameter c,., average riders per order, on the performance of all
methods. Similar as the experimental setting in [47], we set the
value of ¢,- as 1.0, 1.5, 2.0, 2.5, and 3.0. Note that, an increase in
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¢, will result in that fewer orders can be shared by one vehicle
due to the limit of vehicle capacity. As shown in Fig. 9, all
methods can serve more riders as ¢, increases. Specifically, JODR
can serve the most riders, while PNAS has the smallest number of
served riders. The other three methods have similar performance
in this experiment.

Impact of sliding time window size Ag,,: As the batch-based
methods, PNAS and JODR process a batch of orders collected
within a sliding time window of size Ag,,, which will affect
the ridesharing performance. We study its impacts by varying
size Ay, as 3s, 6s, 8s, and 10s. Fig. 10 shows that as Ay,
increases, both the number of served orders and ridesharing
orders for PNAS slightly increase. While JODR consistently
outperforms PNAS, e.g., averagely serving 12.28% more orders
and 189.32% more ridesharing orders. In terms of response
time, Fig. 10 shows that the computation time of PNAS does
increase with A, and fluctuates significantly due to more orders
being jointly processed. In contrary, JODR exhibits a more stable
response time, almost unchanged, indicating that our mobility
cluster design effectively addresses the high computational cost
of batch-based methods and is robust with respect to the time
window size.

D. Ablation Experiments

We have several design elements to improve the efficiency
of JODR. Specifically, we propose mobility clustering to divide
a batch of orders into fine-grained groups based on their travel
directions. Furthermore, we consider the vehicle’s remaining
capacity, the service quality measured by detour and waiting
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time, and the mobility value of an order’s travel direction into (9)
for computing edge costs in the flow network G¢. These factors
together determine order dispatching results. We thus conduct
a series of ablation experiments by individually removing each
design component to evaluate its effectiveness.

Effectiveness of mobility clustering: As shown in Fig. 11(a),
JODR without mobility clustering has an 8.39% decrease in the
number of served orders but a 7.12% increase in the number
of ridesharing orders. This is because, without the constraint
on travel directions, JODR tends to serve shorter-distance orders
regardless of their travel direction consistency. In fact, we find
that the majority of these served ridesharing orders belong to
the cases where two orders share a vehicle. However, Fig. 11(a)
shows that without fine-grained order divisions the average
response time accordingly increases by 4.90%. Furthermore,
Fig. 11(b) reports a 17.58% increase in average waiting time,
and a 17.81% increase in the number of idle vehicle dispatches.
These results demonstrate that it is necessary to consider the
travel directions of both orders and vehicles during order as-
signments for better service quality.

Effectiveness of vehicle’s remaining capacity: During order-
vehicle matching, JODR tends to dispatch vehicles with more
remaining capacity to serve orders with higher mobility values.
The results in Fig. 11(a) reveal that ignoring this factor may
lead to a2.72% decrease in the number of served orders, a4.41%
decrease in the number of served ridesharing orders, and a slight
increase in the average response time. In Fig. 11(b), despite a
slight decrease in the average waiting time, we see about 4.05%
increase in average detour time and 10.77% increase in the
number of idle vehicle dispatches. These results suggest that
vehicle’s remaining capacity indeed affects platform revenue
and the service quality.

Effectiveness of detour and waiting time: JODR treats both
detour and waiting time as important factors on measuring the
service quality of order dispatching. As shown in Fig. 11(a), not
accounting for them results in a great decrease in the number
of served orders, e.g., 37.44% decrease in served ridesharing
orders. Fig. 11(b) shows a 53.47% decrease in the idle vehicle
dispatches, yet a significant increase in average waiting time
by 62.97%. Without considering these factors, the system may
assign orders with vehicles far away, and thus impairs the service
quality.
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cap.”, “d.w.”, and “m.v.” represent mobility clustering, capacity, detour and waiting time, and mobility value,

Effectiveness of mobility value: JODR heavily relies on the
mobility values for effective order dispatching and vehicle repo-
sitioning. By removing mobility value from (9), we observe
severe performance degradation across most of the metrics. For
example, Fig. 11(a) shows that excluding this factor results in
7.21% and 32.88% decrease in the number of served orders and
ridesharing orders, respectively, and slight delay in response
time. Despite the decrease in detour time and idle vehicle
repositioning, as shown in Fig. 11(b), we see a clear increase
in waiting time by 56.16%. The results suggest that mobility
value function can effectively capture the long-term mobility
values, and efficiently guide order assignments.

VI. CONCLUSION

This paper presents JODR, a comprehensive framework that
jointly optimizes order dispatching and vehicle repositioning for
dynamic ridesharing. The key idea of our framework lies in a
novel mobility value function that effectively integrates these
two essential tasks. By leveraging this value function, JODR
efficiently determines the optimal order-vehicle assignments by
formulating the order dispatching as a minimum-cost maximum-
flow problem, while also supporting intelligent repositioning
of idle vehicles. Extensive experiments on a large real-world
dataset demonstrate the superior performance of our JODR com-
pared to the state-of-the-art methods for dynamic ridesharing
across a wide range of performance metrics.
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