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Abstract—Existing domain generalization (DG) methods for cross-person sensor-based activity recognition tasks often struggle to
capture both intra- and inter-domain style diversity, leading to significant domain gaps with the target domain. In this study, we explore
a novel perspective to tackle this problem, a process conceptualized as domain padding. This proposal aims to enrich the domain
diversity by synthesizing intra- and inter-domain style data while maintaining robustness to class labels. We instantiate this concept
using a conditional diffusion model and introduce a style-fused sampling strategy to enhance data generation diversity, termed
Diversified Intra- and Inter-domain distributions via activity Style-fused Diffusion modeling (DI2SDiff). In contrast to traditional
condition-guided sampling, our style-fused sampling strategy allows for the flexible use of one or more random style representations
from the same class to guide data synthesis. This feature presents a notable advancement: it allows for the maximum utilization of
possible combinations among existing styles to generate a broad spectrum of new style instances. We further extend DI2SDiff into
DI2SDiff++ by enhancing the diversity of style guidance. Specifically, DI2SDiff++ integrates a multi-head style conditioner to provide
multiple distinct, decomposed substyles and introduces a substyle-fused sampling strategy that allows cross-class substyle fusion for
broader guidance. Empirical evaluations on a wide range of datasets demonstrate that our generated data achieves remarkable
diversity within the domain space. Both intra- and inter-domain generated data have been proven significant and valuable, enabling
DI2SDiff and DI2SDiff++ to surpass state-of-the-art DG methods in various cross-person activity recognition tasks.

Index Terms—Wearable sensor, human activity recognition, domain generalization, diffusion model
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1 INTRODUCTION

HUMAN activity recognition (HAR) is essential for a
wide range of applications, including healthcare [1],

assisted living [1], [2], and smart home systems [3]–[5].
By leveraging wearable devices and smartphones equipped
with inertial measurement units (IMUs) to collect time-
series data, HAR enables the accurate classification of vari-
ous human activities, such as walking and sleeping. With
the advancement of deep learning (DL) techniques [6]–
[9] in time series classification (TSC) for HAR tasks, the
deployment of trained models directly on edge devices has
become increasingly feasible [10], [11]. However, a common
assumption underpinning these models is that training and
test data distributions are identically and independently
distributed (i.i.d.) [12], a condition that does not often hold
up in real life due to individual differences in activity styles
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influenced by factors such as age and gender [13], [14].
These discrepancies significantly hinder the cross-person
generalization performance of standard DL models.

Domain generalization (DG) seeks to address this is-
sue [12]. Approaches such as domain-invariant [13], [15]–
[18] and domain-specific [19], [20] methods are designed
to extract robust intra-domain and inter-domain features
that can withstand data distribution shifts across various
domains. However, their effectiveness is reliant on the di-
versity and breadth of the training data [21]. The challenge
arises in HAR tasks, where the collected training data is
often small-scale and lacks the necessary diversity due to
resource constraints on edge devices [14], [22]. This inherent
scarce diversity in source domain training data can lead to over-
fitting to local and narrow intra- or inter-domain features,
resulting in poor generalization to new, unseen domains. As
shown in Fig. 1(a) and (b), the learned features lack required
intra- or inter-domain feature robustness, thereby impeding
their generalization to target domains (red circles).

One promising solution is to enrich training distributions
by data augmentation [12]. Recent research [14] has focused
on enhancing training data richness through standard data
augmentation like rotation and scaling; however, it primar-
ily enhances intra-domain diversity and falls short of addressing
inter-domain variability. As shown in Fig. 1(c), the augmented
data (stars) for source domains (orange and blue circles)
tends to cluster tightly, yet fails to generate the necessary
inter-domain data. The target domain (red circles) thus
cannot be comprehensively represented.

In this work, we focus on generating highly diverse data
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Fig. 1. T-SNE visualization of time-series activity features extracted by
various methods across three domains in sensor-based HAR. Existing
representation learning methods result in domain gaps as in both (a) and
(b), covering a small portion of the target domain (red circles). Standard
data augmentation (DA) leads to augmented data (stars), with source
domains (orange/blue circles) remaining in close proximity to each other
and failing to fill gaps. Our method (d) creates a comprehensive feature
space by padding domain gaps via the idea of (e).

distributions to address the issue of limited domain diver-
sity in sensor-based HAR. We explore a novel perspective to
tackle this problem. As depicted in Fig. 1(d), the core idea
involves enabling the synthetic data (stars) to fill the empty
spaces within and across source domains while maintaining
robustness to class labels, a process we conceptualize as
“domain padding.” For instance, as illustrated in Fig. 1(e),
we decompose various walking styles from training data,
and then we can not only combine the walking styles of
an elderly man and a young man to create a novel inter-
domain style but also merge multiple walking styles of
different young men to generate a new intra-domain style.
Compared to existing DG methods, our domain padding
holds great potential to generate a more extensive range of
unknown style distributions. This enables HAR models to
comprehensively explore a wide array of intra- and inter-
domain variations, contributing to enhanced generalization
in HAR scenarios.

We propose Diversified Intra- and Inter-domain dis-
tributions via activity Style-fused Diffusion modeling
(DI2SDiff), to implement our concept using conditional dif-
fusion probabilistic models [23], [24]. To generate samples
with instance-level diversity, we first design a contrastive
learning pipeline [25], aimed at extracting single-activity
style representations from each available instance in the
source domains while maintaining robustness for classifi-
cation tasks. The extracted style representation, denoted as
Si, can be interpreted as “an [activity class] performed in the
[Si] style.” We then propose a novel style-fused sampling
strategy for the diffusion model to achieve domain padding
requirements. This involves randomly combining one or
multiple style representations of training samples within the
same class. Styles in each combination are then utilized to
jointly guide the diffusion to generate novel activity samples
that fuse the styles. This innovation presents a notable
advancement: the randomness of the combination (whether
originating from the same or different domains) ensures
diversity in both intra-domain and inter-domain, thereby
achieving the domain padding, as shown in Fig. 1(d) and (e).
Additionally, it maximizes the use of possible combinations
among existing styles, generating a broad spectrum of new

style instances.
Despite the promise of DI2SDiff in addressing cross-

person activity recognition, its reliance on an entangled con-
trastive learning pipeline as a style conditioner introduces
some limitations. Specifically, this conditioner is designed
to capture a single-style representation that summarizes
the overall characteristics of an activity instance. While
effective for maintaining class-preserving guidance, this ap-
proach inherently lacks the diversity required to uncover
complex guidance patterns in time-series activity data. The
strict focus on a single style not only constrains DI2SDiff’s
capacity to capture nuanced and intricate variations but
also exacerbates redundancy by enforcing intra-class style
constraints, thereby overlooking a wealth of valuable style
variants. This limitation is particularly pronounced in low-
data classes, where the potential for exploring diverse pat-
terns is critically hindered.

To address these challenges, we make several improve-
ments to DI2SDiff. Firstly, we propose a novel multi-head
style conditioner that extracts K distinct substyle features
from each input instance. This is achieved through a hybrid
training approach that integrates a supervised primary task
with a self-supervised auxiliary task, enabling the condi-
tioner to learn both meaningful patterns and diverse vari-
ations. By decomposing instances into multiple substyles,
the conditioner provides a fine-grained representation, cap-
turing both class-specific and class-agnostic features. Each
instance is thus described as “an [activity class] performed
in the [{S(k)

i }Kk=1] style.” Secondly, thanks to these decom-
posed substyles, we introduce a substyle-fused sampling
strategy that allows for precise and independent control
of each substyle during synthesis. This approach enables
flexible combinations of multiple class-specific substyles
within the same class and the integration of diverse class-
agnostic substyles across different classes. These two ad-
vancements culminate in a significantly improved model,
termed DI2SDiff++, which demonstrates superior sample
diversity and generation capabilities while overcoming the
limitations of its predecessor.

Our main contributions to the field of generalizable HAR
are as follows.

• We explore a pivotal challenge hampering the ef-
fectiveness of current DG methods in HAR: poor
diversity of source domain features. In response,
we propose that DI2SDiff implement the concept
of “domain padding,” enhancing domain diversity
and improving the performance of DG models, and
further advance this approach into DI2SDiff++ to ef-
fectively tackle more extreme scenarios with complex
distribution shifts.

• We propose DI2SDiff, which uses activity style fea-
tures as conditions to guide the diffusion process,
extending the information available at the instance
level beyond mere class labels. Meanwhile, DI2SDiff
leverages a style-fused sampling strategy, which can
flexibly fuse one or more style conditions from the
same class to generate new, unseen samples. This
strategy guarantees data synthesis diversity both
within and across domains, enabling DI2SDiff to
instantiate the concept of domain padding.
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• To overcome the rigidity of single-style represen-
tation guidance, we further present DI2SDiff++ by
introducing a multi-head style conditioner, which
decomposes each instance into multiple substyles.
This innovation captures multi-view semantic repre-
sentations of activities, delivering a comprehensive
and nuanced characterization of the data while pre-
serving intricate pattern guidance.

• DI2SDiff++ introduces an advanced substyle-fused
sampling strategy that dynamically blends intra-
class substyles while seamlessly incorporating inter-
class substyles. This method transcends traditional
intra-class limitations, unlocking significant style di-
versity and enhancing the synthesis of high-quality,
varied data.

• We conduct extensive empirical evaluations of
DI2SDiff and DI2SDiff++ across a board of HAR
tasks. Our findings reveal that these methods
markedly diversify the intra- and inter-domain
distribution without introducing class label noise.
Leveraging these high-quality samples, DI2SDiff and
DI2SDiff++ outperform existing solutions, achieving
state-of-the-art results across various cross-person
activity recognition tasks.

This paper extends our previous work [26] by introduc-
ing multi-substyle-guided generation techniques to enhance
data diversity and improve time-series guidance in cross-
person activity recognition. First, we propose a multi-head
style conditioner that decomposes activity instances into
multiple substyles, addressing the limitations of single-style
representations and uncovering diverse style variations for
more nuanced data characterization. Second, we introduce
a substyle-fused sampling strategy that overcomes intra-
class constraints, enabling flexible substyle fusion across
the entire sample space to effectively enhance diversity.
Finally, we conduct extensive evaluations, including visu-
alizations, ablation studies, sensitivity analyses, and cross-
architecture tests, showcasing the robustness and scalability
of DI2SDiff++ as a new DG method for diversity and gener-
alization in activity recognition.

2 RELATED WORK

2.1 Sensor-Based Human Activity Recognition

Human Activity Recognition (HAR) using wearable sensors
has achieved transformative progress across diverse ap-
plications, from healthcare to human-computer interaction
[1], [9], [27]. Recent review literature [28]–[30] underscores
the potential of deep learning to capture intricate activity
patterns directly from raw IMU data, effectively bypass-
ing the need for manual feature engineering. Techniques
such as convolutional neural networks (CNN) [31], [32],
recurrent neural networks (RNN) [33], and newer methods
like generative adversarial networks (GAN) [34] and deep
reinforcement learning (DRL) [35] have been applied to
enhance both the accuracy and robustness of HAR. For
example, CNN-SVM [31] leverages CNNs for spatial feature
extraction, while [33] based on RNNs capture temporal de-
pendencies in activity sequences. Additionally, hybrid mod-
els combining CNN and LSTM architectures are commonly

utilized, harnessing CNN’s spatial extraction capabilities
and LSTM’s strength in modeling temporal dynamics. For
example, DeepConvLSTM [36] incorporates convolutional
and LSTM units for multimodal wearable sensors. [37] pro-
posed a hybrid model integrating CNN with bidirectional
long short-term memory (BiLSTM), achieving impressive
accuracy in HAR. [38] employed CNN for feature extrac-
tion, coupled with a reinforced selective attention model,
to further refine performance. These advancements show
great promise for algorithms deployed in real-world sensor
systems. However, they often experience a significant per-
formance drop when the distribution shifts due to changes
in the subject, sensor device, or environment (i.e., domain).
Such issues hinder the deployment of these advancements
in real-world applications.

2.2 Domain Generalization
Domain Generalization (DG), a key technique in transfer
learning [12], addresses distribution shifts by training mod-
els on multiple source domains to generalize to unseen tar-
get domains without requiring target data during training
[39]. A common DG strategy is to learn domain-invariant
features shared across domains [40], [41]. For example,
SCA [42] uses multi-task autoencoders to emphasize shared
features, but overlooks domain-specific traits that may be
discriminative. To overcome this, recent methods [20], [43]
disentangle domain-specific from invariant features. For
instance, mDSDI [20] employs meta-learning to enhance
adaptability to unseen domains.

To further enhance model robustness, augmentation-
based approaches generate diverse inputs to improve
DG performance. Domain randomization [44] is a widely
adopted technique, often utilizing style transfer methods
like AdaIN [45] to generate synthetic data by altering
textures and other style attributes. For example, WildNet
[46] leverages style transfer to alter low-level visual fea-
tures, albeit limited by auxiliary domain dependence. These
approaches rely on additional real data, which can be
resource-intensive or impractical. Style augmentation [47]–
[49] addresses additional data dependency issues by lever-
aging generative models (e.g., GANs or diffusion models)
to vary image styles. For instance, StyleGAN-NADA [47]
uses text prompts that describe diverse styles to train a
GAN, enabling the synthesis of various images. Mixup [50]
is another line of data generation technique, creating new
samples by linear interpolation across domains to encourage
generalization. Although DG has been extensively studied
in the field of computer vision, its application to HAR
tasks remains in its early stages. Furthermore, due to the
unique characteristics of time-series data, most existing DG
methods struggle to adapt to HAR signals, limiting their
overall effectiveness.

2.3 Domain Generalization for Sensor-Based HAR.
DG can be extended to cross-person activity recognition by
treating each user as a separate domain. CoDATS [51] pro-
poses an adversarial approach aimed at learning domain-
invariant features, which facilitates better generalization
across different users. However, this method relies on the
availability of labeled data in the target domain during
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training, which may not always be practical in real-world
applications. To address this, GILE [13] introduces an im-
proved variational autoencoder (VAE) framework [52] that
automatically disentangles domain-agnostic and domain-
specific features. This approach allows for a more effective
separation of generalizable and user-specific characteristics
in HAR, yet it still requires domain labels. CrossHAR [53]
and MobHAR [54] adopt two-stage pipelines consisting
of an initial pre-training phase followed by fine-tuning.
Although MobHAR [54] achieves improved performance by
leveraging unlabeled target domain data during the fine-
tuning stage, this strategy is less practical in real-world
scenarios, where the goal is to deploy pre-trained models
directly on data from new users without requiring any
additional adaptation. DDLearn [14] and ContrastSense [55]
both focus on enhancing feature diversity through differ-
ent augmented views. However, they reliance on standard
augmentation techniques primarily enriches intra-domain
features, leaving it less effective at capturing complex inter-
domain variations essential for robust cross-person activ-
ity recognition. DI2SDiff [26] represents one of the most
recent DG methods for cross-person activity recognition,
introducing a new diffusion-based generation framework
for synthesizing diverse data. While promising, it still has
certain limitations, which are detailed in Sec. 5 and effec-
tively addressed in DI2SDiff++.

2.4 Diffusion Models

Diffusion models have shown strong capabilities in gener-
ating diverse, high-quality samples across domains such as
computer vision [56]. Classifier-free guidance [57] further
extends their effectiveness in multimodal tasks like text-
to-image [58] and text-to-motion synthesis [59]. Given the
non-stationary nature of time-series data [60], we explore
the use of diffusion models to generate diverse samples
for HAR, aiming to improve generalization. While diffusion
models have seen success in time-series domains such as
audio [61] and healthcare [62], their application to HAR
remains underexplored [63]. Our work pioneers the use of
diffusion models in time-series HAR, introducing a frame-
work that guides the generation process toward diverse and
representative samples. This contributes a novel solution to
domain generalization in HAR and opens new directions for
future research.

3 PRELIMINARIES

3.1 Problem Statement

Following the definition of cross-person activity recognition
[13], [14], we define the training dataset from source do-
mains as: Ds = {(Xi, yi)}n

s

i=1, where ns is the number of
instances. Each instance Xi ∈ RD×L represents IMU data in
the form of timestamped multivariate sequences collected
from sensors, where D denotes the feature dimensionality
and L represents the temporal length. The corresponding
activity label yi ∈ {1, · · · , C} indicates the class of the
activity, with C denoting the total number of activity classes.
The domain is characterized by a joint distribution P (X, y)
across the time-series space X and activity label space Y .

Our goal is to learn a generalized model from Ds to pre-
dict the unseen target domain: Dt = {(Xi, yi)}n

t

i=1, where
P s(Xi, yi) ̸= P t(Xi, yi), X s = X t and Ys = Yt. We aim
to minimize the risk on Dt: minf E(Xi,yi)∼P t [f(Xi) ̸= yi].
Notably, to simulate real-world applications, the domain
identifier is unavailable in our DG setting. Additionally, we
consider a severe small-scale scenario where ns is smaller
than in typical DG setups.

3.2 Diffusion Probabilistic Model

The diffusion model [23] trains a distribution pθ(x) to ap-
proximate the target distribution q(x) using a Markov chain
of Gaussian transitions:

pθ(x0) =

∫
pθ(xT )

T∏
t=1

pθ(xt−1|xt)dx1:T ,

where x1, . . . , xT are latent variables with the same dimen-
sionality as the original data x0, and pθ(xT ) ∼ N (0, I) is the
Gaussian prior. The reverse process is defined as:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t), σθ(xt, t)). (1)

The forward process adds Gaussian noise to x0 over T steps:

q(xt|xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
, (2)

where βt ∈ (0, 1) controls the noise variance.
Training procedure. The diffusion model’s parameters

θ are optimized by maximizing the evidence lower bound of
the log-likelihood log pθ(x0), simplified to a surrogate loss
[24]:

L(θ) := Ex0,t∼U,ϵ∼N (0,I)
[
||ϵ− ϵθ(xt, t)||2

]
, (3)

where U is the uniform distribution and the noise predictor
ϵθ(xt, t), parameterized with a deep neural network, aims
to estimate the noise ϵ at time t given xt. As µθ(xt, t)
is determined by ϵθ(xt, t), the target pθ(xt−1|xt) can be
consequently derived.

Sampling procedure. Given a trained pθ , data genera-
tion starts with Gaussian noise xT ∼ N (0, I) and iteratively
denoises xt for t = T, . . . , 1 using pθ(xt−1|xt), resulting in
the generated data x0.

4 DOMAIN PADDING

4.1 Intuitive Insight – Two Key Criteria

In HAR, the pivotal obstacle to domain generalization lies
in the limited data diversity of the source domain, which
hinders representation learning methods from conquering
distribution shifts. Nevertheless, existing data augmenta-
tion methods [14] still expose the issue of insufficient data
richness in the intra-domain and even inter-domain dis-
tribution. To this end, this work achieves effective data
generation to enrich the diversity of training distributions.
We propose a novel perspective termed “domain padding,”
whose core intention is to improve the coverage of the train-
able domain space by “padding” the distributional gaps
within and across source domains, as shown in Fig. 1(d).
To ensure the generation of high-quality and diverse data,
domain padding adheres to two key criteria:
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• First Criterion: Class-Preserved Generation. The
generated data should maintain class alignment with
the original data, ensuring semantic consistency. This
criterion ensures class consistency of generated data
without compromising semantic stability.

• Second Criterion: Intra- and Inter-Domain Diver-
sity. The generated data should not only boost the
intra-domain diversity within an individual distri-
bution but also enrich the inter-domain diversity
across distinct distributions. This criterion guaran-
tees a wide range of augmented variations for a more
robust model training.

4.2 Feasible Solution – A Diffusion-based Framework

To meet the above two criteria, we implement domain
padding into a conditional diffusion paradigm [24], [64],
due to its excellent generative and flexible conditioning ca-
pabilities. Specifically, given an original instance x ∼ X s, we
can leverage its conditional information s ∈ X cond to guide
the generation of a new instance x̃0 ∼ X̃ s. After the repeat
conditional generation based on the dataset Ds, we collect
a synthetic dataset D̃s = {(X̃i, y

act
i )}ñs

i=1, where ñs denotes
the number of generated samples. The generation objective
is to estimate the conditional data distribution q(x̃|s) by
using the specific constraint s to guide the synthesis of a
new sample x̃0. The conditional diffusion process can be
formulated as:

q(x̃t|x̃t−1, s), pθ(x̃t−1|x̃t, s). (4)

Sequentially, performing pθ enables the generation of new
samples to capture the attributes of s.

Subsequently, we coordinate the conditional diffusion
technique into a coherent framework, which encapsulates
two key components. First, we devise a style conditioner
to extract activity style features, which serve as conditions
of a classifier-free guidance [57]. Thus, leveraging one ex-
plicit style condition effectively ensures that the generated
samples meet the first criterion. The extracted instance-level
styles also provide a guarantee for the construction of a di-
verse style-combination condition space X cond. Second, we
introduce a style-fused sampling strategy to generate highly
diverse intra- and inter-domain data, meeting the second
criterion. In DI2SDiff++, the two components can further
evolve into a multi-head style conditioner and a substyle-
fused sampling strategy, respectively, which facilitate the
nuanced pattern acquisition and diverse data generation
from a cross-class aspect.

5 DI2SDIFF FRAMEWORK

To satisfy the first criterion, DI2SDiff employs a contrastive
learning pipeline to extract robust, instance-level style rep-
resentations, termed “styles,” which fuse both distinctive
instance characteristics and discriminative class semantics.
Specifically, as shown in Fig. 2, a CNN-Transfomer-based
model is used to encode each instance Xi into a style
vector Si = fstyle(Xi) ∈ RH , where H is the vector
length. The vector Si is learned by a contrastive learning
approach [25]. The contrastive objective is to maximize the
similarity between different augmented views of the same

instance, while minimizing the similarity between differ-
ent instances. This encourages the model to capture the
instance’s unique style while preserving class information
of yi. By aggregating style vectors from ns instances, we
form a set S = {Si}n

s

i=1, which can be further partitioned
into C class-specific subsets S1,S2, . . . ,SC . Then, DI2SDiff
utilizes the style vector s ∈ S within the classifier-free
guidance framework [57] to condition the sampling process,
ensuring that each generated sample adheres to a specific
style while preserving class semantics, thereby meeting the
first criterion.

To address the second criterion, we propose a style-
fused sampling strategy to guide the diffusion process con-
ditioned on the style combination, i.e., multiple styles rather
than a single style. Specifically, for each class c, we randomly
combine one or more style features in the subset Sc, obtain-
ing a power set-like collection P∗(Sc) = P(Sc)\{∅} with all
2|S

c| − 1 possible style combinations. Repeatedly, we form
a comprehensive set D =

⋃C
c=1 P∗(Sc) across all C classes.

The diffusion process is modified to condition on specific
style combinations Dj ⊆ Sc. By applying this sampling
strategy with various Dj , the model generates new samples
with diverse domain distributions, enabling the synthesis of
novel domains and enhancing both intra- and inter-domain
diversity. This generation process requires considering two
hyperparameters κ and o. κ denotes the proportion of
synthetic to original training samples, effectively controlling
the expansion volume of the synthetic dataset. o denotes the
maximum number of style features that can be integrated
into each style combination Dj .

Despite the promise of DI2SDiff on two domain-padding
criteria, several crucial limitations are still exposed. (1) Us-
ing the single-style representation as the sampling condition
will inevitably lead to a lack of diversity in generated data,
thereby losing the ability to excavate complex guidance of
time-series activity data. (2) The strict constraint, i.e. intra-
class style combination, not only makes diffusion myopic
and exacerbates the style redundancy within each class, but
also natively overlooks a mass of potential valuable style
variants, thereby limiting the exploration of data diversity,
especially for low-data classes.

6 DI2SDIFF++ MODEL

To address these limitations, Sec. 6.1 introduces a multi-
head activity style conditioner that decomposes each time-
series activity instance into multiple substyles, capturing
richer semantics and nuanced variations. In Sec. 6.2, these
substyles are then used to condition the generation process
via classifier-free guidance framework [57], meeting the
first criterion. Sec. 6.3 presents a substyle-fused sampling
strategy that leverages the flexibility of the decomposed
substyle space for diverse generations, overcoming previous
intra-class fusion constraints and addressing both domain-
padding criteria. The complete workflow of DI2SDiff++ is
outlined in Sec. 6.4.

6.1 Multi-Head Activity Style Conditioner

To unlock diversity beyond single-style representations (the
first limitation of DI2SDiff), we further decompose an ac-
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Fig. 2. The multi-head style conditioner of DI2SDiff++. This style conditioner integrates a combination of a CNN and a Transformer encoder (fstyle),
followed by four heads f

(k)
h . 1) During training, given an activity instance Xi (which can be original data or transformed data), four heads of the

style conditioner decompose it into distinct substyle features (different shapes). These substyles are then processed through three fully connected
layers (fact, ftrs, fpro) to execute separate multi-task learning objectives. Each task is optimized via its respective loss function: Lact, Ltrs, and Lpro. 2)
During inference, only the style conditioner module is used to decompose the original training data into four distinct substyles. The first and second
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i , capture class-specific semantics, while the third and fourth substyles, S(3)

i and S
(4)
i , represent class-agnostic features.

tivity instance into multiple representations, termed “sub-
styles,” to form a multi-view semantic expression of the
sample. To ensure effectiveness and interpretability, we
make these decoupled substyles complementarily capture
information according to two different task spaces, i.e., the
original activity class space Yact with an attached transfor-
mation type space Y trs. Specifically, the former constrains
each substyle to extract information about its relevant activ-
ity label, while the latter forces each substyle to focus on the
augmented perturbation brought by the transformation. To
obtain a reasonable transformation space, we apply five dis-
tinct time-series augmentations [25], [65], i.e., time-warping,
permutation, jitter-and-scale, permutation-and-jitter, and ro-
tation, on the original input data to introduce various real-
world shifts. Thus, these transformed data construct a new
data space X ′, which can be combined with the original data
space to form an enriched input data space as X in = X s∪X ′.

To further enhance the semantic diversity of features
within these two task spaces, we decompose each into task-
specific and task-agnostic components. This is supported by
prior research [66], which shows that such factorization im-
proves representation expressiveness. Consequently, we ob-
tain four orthogonal semantic subspaces for substyle learn-
ing. To implement this, we propose a multi-head style con-
ditioner within a multi-task learning framework, ensuring
that the four resulting substyles capture explicit and com-
plementary semantics. As illustrated in Fig. 2, our multi-
head style conditioner is a CNN–Transformer-based mod-
ule fstyle, which follows a standard time-series backbone
architecture [25]. Here, the CNN encoder is responsible for
extracting local features, while the Transformer encoder cap-
tures long-range dependencies to summarize global contex-
tual information. This enables the style conditioner to inte-
grate both low-level and high-level feature representations.
Once fstyle generates a comprehensive style representation
Si for the input Xi ∈ X in, we decouple Si into K(= 4)

distinct substyle components, {S(k)
i = f

(k)
h (Si) ∈ RH}Kk=1,

using K specialized projection heads. Then, to ensure that
each projection head f

(k)
h captures distinct semantics, we

impose a specific multi-task learning objective L(k)
mt on its

corresponding mapped substyle S
(k)
i . Specifically, the objec-

tive L(k)
mt incorporates three separate loss functions, enabling

comprehensive learning for each head. Below, we provide a
detailed breakdown of the three loss components.

Primary task - activity recognition. The primary task
aims to identify the activity class for each instance. The
activity label space, denoted as Yact, assigns each instance
a label yi ∈ {1, 2, . . . , C}. The activity recognition loss for
each projection head k is defined as:

L(k)
act = E(Xi∈X in,yi∈Yact)

[
ℓ(fact(f

(k)
h (fstyle(Xi))), yi)

]
, (5)

where ℓ denotes the cross-entropy loss function, and fact
is a fully-connected classifier to predict activity labels. This
task primarily functions to constrain the substyles within
the scope of activity semantics. Minimizing this loss en-
forces the alignment of substyles with activity semantics,
thus fulfilling the first domain padding criterion, i.e., class-
preserved generation.

Auxiliary task - transformation classification. To enrich
fine-grained and intricate patterns, we introduce an auxil-
iary task that works in collaboration with the primary task.
This auxiliary task is to identify the specific transformation
applied to each input. The five transformations, along with
the original format, form six distinct classes in the label
space Y trs. Each instance is labeled as ytrs

i ∈ {1, 2, . . . , 6},
representing the transformation types. The fully-connected
classifier ftrs predicts the transformation type for each input
instance. The corresponding loss for each projection head k
is given by:

L(k)
trs = E(Xi∈X in,ytrs

i ∈Y trs)

[
ℓ(ftrs(f

(k)
h (fstyle(Xi))), y

trs
i )

]
, (6)

where ℓ represents the cross-entropy loss function. The
optimization of L(k)

trs , in collaboration with the primary task
of activity classification, enriches the style representation Si.

Additional task - projection rectification. To ensure
that each decoupled substyle S

(k)
i is precisely mapped to

its corresponding orthogonal subspace k, thereby allow-
ing different substyles to remain independent and capture
complementary semantics, we introduce an additional rec-
tification loss for each projection head. The corresponding
label space Ypro is defined as the set of projection space
indices, where each projection head k is assigned a label
y

pro
i ∈ {1, 2, . . . ,K}, corresponding to the index of its

respective subspace. The projection rectification loss for each
head k is formulated as:



IEEE TRANSACTIONS ON MOBILE COMPUTING 7

L(k)
pro = E(Xi∈X in,y

pro
i ∈Ypro)

[
ℓ(fpro(f

(k)
h (fstyle(Xi))), y

pro
i )

]
,

(7)
where fpro is a fully-connected classifier that maps each
output to its respective projection space index k, and ℓ is
the cross-entropy loss function. This loss encourages each
projection head to specialize in learning features aligned
with its designated projection space, thus promoting the
independence and diversity of the extracted components.

Overall loss. The overall learning objective of our multi-
head style conditioner is formulated as:

Lmt =
K∑

k=1

L(k)
mt =

K∑
k=1

(g
(k)
1 ×L(k)

act + g
(k)
2 ×L(k)

trs +L(k)
pro), (8)

where g
(k)
1 and g

(k)
2 dynamically adjust the relative contri-

butions of activity recognition and transformation classifi-
cation losses, which promise task-specific flexibility during
training. By systematically exploring all combinations of
−1 and +1 for these coefficients1, each projection head is
optimized under a distinct multi-task objective. This design
enables a more comprehensive and diverse depiction of Xi

through the outputs of the projection heads, addressing the
limitations of conventional single-style representations.

6.2 Decomposed Activity Substyles for Guidance
We now elaborate on the concept of decomposed sub-
styles and their respective roles in generation guidance.
In particular, the trained multi-head style conditioner de-
composes each input sample Xi ∈ X s into 4 substyles:
(1) class-specific, transformation-invariant features (S(1)

i ),
which capture core class traits while ignoring transforma-
tions; (2) class-specific, transformation-aware features (S(2)

i ),
which identify subtle intra-class variations and complex
patterns introduced by transformations; (3) class-agnostic,
transformation-aware features (S(3)

i ), which generalize
transformation patterns across classes, aiding adaptation to
distribution shifts; and (4) class-agnostic, transformation-
invariant features (S(4)

i ), which provide stable, universal
patterns across contexts. Consequently, each activity can be
interpreted as “a [yi] activity performed in the [{S(k)

i }Kk=1]
style,” where yi denotes the class of the original data.

This decomposition operation represents a significant
step toward satisfying the first criterion of domain padding,
as it preserves the class semantics through the class-specific
substyles S

(1)
i and S

(2)
i . The aggregation of these two

substyle types from ns training instances forms the sets
S(1) = {S(1)

i }ns

i=1 and S(2) = {S(2)
i }ns

i=1, which can be fur-
ther partitioned into C class-specific subsets, corresponding
to the C activity classes. Each subset contains style vectors
specific to a particular class, expressed as: S(1) = {S(1),1 ∪
S(1),2∪· · ·∪S(1),C}, S(2) = {S(2),1∪S(2),2∪· · ·∪S(2),C}.
In contrast, S(3) and S(4) capture class-agnostic features,
providing a wider range of style variations not tied to
specific activity classes. As such, these sets remain unpar-
titioned: S(3) = {S(3)

i }ns

i=1, S(4) = {S(4)
i }ns

i=1.

1(g
(k)
1 , g

(k)
2 ) = (+1,−1), (+1,+1), (−1,+1), (−1,−1) for k ∈

{1, 2, 3, 4}

To control the generation of time-series activity samples,
we leverage the style in S(k) where k ∈ {1, 2, 3, 4} to guide
the conditional sampling process pθ(x̃t−1|x̃t, s) as presented
in Eq. (4). To achieve this, we adopt classifier-free guid-
ance [57], which has proven effective for generating data
with specific characteristics. In this framework, the training
process is adjusted to learn both a conditional ϵθ(x̃t, t, s) and
an unconditional ϵθ(x̃t, t, ∅), where ∅ represents the absence
of the condition s. The loss function is formulated as follows:

L(θ) :=
∑K=4

k=1
L(k)(θ), (9)

L(k)(θ) := Ex0∼X s,ϵ∼N (0,I),t∼U,s∼S(k)

[
∥ϵ− ϵθ(x̃t, t, s)∥2

]
.

Here, the condition s is a style feature in S(k) where k ∈
{1, 2, 3, 4}, derived from the pre-trained conditioner. This
condition is randomly dropped during training to facilitate
effective learning.

During the sampling phase, a sequence of samples
x̃T , . . . , x̃0 is generated starting from x̃T ∼ N (0, I). For each
timestep t, the model refines the process of denoising x̃t−1

based on x̃t through the following operation:

ϵ̂θ = ϵθ(x̃t, t, ∅) + ω
(
ϵθ(x̃t, t, s)− ϵθ(x̃t, t, ∅)

)
, (10)

where ω is a scalar hyperparameter controlling the align-
ment between the guidance signal and the sample [57],
the iterative application of Eq. (10) enables the diffusion
model to generate time-series activity data that precisely
conform to specific styles s ∈ S(k). This iterative refinement
process empowers the diffusion model to synthesize activity
samples that faithfully adhere to the prescribed substyles.
By embedding class-specific semantic conditions within S(1)

and S(2), the generation process ensures the fulfillment of
the first criterion of domain padding: each generated sample
is associated with a known class under the guidance of
a single condition. Meanwhile, the class-agnostic substyles
S(3) and S(4) introduce nuanced yet powerful variations,
enriching the guidance and dramatically enhancing the
expressiveness and diversity of the generated data.

6.3 Beyond Class-Wise Activity Style Combination

So far, our approach has not fully met the second criterion
of domain padding. Samples conditioned on a single style
s ∈ S(k) (where k ∈ {1, 2, 3, 4}) exhibit limited variation
within the intra-domain space, resulting in a narrow seman-
tic scope. To address this limitation, we propose a substyle-
fused sampling strategy to enhance diversity further. This
strategy allows the diffusion process to generate data con-
ditioned on any combination of substyles, rather than a
single style. By blending diverse intra- and inter-domain
styles, this method fulfills the second criterion of domain
padding, enriching the generative process and enabling
greater variation.

Random Substyle Combination. The random substyle
combination method involves fusing four substyle features
within a unified class to define a new diffusion sampling
condition. By flexibly replacing substyle components, we
move beyond the traditional constraints of intra-class sam-
pling: class-specific substyles are selected from samples
within the same class, while class-agnostic substyles are
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Fig. 3. Illustration of the diffusion within DI2SDiff++. Suppose we have three original walking instances X1, X2, and X3, and a sitting instance
X4. Here, X1 and X4 are from different domains, while X2 and X3 belong to the same domain. (a) The multi-head style conditioner processes
these samples to extract four substyle features, resulting in features such as {S(k)

1 }4k=1 for X1. The class-specific substyle features are grouped
into S(1),c and S(2),c, while the class-agnostic substyle features are stored in S(3) and S(4). (b) During training, the diffusion retrieves each data
sample (e.g., X1) along with one substyle component (e.g., S(1)

1 ) for the forward process. (c) To generate a walking instance X̃i, style components
S
(1)
1 , S

(2)
2 , S

(3)
3 , S

(4)
4 are selected, originating from the samples X1, X2, X3, and X4, respectively, to form a new substyle combination. (d) During

sampling, the diffusion takes in noise and the substyle combination for the reverse process. (e) The generated sample X̃i enriches the data space
by combining four distinct substyles from different samples and domains.

drawn from across all classes. This thus expands the di-
versity exploration range, maximizing the utilization of the
entire sample space.

Specifically, for each instance Xi labeled as class c with
an original fused substyle combination {S(k)

i }K=4
k=1 , a new

substyle combination Cj is generated by randomly replacing
one or more of the original substyle components with new
components sampled from the corresponding substyle sets:
S(1),c, S(2),c, S(3), and S(4). Formally, the set of all possible
new substyle combinations Cj for a synthetic instance X̃j

with class label c is defined as:

Cj ∈


{
S
(1)
j , S

(2)
j , S

(3)
j , S

(4)
j

}
|

S
(1)
j ∈ S(1),c,

S
(2)
j ∈ S(2),c,

S
(3)
j ∈ S(3),

S
(4)
j ∈ S(4)


. (11)

This process is applied iteratively across all instances, with
randomness in selecting substyles that may come from dif-
ferent samples and domains for combination. This enables
the fusion of the four substyle features into novel, unseen
forms within a unified class. The resulting fused combina-
tions define various new diffusion sampling conditions, sig-
nificantly expanding the generative condition space X cond.

Substyle-Fused Sampling. To empower the diffusion
model to fuse substyles in Cj during the data generation,
we perform sampling from the composed data distribution
q(x̃0|Cj) for any given substyle combination Cj is achieved
through the following substyle-fused sampling strategy:

ϵ̂θ = ϵθ(x̃t, t, ∅) + ω
∑
s∈Cj

(
ϵθ(x̃t, t, s)− ϵθ(x̃t, t, ∅)

)
. (12)

The derivation of Eq. (12) is detailed in the appendix.
This equation extends the diffusion training process from
single-style to multi-style combinations during sampling.
For instance, as illustrated in Fig. 3(c), consider an orig-
inal substyle combination {S(1)

1 , S
(2)
1 , S

(3)
1 , S

(4)
1 } from X1

labeled as class c. The first substyle component S(1)
1 remains

unchanged, preserving core class-specific traits. The second
class-specific component is replaced with a sample from
X2, which also belongs to class c. Meanwhile, the third
and fourth class-agnostic components are substituted with
samples from X3 and X4, which may originate from any
class. This replacement produces a new substyle combi-
nation Cj = {S(1)

1 , S
(2)
2 , S

(3)
3 , S

(4)
4 }. Eq. (12) ensures that

generated samples labeled as c exhibit unique character-
istics derived from the fusion of the substyles in Cj . This
approach is crucial for achieving inter- and intra-domain
diversity in domain padding, as it allows the diffusion
model to flexibly incorporate instance-level substyles from
either the same or different domains. Consequently, the
diffusion model generates novel samples that exhibit a rich
variety of previously unseen domain distributions, thereby
satisfying the second criterion of domain padding: inter-
and intra-domain diversity. Moreover, given the existence
of sub-domains within each domain, our diffusion model is
capable of synthesizing novel domains, even from sampling
instances within the same domain (we verify this later in the
experiments).

6.4 Workflow of DI2SDiff++

Finally, we present the comprehensive workflow of our
methods. Both DI2SDiff and DI2SDiff++ include two pro-
cesses: 1) generating new synthetic data via a diffusion
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model guided by substyles, and 2) training a HAR classifier
using both the synthetic and original data. During inference,
only the trained HAR classifier is used.

6.4.1 Data Synthesis
Architectural Design. The diffsuion model ϵθ : X̃ s × N ×
X cond → X̃ s is built upon a UNet architecture [57] with
repeated convolutional residual blocks. To accommodate the
characteristics of time series input, we adapt 2D convolu-
tion to 1D temporal convolution. The model incorporates
a timestep embedding module and a condition embedding
module, each of which is a multi-layer perceptron (MLP).
The condition embedding module is used to encode each
activity style s ∈ S , and in the unconditional case s = ∅,
we zero out the entries of s. These embeddings are then
concatenated and fed into each block of the UNet.

Training. As shown in Fig. 3(a) and (b), the multi-head
style conditioner in DI2SDiff++ extracts four distinct types
of substyle features from each training instance. Each data
instance Xi, paired with its substyle component S

(k)
i (k ∈

[1, . . . , 4]) and a randomly sampled timestep t ∼ U , forms a
tripartite input (Xi, t, S

(k)
i ). This setup optimizes the model

using a refined loss function defined in Eq. (9).
Sampling. During sampling, DI2SDiff++ constructs sub-

style combination sets C as described by Eq. (11). Each
specific substyle combination Cj guides the diffusion pro-
cess, creating a new sample that fuses diverse substyles, as
depicted in Fig. 3(c).

Enhanced Domain Space Diversity. The iterative sam-
pling procedure generates a broad range of new, unseen
samples to form the synthetic dataset D̃s for expanding
the data space, as shown in Fig. 3(d). DI2SDiff++ em-
ploys two hyperparameters: κ, which denotes the expansion
proportion of synthetic samples, and ζ ∈ [1, 4], which
specifies the number of replaced substyle components in
new combinations. Notably, DI2SDiff++ eliminates the need
for an extensive search to determine the optimal number
of styles in a combination (i.e., the hyperparameter o in
DI2SDiff), simplifying the process of achieving effective do-
main diversity. By using ζ to control the number of substyle
replacements per instance, DI2SDiff++ ensures enhanced
diversity in a fine-grained and controlled manner.

6.4.2 Training the HAR Classifier
Finally, we train a HAR classifier on the augmented dataset
{D̃s ∪ Ds} = {(Xi, yi)}n

s+ñs

i=1 and optimize it using a
standard cross-entropy loss function to ensure accurate clas-
sification. The trained HAR model is then used to perform
inference on the target data. By enhancing the expressive-
ness of the generated samples, DI2SDiff++ provides more
effective benefits for HAR models, for example, achieving
better generalization performance with fewer synthetic sam-
ples. We also provide detailed pseudocode for DI2SDiff++
in the appendix.

7 EXPERIMENTS
In this section, we conduct a comprehensive evaluation of
DI2SDiff and DI2SDiff++ across various cross-person activ-
ity recognition tasks to demonstrate the following: (1) their

capability to achieve domain padding, significantly diver-
sifying the domain space; (2) their overall performance in
domain generalization; (3) detailed ablation and sensitivity
analyses; (4) a case study involving class-wise performance
and efficiency analysis; (5) the computational complexity
of our models; (6) a comparison of training time; (7) the
feasibility of deployment on mobile devices; and (8) their
extensibility in enhancing existing DG baselines and main-
taining robustness across varying model backbones.

7.1 Experimental Setup

Datasets and domain split. We evaluate our method on
three widely used wearable sensor-based HAR datasets: the
UCI Daily and Sports Activities (DSADS) dataset [67], the
PAMAP2 dataset [68], and the USC-HAD dataset [69]. We
follow the same settings in [14] that provided a general-
izable cross-person scenario. Specifically, the subjects are
organized into separate groups for leave-one-out validation.
We assign the data of one group as the target domain and
utilize the remaining subjects’ data as the source domain.
Each subject is treated as an independent task.

Baselines. We compare our DI2SDiff [26] and
DI2SDiff++ with a wide range of closely related, strong
baselines adapted to sensor-based activity recognition tasks.
We begin by including Mixup [70], RSC [71], SimCLR [72],
Fish [73], and DDLearn [14], all of which have demon-
strated strong performance in recent studies [14]. We
further incorporate three more recently proposed cross-
domain activity recognition approaches: CrossHAR [53],
ContrastSense [55], and MobHAR [54]. We also include
TS-TCC [25] for its remarkable generalization performance
in self-supervised learning. Additionally, we incorporate
DANN [74] and mDSDI [20], which are designed to address
domain-invariant and domain-specific feature learning, re-
spectively. In our analysis, the standard data augmentation
(DA) techniques [65] are identical to those employed in [14],
such as scaling and jittering.

Architecture. For fairness, we adopt the same HAR
classifier (except CrossHAR, MobHAR and TS-TCC) as de-
scribed in [14], which consists of 2 convolutional blocks for
DSADS and PAMAP2, and 3 convolutional blocks for USC-
HAD. Each block includes a convolution layer, a pooling
layer, and a batch normalization layer.

Implementation. For the diffusion model setting, both
methods use the default diffusion configuration [24]: the
forward process variances are set to constants increasing
linearly from β1 = 10−4 to βT = 0.02, with the number
of diffusion steps T = 100 to ensure a fair comparison.
In the generation setting, DI2SDiff adjusts the synthetic-to-
original sample ratio κ between 1 and 5 to ensure effective
performance. The parameter o, which defines the maximum
number of style features used per combination, is set be-
tween 5 and 10. DI2SDiff++ sets κ = 1 and the number of
replaced substyle components in each new combination to
ζ = 2 by default. In each experiment, we report the average
performance and standard deviation over three random
seeds. Additional experimental details, including informa-
tion about datasets, architecture, and training settings, are
provided in the appendix.
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Fig. 4. T-SNE visualization of DSADS, PAMAP2, USC-HAD datasets.
The original and synthetic data are represented by shapes dots and
crosses, and each class is denoted by a color. Best viewed in color and
zoom in.

7.2 Domain Padding and Diversity Evaluation

In this part, we demonstrate whether our DI2SDiff and
DI2SDiff++ can effectively diversify the domain space and
generate diverse samples that meet domain padding crite-
ria. To this end, we adopt T-SNE [75] to visualize the latent
feature space in terms of class and domain dimensions.

(1) Class-Preserved Generation. First, we evaluate the
class consistency of synthetic data, i.e., the first criterion
of domain padding. We employ a class feature extractor,
trained with class labels, to map both original and synthetic
data into a class-specific space. The results of single-style
guidance (|Dj | = 1), multiple-style guidance (|Dj | > 1) and
multiple-substyle guideance ((|Cj | = 4) are shown in Fig. 4.

It can be observed that all synthetic samples (crosses)
are closely clustered around their corresponding origi-
nal instances and classes (dots). This clustering indicates
that our method effectively maintains class information,
avoiding the introduction of class noise; importantly, this
holds true under single-style, multiple-style, and multiple-
substyle guidance. Moreover, the use of multiple-substyle
guidances appears to enhance class discriminability more
than both single- and multiple-style guidance in Fig. 4. This
improvement is likely due to the introduction of explicit
class-specific guidance signals, which provide more robust
and precise class semantics, leading to better class alignment
in the generated samples.

(2) Intra- and Inter-Domain Diversity. We evaluate
the intra- and inter-domain diversity of the synthetic data,
i.e., the second criterion of domain padding. We train the
domain feature extractor on source domains with domain
labels. We then map source and target data into a domain-
specific latent space and compare the synthetic data from
the standard DA method, single-style guidance (|Dj | = 1),
multiple-style guidance (|Dj | > 1) and multiple-substyle
guidance ((|Cj | = 4). The results are shown in Fig. 5.

(a) DSADS (b) PAMAP2 (c) USC-HAD

Sing style

Mult styles

Mult substyles

Mult substyles Mult substyles

Mult styles

Mult styles

Sing style

Sing style

Standard DA

Standard DA

Standard DA

Fig. 5. T-SNE visualization of DSADS, PAMAP2, and USC-HAR
datasets. Each domain category is represented by a color, and the target
domain is represented by a red dot. The original and synthetic data are
represented by shapes dots and crosses, respectively. Best viewed in
color and zoom in.

The findings reveal that the standard DA method gener-
ates tightly clustered samples (crosses) around the original
data (dots), falling short of diversifying the domain space,
particularly the inter-domain space. Our single-style guid-
ance method offers a partial solution and generates sparse
data between different domains thanks to the diffusion’s
probabilistic nature. However, relying on a single-style
guidance approach has limitations for domain padding. The
introduction of our style combinations and substyle com-
bination makes a substantial improvement: the multiple-
condition guidance excels in “padding” the distributional
gaps both within and across source domains, as shown
in Fig. 5. By capitalizing on the distinct characteristics of
individual styles within the original data, the synthetic
samples (crosses) more closely align with the target domain
data (red dots) while exhibiting reduced dependence on the
specific traits of the source domains. This underscores the
ability of multi-style and multi-substyle fusion, supported
by our sampling strategy, to generate a broader and more
diverse range of styles, which is essential for achieving
robust domain generalization in HAR.

We also observe in Fig. 5(c) that the USC-HAD dataset
presents an additional challenge of intra-domain gaps due
to its fragmented and sparsely distributed source domains
with distinct sub-domains. These gaps contribute to an
increased distribution shift, posing difficulties for existing
DG methods to perform effectively (We show their results
in Tab. 1 later). By random instance-level style/substyle
fusion, our DI2SDiff and DI2SDiff++ effectively address this
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TABLE 1
Classification accuracy (%) (± standard deviation) on three public datasets, where each task only comprises 20% of training data. The
second-best results are underlined, and the best results are in bold. “T0-T4” represent different cross-person activity recognition tasks.

Tar. Mixup RSC SimCLR Fish DANN mDSDI TS-TCC DDLearn CrossHAR ContrastSense MobHAR DI2SDiff DI2SDiff++

D
SA

D
S

T0 74.77 (±1.76) 54.32 (±2.19) 72.48 (±3.18) 55.06 (±1.60) 72.49 (±3.21) 76.91 (±2.34) 81.47 (±0.53) 87.88 (±1.92) 82.41 (±0.73) 80.07 (±0.81) 81.38 (±0.45) 89.93 (±2.57) 90.17 (±1.22)
T1 75.78 (±3.95) 63.62 (±10.56) 76.61 (±2.56) 62.28 (±3.13) 69.61 (±1.96) 76.02 (±1.56) 79.68 (±0.42) 88.80 (±1.11) 82.60 (±1.25) 81.90 (±0.58) 82.17 (±0.95) 90.17 (±0.84) 91.25 (±0.54)
T2 74.18 (±4.36) 66.48 (±1.80) 78.25 (±0.92) 68.15 (±1.60) 78.97 (±4.06) 72.71 (±0.98) 84.37 (±1.87) 89.21 (±1.23) 80.77 (±2.45) 82.58 (±2.33) 82.82 (±1.78) 91.39 (±1.31) 91.82 (±1.22)
T3 75.85 (±3.45) 64.29 (±3.37) 76.49 (±0.91) 68.83 (±3.83) 78.54 (±2.14) 79.58 (±1.29) 82.09 (±2.51) 85.63 (±1.13) 80.66 (±2.33) 78.23 (±2.56) 80.33 (±1.56) 88.95 (±1.79) 89.95 (±0.24)

Avg 75.15 (±2.36) 62.18 (±4.32) 75.96 (±1.25) 63.58 (±0.37) 74.90 (±2.63) 76.31 (±1.56) 81.65 (±1.33) 87.88 (±0.82) 81.61 (±1.69) 80.70 (±1.57) 81.68 (±1.19) 90.11 (±1.63) 90.80 (±1.55)

PA
M

A
P2

T0 57.81 (±0.55) 55.99 (±1.29) 63.28 (±3.33) 54.04 (±4.31) 54.02 (±3.52) 58.70 (±3.14) 64.08 (±1.98) 75.55 (±0.79) 70.36 (±2.18) 65.45 (±0.68) 63.82 (±0.25) 79.58 (±2.46) 81.51 (±1.25)
T1 81.51 (±3.94) 83.08 (±2.42) 81.25 (±1.59) 85.16 (±1.39) 77.21 (±3.79) 83.82 (±1.62) 86.55 (±2.28) 90.07 (±2.40) 90.15 (±1.22) 91.91 (±1.48) 92.28 (±2.05) 94.12 (±1.20) 95.35 (±1.54)
T2 77.34 (±3.33) 78.65 (±3.99) 78.65 (±1.87) 79.69 (±4.00 ) 78.80 (±1.87) 79.15 (±2.72) 80.21 (±0.52) 85.51 (±0.76) 86.22 (±0.88) 81.27 (±0.23) 82.63 (±1.75) 89.57 (±2.48) 91.51 (±1.25)
T3 70.31 (±5.64) 68.10 (±6.27) 71.09 (±1.99) 72.53 (±0.49) 61.96 (±2.11) 78.61 (±0.49) 77.32 (±0.47) 80.67 (±1.78) 79.35 (±0.78) 78.81 (±0.79) 81.88 (±1.22) 84.75 (±3.72) 85.80 (±2.22)

Avg 71.74 (±1.37) 71.45 (±2.55) 73.57 (±1.21) 72.85 (±0.37) 68.00 (±2.66) 75.07 (±1.99) 77.04 (±1.29) 82.95 (±0.60) 82.02 (±1.27) 79.36 (±0.80) 80.15 (±1.32) 87.01 (±1.94) 88.54 (±1.53)

U
SC

-H
A

D

T0 68.66 (±4.67) 75.69 (±4.28) 69.36 (±2.34) 73.70 (±3.97) 57.79 (±4.73) 59.71 (±1.23) 78.96 (±0.79) 79.06 (±2.11) 75.86 (±1.23) 72.15 (±0.88) 77.11 (±1.77) 88.33 (±1.70) 89.93 (±1.05)
T1 68.75 (±1.29) 72.40 (±2.88) 66.62 (±1.44) 72.05 (±2.93) 64.95 (±2.68) 67.35 (±2.46) 79.55 (±1.23) 80.15 (±1.11) 77.94 (±1.56) 78.93 (±1.25) 79.46 (±2.18) 81.64 (±0.28) 84.52 (±0.12)
T2 71.79 (±0.65) 72.83 (±3.62) 76.04 (±1.61) 69.10 (±2.93) 71.97 (±3.23) 63.89 (±3.69) 78.15 (±2.15) 80.81 (±0.74) 82.83 (±0.58) 80.74 (±0.14) 78.28 (±0.79) 88.37 (±1.46) 89.75 (±0.23)
T3 61.29 (±3.90) 63.19 (±5.30) 61.24 (±1.06) 58.51 (±3.66) 45.65 (±2.18) 63.87 (±4.92) 64.35 (±1.58) 70.93 (±1.87) 70.53 (±0.74) 72.77 (±1.69) 65.63 (±1.44) 77.84 (±1.10) 80.05 (±1.21)
T4 65.63 (±4.55) 66.75 (±3.25) 62.85 (±2.17) 63.72 (±8.31) 54.94 (±3.56) 55.95 (±6.15) 70.25 (±0.88) 75.87 (±2.99) 70.13 (±3.45) 73.05 (±4.66) 68.76 (±0.68) 83.84 (±0.88) 86.77 (±0.84)

Avg 67.22 (±2.41) 70.17 (±3.51) 67.22 (±0.39) 67.42 (±3.91) 59.06 (±2.65) 62.15 (±3.08) 74.25 (±1.16) 77.36 (±0.99) 75.46 (±1.51) 75.53 (±1.51) 73.85 (±1.37) 84.00 (±1.09) 86.20 (±1.22)

Avg All 71.37 67.93 72.25 67.95 67.32 71.18 77.65 82.73 79.70 78.53 78.56 87.04 88.51

TABLE 2
Classification accuracy (%) on three public datasets with varying

percentages (%) of used training data. The second-best results are
underlined. The best results are in bold.

Perct. Mixup RSC SimCLR Fish DANN mDSDI TS-TCC DDLearn CrossHAR ContrastSense MobHAR DI2SDiff DI2SDiff++

D
SA

D
S

20% 75.15 62.18 75.96 63.58 74.90 76.31 81.65 87.88 81.61 80.70 81.68 90.11 90.80
40% 82.48 67.70 75.76 65.82 75.45 76.55 82.54 89.71 82.42 81.21 82.45 91.25 91.88
60% 82.70 69.98 75.61 67.65 76.55 77.89 83.78 90.43 82.95 81.45 82.54 92.56 92.94
80% 81.58 75.37 74.69 66.03 76.89 79.25 84.12 90.97 82.12 84.52 85.66 94.58 94.97
100% 83.44 75.58 76.22 69.35 80.52 79.58 86.57 91.95 87.61 86.60 88.76 95.23 96.86

PA
M

A
P2

20% 71.74 71.45 73.57 72.85 68.00 75.07 77.04 82.95 82.02 79.36 80.15 87.01 88.54
40% 76.69 73.73 74.25 77.02 69.85 72.55 78.35 84.34 82.55 79.55 81.45 87.66 88.22
60% 77.83 75.72 74.71 76.04 70.88 76.56 80.15 85.03 81.54 80.54 85.12 88.75 89.54
80% 78.00 76.17 74.09 75.13 77.82 77.53 81.78 86.67 82.65 81.15 86.97 89.92 90.41
100% 79.72 77.96 74.25 75.49 79.56 78.83 83.45 86.31 83.63 81.54 86.27 90.96 92.25

U
SC

-H
A

D

20% 67.22 70.17 67.22 67.42 59.06 62.15 74.25 77.36 75.46 75.53 73.85 84.00 86.20
40% 75.30 77.31 69.16 73.54 61.52 68.85 75.32 80.72 75.81 75.65 74.52 84.97 85.72
60% 78.14 77.59 71.38 76.09 68.71 76.75 77.84 80.88 76.45 76.45 76.84 87.53 89.53
80% 79.76 78.65 71.99 77.21 68.52 77.72 78.91 82.49 78.84 78.88 80.12 89.25 90.79
100% 81.27 79.41 72.14 78.92 72.05 78.59 79.15 82.51 81.22 80.62 83.43 91.13 92.95

sub-domain challenge, enabling the synthesis of new data
distribution within sub-domains. As a result, our methods
can yield exceptional performance on complex tasks like
USC-HAD.

More importantly, the multi-substyle guidance within
DI2SDiff++ proves highly effective in simulating complex
target data distributions and addressing substantial distri-
butional shifts. For example, in the USC-HAD dataset, the
target data shows minimal overlap with the source domain,
representing an extreme case of distributional divergence.
As shown in Fig. 5(c), our multi-substyle fusion aligns
well with the true target distribution, enabling the synthe-
sized samples to effectively cover the target domains. This
validates the ability of DI2SDiff++ to unlock meaningful
distributional diversity, significantly improving the model’s
generalization across complex domains, as Tab. 1 shows.

7.3 Generalization Performance
Now we conduct a series of experiments to evaluate the gen-
eralization performance of DI2SDiff and DI2SDiff++ against
other strong DG baselines.

Overall performance. Tab. 1 presents a comparative
analysis of the classification accuracies achieved by all DG
methods across three datasets, each task of which comprises
20% of the training data. As we can see, representation
learning baselines that focus solely on learning domain-
invariant features, such as DANN [74], exhibit suboptimal
performance due to the limited diversity of the training
data in HAR. The method mDSDI [20], on the other hand,
achieves improved performance by additionally learning
domain-specific features. However, it does not match the
performance of ContrastSense [55] and DDLearn [14], which

utilize data augmentation, underscoring the importance of
training data diversity in enhancing generalization in HAR.
Furthermore, CrossHAR [53] and MobHAR [54] introduce
external fine-tuning procedures, which contribute to per-
formance gains. In contrast, DI2SDiff and DI2SDiff++ con-
sistently outperform all baselines by directly synthesizing
diverse intra- and inter-domain activity data, achieving
superior generalization without requiring any additional
adaptation. Fig. 6 (a–c) further illustrates the F1-scores of
representative DG methods across the three datasets. Con-
sistent with the accuracy results in Tab. 1, DI2SDiff and
DI2SDiff++ achieve the highest F1-scores across all tasks,
affirming their capacity to generate meaningful activity data
that encapsulates domain variability.

In addition, we observe that all baselines, including
DDLearn, demonstrate poor performance on the USC-HAD
dataset. As illustrated in Fig. 5(c), the observed decline is
attributed to the presence of sub-domains within the source
domain, posing a significant challenge for DG. DI2SDiff
and DI2SDiff++ effectively address this issue by lever-
aging instance-level style fusion to synthesize new data
distributions that bridge these sub-domains. Consequently,
DI2SDiff and DI2SDiff++ achieve remarkable performance,
surpassing the third-best method (DDLearn) by significant
margins of 6.64% and 8.84%, respectively, on the USC-
HAD dataset. The superior performance of DI2SDiff++ over
DI2SDiff is particularly evident in its ability to tackle the
pronounced distributional shifts between the source and
target domains, as illustrated in Fig. 5(c). By integrating
multi-view, fine-grained guidance (such as transformation-
aware substyles) into the synthetic data generation process,
DI2SDiff++ achieves a marked enhancement in distribu-
tional diversity. This methodology allows the model to
encapsulate and represent the intricate nuances of the target
domain more effectively. As a result, DI2SDiff++ further ad-
vances the robust second-best method (DI2SDiff), delivering
even greater improvements across all cross-person tasks,
particularly on the USC-HAD dataset.

Data proportion analysis. In Tab. 2 and Fig. 6 (d-f),
we evaluate the average accuracy and F1-score of DI2SDiff
and DI2SDiff++ across varying proportions of training data,
ranging from 20% to 100%. The results consistently demon-
strate the superiority of our DI2SDiff and DI2SDiff++ over
baseline approaches, regardless of the amount of available
data. This underscores the efficiency of our approach in gen-
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Fig. 6. F1 score (%) comparison of four competitive methods (CrossHAR, DDLearn, DI2SDiff, and DI2SDiff++) on three datasets. Subfigures (a–c)
show the results with 20% training data across different target domains; subfigures (d–f) show performance under varying training data percentages.

TABLE 3
The results of the ablation study on three datasets and each task is

averaged for an overall assessment.

Line No. Variants
DSADS PAMAP2 USC-HAD

20% 100% 20% 100% 20% 100%

1 Standard DA 75.58 82.57 70.31 86.41 69.14 75.45
2 Class Label Guidance 76.25 84.67 72.78 88.52 70.85 76.26
3 Single Style Sampling 86.98 91.12 83.07 89.64 75.27 83.57
4 Substyle Sampling 87.15 92.13 84.25 89.75 78.78 84.54
5 Style-Fused Sampling 90.11 95.23 87.01 90.96 84.00 91.13
6 Substyle-Fused Sampling 90.80 96.86 88.54 92.25 86.20 92.95

7 Substyle-Fused Sampling w/o S(1) 83.42 85.12 79.25 84.27 76.25 82.78
8 Substyle-Fused Sampling w/o S(2) 87.52 89.56 83.25 87.17 81.17 86.63
9 Substyle-Fused Sampling w/o S(3) 88.41 93.35 85.21 89.54 81.40 87.23
10 Substyle-Fused Sampling w/o S(4) 89.11 94.03 86.45 90.11 82.54 89.58
11 Substyle-Fused Sampling 90.80 96.86 88.54 92.25 86.20 92.95

12 DI2SDiff++ w/o CNN 84.54 86.45 80.41 80.69 75.12 83.78
13 DI2SDiff++ w/o Transformer 79.54 82.77 78.66 78.29 73.45 81.78
14 DI2SDiff++ 90.80 96.86 88.54 92.25 86.20 92.95

erating informative synthetic samples and effectively lever-
aging them for learning. Meanwhile, ignoring fine-grained
style decomposition and broad interactions across styles
limits the fidelity and diversity of the generated data, con-
straining DI2SDiff’s performance. By addressing these lim-
itations, DI2SDiff++ achieves enhanced performance across
all cross-person activity recognition tasks. Interestingly, as
the size of the training sample increases, the advantage of
DI2SDiff++ becomes even more pronounced. For example,
on the USC-HAD dataset, increasing the training data from
20% to 100% leads to an increase in accuracy improve-
ment from 8.84% to 10.44%, and in F1-score improvement
from 5.62% to 6.22%, compared to the third-best baseline
(DDLearn). This is attributable to the larger number of
possible substyle combinations generated when more train-
ing data are available. Thus, enlarging the training dataset
not only enhances the diversity of synthesized data but
also significantly boosts the model’s generalization ability,
resulting in more robust performance across a wide range
of training volumes.

7.4 Ablation and Sensitivity Analysis
In this section, we perform an ablation study that focuses
on the main step of DI2SDiff and DI2SDiff++, i.e., generat-
ing diverse time-series activity data via diffusion for data
augmentation. We keep the number of synthetic samples

and the training strategy of HAR models the same for all
variants. Additionally, we perform a sensitivity analysis
to examine the impact of critical hyperparameters in both
DI2SDiff and DI2SDiff++. First, for DI2SDiff, the focus is
on two hyperparameters: o, which defines the maximum
number of style features in each style combination, and κ,
which regulates the volume of synthetic data. Second, for
DI2SDiff++, we analyze the impact of ζ , which specifies the
number of replaced substyle features in new combinations,
and κ, which similarly controls the volume of synthetic data.

Ablation on diffusion model. Our findings, as out-
lined in Tab. 3, underscore the limitations of standard data
augmentation (DA) (Line 1) and class label guidance (Line
2). The latter, which directly uses class labels as diffusion
conditions without leveraging style features, fails to cap-
ture instance-specific nuances, resulting in underwhelming
performance. This highlights the inadequacy of class la-
bels alone in generating high-quality, diverse data, as they
lack the granularity required for robust generalization. In
contrast, conditioning the diffusion model on single-style
features (Line 3) or substyle features without replaceme
nt (Line 4) yields noticeable performance improvements,
demonstrating that instance-level representation features
are pivotal for enhancing the fidelity and utility of syn-
thesized data. This reinforces the importance of utilizing
more granular style representations over static class labels.
The introduction of random style and substyle combinations
further elevates performance, as evidenced by the results for
style-fused sampling in DI2SDiff (Line 5) and substyle-fused
sampling in DI2SDiff++ (Line 6). These strategies enable
the generation of diverse and novel feature combinations,
with substyle-fused sampling consistently outperforming
its style-fused counterpart. This finding underscores the
critical advantage of incorporating finer-grained, multi-view
representations to achieve superior generalization.

To further investigate the role of substyles, we examined
the impact of removing various substyle components from
DI2SDiff++ (Lines 7–11). The results reveal that excluding
any substyle leads to a significant decline in performance,
underscoring the integral role of each substyle in facilitat-
ing robust generalization. Notably, class-specific substyles
(S(1) and S(2)) are particularly influential, as they encode
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Fig. 7. The confusion matrices for the first task of the PAMAP2 dataset with 20% training data. Labels 0–7 denote the activities: lying, sitting,
standing, walking, ascending stairs, descending stairs, vacuum cleaning, and ironing.
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Fig. 8. Hyperparameter sensitivity analysis for DI2SDiff (solid line) and DI2SDiff++ (dashed line): (a) ζ (b) o (c) κ.

the semantic essence of each activity class, ensuring clear
differentiation between classes. Moreover, transformation-
aware substyles (e.g., S(3)) exhibit a pronounced influence,
especially on datasets like USC-HAD, which are marked by
significant distributional shifts. These substyles introduce
nuanced, transformation-sensitive variations that adeptly
capture and adapt to intricate distributional changes, en-
abling the model to reconstruct complex patterns within
the target domain. This capability highlights the nuanced
strength of DI2SDiff++ in addressing the multifaceted chal-
lenges of cross-domain data synthesis.

Ablation on multi-head style conditioner. Table 3
(Lines 12–14) presents the ablation results of DI2SDiff++ un-
der different encoder configurations. Specifically, we evalu-
ate the performance impact of removing either the CNN
or Transformer component from the multi-head style con-
ditioner. When the CNN component is removed (Line 12),
we observe a consistent and significant performance drop
across all datasets. This demonstrates that local feature ex-
traction is critical, as its absence impairs the model’s ability
to capture fine-grained style features necessary for distin-
guishing subtle intra-class variations. Similarly, removing
the Transformer component (Line 13) results in a noticeable
performance degradation. This suggests that, while CNNs
effectively capture rich local patterns, the Transformer com-
plements them by modeling long-range dependencies and
infusing global semantic context into the features, resulting
in more meaningful substyles. When both components are
jointly leveraged (Line 14), the model achieves the best av-
erage performance across all tasks, highlighting the comple-
mentary strengths of the CNN and Transformer in capturing
both local and global style semantics. Overall, these results
validate the effectiveness of our hybrid encoder design.

Hyperparameter Sensitivity Analysis. We evaluate the

sensitivity of hyperparameters by varying one parameter
while keeping others constant. The results, as shown in
Fig. 8, offer critical insights into the performance and ef-
ficiency of DI2SDiff and DI2SDiff++ under different con-
figurations. Specifically, Fig. 8(a) highlights the impact of
the number of replaced style components (ζ) in DI2SDiff++.
Increasing ζ tends to improve generalization by introducing
a broader range of style combinations. ζ = 2 achieves
a reasonable balance, yielding generally stable and robust
results. Fig. 8(b) focuses on DI2SDiff, demonstrating that the
optimal number of style combinations (o) varies by dataset
complexity. For simpler distributions like DSADS, o = 5
proves sufficient. However, for the more complex USC-
HAD dataset, o = 10 is necessary to achieve the diversity
required for robust generalization. By contrast, DI2SDiff++
circumvents the need for o altogether, leveraging its multi-
head style conditioner to extract four random substyle con-
ditions for each instance. This mechanism inherently cap-
tures diverse and independent aspects of activity instances,
eliminating reliance on extensive hyperparameter tuning
while enhancing efficiency and accuracy.

Additionally, Fig. 8(c) reveals that increasing the volume
of generated data (κ) consistently improves generalization
performance. For practical efficiency, we adopt κ = 1 or
2 for DI2SDiff and κ = 1 for DI2SDiff++ in Tab. 1 and
Tab. 2. The results clearly demonstrate that DI2SDiff++
outperforms all baselines across tasks, achieving superior
performance with minimal computational overhead. In con-
trast, DI2SDiff requires generating a larger volume of data
(κ ≥ 2) to attain comparable results, particularly for chal-
lenging datasets like USC-HAD, which increases generation
costs significantly. These findings underscore the enhanced
efficiency and effectiveness of DI2SDiff++. By reducing re-
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Fig. 9. Trend of test accuracy in comparison as the number of epochs
increases on the first tasks of the PAMAP2 dataset with 20% training
data.

TABLE 4
Efficiency analysis. Training memory(MB) and storage(MB) include the
entire pipeline: the conditioner (if applicable), generator (if applicable),
and classifier. Training time(min) reflects the total end-to-end duration.

Inference memory(MB), deployment size(MB) and time(ms) are
measured for the classifier during label prediction. An asterisk (*)

denotes the default setting.

Methods Training Inference Accuracy (%)

GPU Memory Storage Time GPU Memory Deploy Size Time

TS-TCC 11.3 1.8 2.6 9.6 1.7 1.5 64.4
CrossHAR 25.6 3.8 7.5 12.9 3.8 2.8 70.5
MobHAR 18.5 3.0 10.3 8.7 0.3 1.2 65.6
DDLearn (κ=1)* 12.7 0.2 9.0 2.9 0.1 0.7 70.9
DDLearn (κ=3) 12.7 0.2 13.5 2.9 0.1 0.7 71.5
DDLearn (κ=5) 12.7 0.2 21.0 2.9 0.1 0.7 71.2
DI2SDiff 145.1 147.7 32.5 2.9 0.1 0.7 77.8
DI2SDiff++ (κ=1)* 152.3 148.0 17.9 2.9 0.1 0.7 80.1
DI2SDiff++ (κ=3) 152.3 148.0 34.0 2.9 0.1 0.7 84.6
DI2SDiff++ (κ=5) 152.3 148.0 47.6 2.9 0.1 0.7 86.0

liance on hyperparameter searches and streamlining data
generation processes, DI2SDiff++ achieves superior gener-
alization capabilities with lower computational demands.

7.5 Case Study of Class-Wise and Efficiency Analysis

To evaluate classification performance, we conducted a de-
tailed case study using confusion matrices and efficiency
metrics. The confusion matrices in Fig. 7 reveal that Mixup
struggles to achieve satisfactory results, likely due to its
tendency to distort semantic integrity during data augmen-
tation. In contrast, DDLearn achieves moderate improve-
ments by leveraging class-maintained standard data aug-
mentation, which better preserves activity-specific seman-
tics. Both DI2SDiff and DI2SDiff++ significantly enhance the
performance of poorly classified activities by introducing
greater intra-class diversity. Notably, DI2SDiff++ demon-
strates an improvement over DI2SDiff, particularly in reduc-
ing misclassifications for dynamic and challenging activities
such as “ascending stairs” and “descending stairs.” This
advancement can be attributed to the multi-view substyles
employed in DI2SDiff++, which diversify fine-grained pat-
terns, capturing subtle variations essential for robust class
differentiation.

The test accuracy trends depicted in Fig. 9 further un-
derscore the superiority of our approach. Both DI2SDiff and
DI2SDiff++ exhibit faster convergence and achieve signifi-
cantly higher accuracy compared to DDLearn, highlighting
the efficiency of diffusion-based data generation in enhanc-
ing the learning process of HAR classifiers. Among all meth-
ods, DI2SDiff++ emerges as the most effective, consistently
delivering the best overall performance.

7.6 Complexity Analysis
We evaluate the training and inference complexity of our
method and the baselines following the protocol in [9].
We report GPU memory usage for computation, storage
overhead, total training time, inference time, and accuracy.
All experiments are conducted on an NVIDIA RTX A5000
GPU using Task 3 of the USC-HAD dataset (a challenging
DG task), where the batch size is set to 1.

The results are summarized in Table 4. As shown,
DI2SDiff-based models incur higher training overhead in
terms of GPU memory (152.3 MB), storage (148.0 MB), and
total training time (17.9 minutes) due to the additional
multi-head style conditioner and the diffusion process.
However, this cost is amortized, as training is performed
only once, allowing the model to generalize effectively
across unseen domains without the need for retraining. The
additional 5% GPU memory overhead and 0.2% storage
overhead introduced by the multi-head conditioner, com-
pared to DI2SDiff, can be further optimized by switching
from parallel to sequential GPU execution. Notably, the
default configuration of DI2SDiff++ (κ = 1) outperforms
DI2SDiff while reducing training time by approximately
45%, owing to shorter generation time.

After training, only the HAR classifier (a 3-layer CNN)
trained on the original data and generated data, is used
for prediction. As the backbone is shared among DDLearn,
DI2SDiff, and DI2SDiff++, the resulting GPU memory us-
age, deployment size, and inference time remain identical,
thereby incurring no additional overhead. The results fur-
ther demonstrate that DI2SDiff++ consistently achieves the
lowest inference memory usage (2.9 MB), a minimal deploy-
ment size (0.1 MB), and the shortest inference time (0.7 ms),
while surpassing all baseline methods in accuracy. These
findings underscore the strong suitability of DI2SDiff++ for
real-world edge deployments, offering an excellent balance
between performance and efficiency.

To further validate our method’s efficiency, we conduct
experiments with varying values of κ. DI2SDiff++ offers
flexible control over the trade-off between training cost and
performance through the data expansion ratio κ: increasing
κ leads to longer training times but consistently yields
better accuracy, enabling fine-grained adaptability based
on task requirements. In contrast, augmentation-based ap-
proaches such as DDLearn struggle to provide significant
performance gains via traditional augmentation techniques,
which often produce redundant samples. This highlights
their reliance on manually collected data, which is typically
both time-consuming and costly. Overall, despite requiring
only modest GPU resources and storage overhead during
training, our approach achieves substantial improvements
in both accuracy and efficiency, without introducing addi-
tional inference cost.

7.7 Training Time Comparison
To support the efficiency of our DI2SDiff++ compared to
DI2SDiff, we further report the average training time on
each dataset task. The results are summarized in Table 5.
The results show that DI2SDiff++ consistently requires less
training time across all tasks. In particular, when the training
data is limited to only 20%, DI2SDiff++ achieves better
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(a) Benefits to DANN (b) Benefits to mDSDI (c) Benefits to DDLearn

Fig. 10. Enhanced performance of (a) DANN [74], (b) mDSDI [20] and (c) DDLearn [14] with DI2SDiff’s data generation (+) and DI2SDiff++’s data
generation (++) on 20% and 100% training data in three datasets.

MLP CNN ResNet50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(a) DSADS
MLP CNN ResNet50

60

70

80

90

100
A

cc
ur

ac
y 

(%
)

(b) PAMAP2
MLP CNN ResNet50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(c) USC-HAD

Fig. 11. Results with different backbones on the three datasets.

TABLE 5
Training time comparison (minutes) on RTX A5000 under 20% and

100% data availability for three datasets.

Methods DSADS PAMAP2 USC-HAD Avg

20% 100% 20% 100% 20% 100%

DI2SDiff 15.9 38.5 25.5 45.2 37.9 58.3 36.9
DI2SDiff++ 10.8 21.2 17.5 28.9 18.5 43.6 23.4

performance with just a single data expansion (as shown
in Tables 1 and 2), whereas DI2SDiff tends to rely on larger
expansion ratios to enhance diversity, resulting in signifi-
cantly longer training times. Thus, DI2SDiff++ achieves up
to 37% faster training while maintaining higher accuracy,
demonstrating both its effectiveness and efficiency.

7.8 Deployment on Mobile Devices
We present a practical case study demonstrating the de-
ployment and evaluation of our HAR model, DI2SDiff++,
on real-world edge devices. The model was tested on two
platforms: a HUAWEI Mate 70 smartphone running Har-
monyOS 4.3 with 12GB of RAM and a Kirin 9010 processor,
and a laptop equipped with an Intel(R) Core(TM) i7-10750H
CPU @ 2.60GHz. We first trained a 3-layer CNN classifier us-
ing the DSADS dataset along with synthetic data generated
by DI2SDiff++. Following the deployment setting described
in [55], the resulting classifier is saved as a ‘.pt‘ file for real-
time activity recognition. This final model file loaded into
the application is lightweight, occupying only 0.1MB.

To evaluate real-world performance, we conducted a
case study involving three volunteers aged 25, 27, and 29.
Each participant performed four activities: sitting, walking,
walking in a parking lot, and sitting. Data was collected for 2
minutes per activity. The model provided predictions every
5 seconds. The activity recognition accuracies for the three

Fig. 12. Performance overhead analysis of DI2SDiff++ on edge devices
in terms of CPU usage (%) and memory usage (%) across both smart-
phone and laptop platforms.

participants were 72.5%, 74.4%, and 65.8%, respectively. We
observed that walking in a parking lot was particularly
challenging to distinguish for the oldest participant (age
29), which contributed to the lower performance. Moreover,
the fluctuations in model performance may be attributed
to real-world uncertainties, such as sudden car movements
or environmental changes like shifting weather conditions.
These findings highlight the inherent nature of real-world
time-series data: non-stationary and subject to evolving dis-
tributional shifts driven by subtle and often unpredictable
external factors. These results underscore the importance of
domain generalization research and highlight future oppor-
tunities for advancement within the HAR community.

Regarding latency, the average inference time per sample
on the smartphone was 2.7 ms, with a minimum of 0.5 ms
and a maximum of 9.8 ms. We also evaluated the model’s
inference efficiency on a more advanced edge device,i.e., the
laptop, using a batch size of 1. On the laptop, the average in-
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ference time per sample was 0.5 ms, with the minimum and
maximum being 0.1 ms and 2 ms, respectively. Moreover,
we conducted a detailed analysis of CPU usage (%) and
memory usage (%), as illustrated in Fig. 12. The on-device
inference overhead of our DI2SDiff++ model remains below
10% CPU and 1% memory usage, which falls well within the
acceptable range for modern mobile and laptop devices [54].
Overall, the overhead is acceptable when considering the
performance gains achieved by DI2SDiff++.

7.9 Extensibility and Varying backbones
We demonstrate the extensibility of DI2SDiff and
DI2SDiff++ in boosting the performance of existing DG
baselines. The results are shown in Fig. 10. By incorporating
our synthetic data into the training datasets of baselines, we
consistently observe performance improvements across the
board, including DANN [74], mDSDI [20]2, and DDLearn
[14]3. This demonstrates the versatility of integrating our
method to provide additional gains, making it a practical
solution for immediate application. The diverse synthetic
data of DI2SDiff and DI2SDiff++ is thus ready for use,
offering a straightforward way to bolster various baselines
without necessitating further data generation.

Fig. 11 presents the performance results of DDLearn,
DI2SDiff, and DI2SDiff++ across three different backbone
architectures (MLP, CNN, and ResNet) on the three datasets.
The results confirm that DI2SDiff++ not only generalizes
well across different datasets but also effectively boosts the
performance of diverse backbone architectures, including
lightweight models like MLP. This versatility underscores
its potential for deployment in real-world HAR applications
with varying computational and architectural constraints.

8 CONCLUSION

In this paper, we tackle the key issue of DG in cross-
person activity recognition, i.e., the limited diversity in
the source domain. We introduce a novel concept called
“domain padding” and propose DI2SDiff and DI2SDiff++
to realize this concept. Our approach generates highly di-
verse intra- and inter-domain data distributions by utilizing
random style fusion. Through extensive experimental analy-
ses, we demonstrate that our generated samples effectively
pad domain gaps. By leveraging these new samples, our
DI2SDiff and DI2SDiff++ outperform advanced DG meth-
ods in various HAR tasks. A notable advantage of our work
is its efficient generation of diverse data from a limited
number of labeled samples. This potential enables DI2SDiff
and DI2SDiff++ to provide data-driven solutions to various
models, thereby reducing the dependence on costly human
data collection.
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Boosting convnets for sensor-based activity recognition,” IMWUT,
vol. 7, no. 2, pp. 1–21, 2023.

[7] C. Jobanputra, J. Bavishi, and N. Doshi, “Human activity recog-
nition: A survey,” Procedia Computer Science, vol. 155, pp. 698–703,
2019.

[8] S. Ramasamy Ramamurthy and N. Roy, “Recent trends in machine
learning for human activity recognition—a survey,” Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4,
p. e1254, 2018.

[9] S. Xia, L. Chu, L. Pei, J. Yang, W. Yu, and R. C. Qiu, “Timestamp-
supervised wearable-based activity segmentation and recognition
with contrastive learning and order-preserving optimal trans-
port,” IEEE Transactions on Mobile Computing, 2024.

[10] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning
for sensor-based activity recognition: A survey,” Pattern recognition
letters, vol. 119, pp. 3–11, 2019.

[11] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, “Deep
learning for sensor-based human activity recognition: Overview,
challenges, and opportunities,” ACM Computing Surveys (CSUR),
vol. 54, no. 4, pp. 1–40, 2021.

[12] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen,
W. Zeng, and P. Yu, “Generalizing to unseen domains: A survey on
domain generalization,” IEEE Transactions on Knowledge and Data
Engineering, 2022.

[13] H. Qian, S. J. Pan, and C. Miao, “Latent independent excitation
for generalizable sensor-based cross-person activity recognition,”
in AAAI, vol. 35, no. 13, 2021, pp. 11 921–11 929.

[14] X. Qin, J. Wang, S. Ma, W. Lu, Y. Zhu, X. Xie, and
Y. Chen, “Generalizable low-resource activity recognition with
diverse and discriminative representation learning,” arXiv preprint
arXiv:2306.04641, 2023.

[15] K. Muandet, D. Balduzzi, and B. Schölkopf, “Domain generaliza-
tion via invariant feature representation,” in International conference
on machine learning. PMLR, 2013, pp. 10–18.

[16] S. Erfani, M. Baktashmotlagh, M. Moshtaghi, X. Nguyen,
C. Leckie, J. Bailey, and R. Kotagiri, “Robust domain generalisation
by enforcing distribution invariance,” in IJCAI-16. AAAI Press,
2016, pp. 1455–1461.

[17] F. Zhou, Z. Jiang, C. Shui, B. Wang, and B. Chaib-draa, “Domain
generalization with optimal transport and metric learning,” arXiv
preprint arXiv:2007.10573, vol. 2, 2020.

[18] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marc-
hand, “Domain-adversarial neural networks,” arXiv preprint
arXiv:1412.4446, 2014.

[19] Y.-F. Zhang, J. Wang, J. Liang, Z. Zhang, B. Yu, L. Wang, D. Tao,
and X. Xie, “Domain-specific risk minimization for domain gener-
alization,” in SIGKDD, 2023, pp. 3409–3421.

[20] M.-H. Bui, T. Tran, A. Tran, and D. Phung, “Exploiting domain-
specific features to enhance domain generalization,” NeurIPS,
vol. 34, pp. 21 189–21 201, 2021.

[21] K. Xu, M. Zhang, J. Li, S. S. Du, K.-i. Kawarabayashi, and
S. Jegelka, “How neural networks extrapolate: From feedforward
to graph neural networks,” arXiv preprint arXiv:2009.11848, 2020.

[22] Y. Wang, Y. Xu, J. Yang, Z. Chen, M. Wu, X. Li, and L. Xie, “Sen-
sor alignment for multivariate time-series unsupervised domain
adaptation,” in AAAI, vol. 37, no. 8, 2023, pp. 10 253–10 261.

[23] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using nonequilibrium thermody-
namics,” in International conference on machine learning. PMLR,
2015, pp. 2256–2265.



IEEE TRANSACTIONS ON MOBILE COMPUTING 17

[24] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” NeurIPS, vol. 33, pp. 6840–6851, 2020.

[25] E. Eldele, M. Ragab, Z. Chen, M. Wu, C. K. Kwoh, X. Li, and
C. Guan, “Time-series representation learning via temporal and
contextual contrasting,” in IJCAI. International Joint Conferences
on Artificial Intelligence Organization, 2021.

[26] J. Zhang, L. Feng, Z. Liu, Y. Wu, Y. He, Y. Dong, and D. Xu,
“Diverse intra-and inter-domain activity style fusion for cross-
person generalization in activity recognition,” arXiv preprint
arXiv:2406.04609, 2024.

[27] Y. Hao, R. Zheng, and B. Wang, “Invariant feature learning for
sensor-based human activity recognition,” IEEE Transactions on
Mobile Computing, vol. 21, no. 11, pp. 4013–4024, 2021.

[28] J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy,
“Deep convolutional neural networks on multichannel time series
for human activity recognition.” in IJCAI, vol. 15. Buenos Aires,
Argentina, 2015, pp. 3995–4001.

[29] W. Jiang and Z. Yin, “Human activity recognition using wearable
sensors by deep convolutional neural networks,” in MM, 2015, pp.
1307–1310.

[30] S. Zhang, Y. Li, S. Zhang, F. Shahabi, S. Xia, Y. Deng, and N. Alshu-
rafa, “Deep learning in human activity recognition with wearable
sensors: A review on advances,” Sensors, vol. 22, no. 4, p. 1476,
2022.

[31] H. Wu, Q. Huang, D. Wang, and L. Gao, “A cnn-svm combined
model for pattern recognition of knee motion using mechanomyo-
graphy signals,” Journal of Electromyography and Kinesiology, vol. 42,
pp. 136–142, 2018.

[32] S. Matsui, N. Inoue, Y. Akagi, G. Nagino, and K. Shinoda, “User
adaptation of convolutional neural network for human activity
recognition,” in 2017 25th European Signal Processing Conference
(EUSIPCO). IEEE, 2017, pp. 753–757.

[33] R. Gupta, I. S. Dhindsa, and R. Agarwal, “Continuous angular
position estimation of human ankle during unconstrained loco-
motion,” Biomedical Signal Processing and Control, vol. 60, p. 101968,
2020.

[34] J. Shi, D. Zuo, and Z. Zhang, “A gan-based data augmentation
method for human activity recognition via the caching ability,”
Internet technology letters, vol. 4, no. 5, p. e257, 2021.

[35] W. Seok, Y. Kim, and C. Park, “Pattern recognition of human arm
movement using deep reinforcement learning,” in ICOIN. IEEE,
2018, pp. 917–919.

[36] M. Qiao, S. Yan, X. Tang, and C. Xu, “Deep convolutional and
lstm recurrent neural networks for rolling bearing fault diagnosis
under strong noises and variable loads,” Ieee Access, vol. 8, pp.
66 257–66 269, 2020.

[37] S. K. Challa, A. Kumar, and V. B. Semwal, “A multibranch cnn-
bilstm model for human activity recognition using wearable sen-
sor data,” The Visual Computer, vol. 38, no. 12, pp. 4095–4109, 2022.

[38] X. Zhang, L. Yao, X. Wang, W. Zhang, S. Zhang, and Y. Liu,
“Know your mind: Adaptive cognitive activity recognition with
reinforced cnn,” in 2019 IEEE International Conference on Data
Mining (ICDM). IEEE, 2019, pp. 896–905.

[39] M. Ragab, Z. Chen, M. Wu, C. S. Foo, C. K. Kwoh, R. Yan, and
X. Li, “Contrastive adversarial domain adaptation for machine
remaining useful life prediction,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 8, pp. 5239–5249, 2020.

[40] M. Ghifary, W. B. Kleijn, M. Zhang, and D. Balduzzi, “Domain gen-
eralization for object recognition with multi-task autoencoders,” in
ICCV, 2015, pp. 2551–2559.

[41] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization
with adversarial feature learning,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2018, pp. 5400–5409.

[42] M. Ghifary, D. Balduzzi, W. B. Kleijn, and M. Zhang, “Scatter
component analysis: A unified framework for domain adaptation
and domain generalization,” IEEE transactions on pattern analysis
and machine intelligence, vol. 39, no. 7, pp. 1414–1430, 2016.

[43] H. Nam, H. Lee, J. Park, W. Yoon, and D. Yoo, “Reducing domain
gap by reducing style bias,” in CVPR, 2021, pp. 8690–8699.

[44] J. Huang, D. Guan, A. Xiao, and S. Lu, “Fsdr: Frequency space
domain randomization for domain generalization,” in CVPR, 2021,
pp. 6891–6902.

[45] X. Huang and S. Belongie, “Arbitrary style transfer in real-time
with adaptive instance normalization,” in ICCV, 2017, pp. 1501–
1510.

[46] S. Lee, H. Seong, S. Lee, and E. Kim, “Wildnet: Learning domain
generalized semantic segmentation from the wild,” in CVPR, 2022,
pp. 9936–9946.

[47] R. Gal, O. Patashnik, H. Maron, A. H. Bermano, G. Chechik, and
D. Cohen-Or, “Stylegan-nada: Clip-guided domain adaptation of
image generators,” ACM Transactions on Graphics (TOG), vol. 41,
no. 4, pp. 1–13, 2022.

[48] J. Cho, G. Nam, S. Kim, H. Yang, and S. Kwak, “Promptstyler:
Prompt-driven style generation for source-free domain general-
ization,” in ICCV, 2023, pp. 15 702–15 712.

[49] R. Gong, M. Danelljan, H. Sun, J. D. Mangas, and L. Van Gool,
“Prompting diffusion representations for cross-domain semantic
segmentation,” arXiv preprint arXiv:2307.02138, 2023.

[50] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in ICLR, 2018.

[51] G. Wilson, J. R. Doppa, and D. J. Cook, “Multi-source deep domain
adaptation with weak supervision for time-series sensor data,” in
SIGKDD, 2020, pp. 1768–1778.

[52] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[53] Z. Hong, Z. Li, S. Zhong, W. Lyu, H. Wang, Y. Ding, T. He, and
D. Zhang, “Crosshar: Generalizing cross-dataset human activity
recognition via hierarchical self-supervised pretraining,” IMWUT,
vol. 8, no. 2, pp. 1–26, 2024.

[54] M. Xue, Y. Zhu, W. Xie, Z. Wang, Y. Chen, K. Jiang, and Q. Zhang,
“Mobhar: Source-free knowledge transfer for human activity
recognition on mobile devices,” IMWUT, vol. 9, no. 1, pp. 1–24,
2025.

[55] G. Dai, H. Xu, H. Yoon, M. Li, R. Tan, and S.-J. Lee, “Contrastsense:
Domain-invariant contrastive learning for in-the-wild wearable
sensing,” IMWUT, vol. 8, no. 4, pp. 1–32, 2024.

[56] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and
L. Van Gool, “Repaint: Inpainting using denoising diffusion prob-
abilistic models,” in CVPR, 2022, pp. 11 461–11 471.

[57] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” arXiv
preprint arXiv:2207.12598, 2022.

[58] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,”
in CVPR, 2022, pp. 10 684–10 695.

[59] G. Tevet, S. Raab, B. Gordon, Y. Shafir, D. Cohen-Or, and
A. H. Bermano, “Human motion diffusion model,” arXiv preprint
arXiv:2209.14916, 2022.

[60] B. Huang, K. Zhang, J. Zhang, J. Ramsey, R. Sanchez-Romero,
C. Glymour, and B. Schölkopf, “Causal discovery from hetero-
geneous/nonstationary data,” The Journal of Machine Learning Re-
search, vol. 21, no. 1, pp. 3482–3534, 2020.

[61] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave:
A versatile diffusion model for audio synthesis,” arXiv preprint
arXiv:2009.09761, 2020.

[62] I. Nicholas, H. Kuo, F. Garcia, A. Sonnerborg, M. Bohm, R. Kaiser,
M. Zazzi, L. Jorm, and S. Barbieri, “Synthetic health-related longi-
tudinal data with mixed-type variables generated using diffusion
models,” in NeurIPS 2023 Workshop on Synthetic Data Generation
with Generative AI, 2023.

[63] Y. Yang, M. Jin, H. Wen, C. Zhang, Y. Liang, L. Ma, Y. Wang, C. Liu,
B. Yang, Z. Xu et al., “A survey on diffusion models for time series
and spatio-temporal data,” arXiv preprint arXiv:2404.18886, 2024.

[64] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang,
B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive
survey of methods and applications,” ACM Computing Surveys,
vol. 56, no. 4, pp. 1–39, 2023.

[65] T. T. Um, F. M. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche,
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