
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 1, JANUARY 2025 423

Learning Road Network Index Structure
for Efficient Map Matching

Zhidan Liu , Member, IEEE, Yingqian Zhou, Xiaosi Liu, Haodi Zhang , Member, IEEE, Yabo Dong ,
Dongming Lu, and Kaishun Wu , Fellow, IEEE

Abstract—Map matching aims to align GPS trajectories to their
actual travel routes on a road network, which is an essential pre-
processing task for most of trajectory-based applications. Many
map matching approaches utilize Hidden Markov Model (HMM)
as their backbones. Typically, HMM treats GPS samples of a
trajectory as observations and nearby road segments as hidden
states. During map matching, HMM determines candidate states
for each observation with a fixed searching range, and computes
the most likely travel route using the Viterbi algorithm. Although
HMM-based approaches can derive high matching accuracy, they
still suffer from high computation overheads. By inspecting the
HMM process, we find that the computation bottleneck mainly
comes from improper candidate sets, which contain many irrel-
evant candidates and incur unnecessary computations. In this
paper, we present LiMM – a learned road network index structure
for efficient map matching. LiMM improves existing HMM-based
approaches from two aspects. First, we propose a novel learned
index for road networks, which considers the characteristics of road
data. Second, we devise an adaptive searching range mechanism to
dynamically adjust the searching range for GPS samples based on
their locations. As a result, LiMM can provide refined candidate sets
for GPS samples and thus accelerate the map matching process. Ex-
tensive experiments are conducted with three large real-world GPS
trajectory datasets. The results demonstrate that LiMM significantly
reduces computation overheads by achieving an average speedup
of 11.7× than baseline methods, merely with a subtle accuracy
loss of 1.8%.

Index Terms—GPS Trajectory, hidden markov model, learned
index, map matching, road network.

Received 22 October 2023; revised 23 June 2024; accepted 19 October
2024. Date of publication 23 October 2024; date of current version 26 Novem-
ber 2024. This work was supported in part by the National Natural Science
Foundations of China under Grant 62172284 and Grant U2001207, in part
by Guangdong Basic and Applied Basic Research Foundation under Grant
2022A1515010155, in part by the Guangdong Provincial Key Lab of Integrated
Communication, Sensing and Computation for Ubiquitous Internet of Things
under Grant 2023B1212010007, in part by the Project of DEGP under Grant
2023KCXTD042 and Grant 2021ZDZX1068, and in part by Guangzhou Munici-
pal Science and Technology Project under Grant 2023A03J0011. Recommended
for acceptance by M. Zhang. (Corresponding author: Zhidan Liu.)

Zhidan Liu is with the INTR Thrust, System Hub, The Hong Kong University
of Science and Technology, Guangzhou 510000, China (e-mail: zhidanliu@
hkust-gz.edu.cn).

Yingqian Zhou, Xiaosi Liu, and Haodi Zhang are with the College of
Computer Science and Software Engineering, Shenzhen University, Shenzhen
518060, China (e-mail: zhouyingqing2020@email.szu.edu.cn; liuxiaosi2022@
email.szu.edu.cn; hdzhang@szu.edu.cn).

Yabo Dong and Dongming Lu are with the College of Computer Sci-
ence and Technology, Zhejiang University, Hangzhou 310058, China (e-mail:
dongyb@zju.edu.cn; ldm@zju.edu.cn).

Kaishun Wu is with the DSA Thrust and IoT Thrust, Information Hub, The
Hong Kong University of Science and Technology, Guangzhou 510000, China
(e-mail: wuks@hkust-gz.edu.cn).

Digital Object Identifier 10.1109/TKDE.2024.3485195

I. INTRODUCTION

W ITH the increasing popularization and application of
positioning technologies and devices, e.g., GPS sensors,

massive GPS trajectories have been collected. Due to the in-
trinsic inaccuracy of positioning systems, however, such raw
GPS trajectories need to be well pre-processed before being
used [63]. As one of the most important pre-processing tasks,
map matching aims to determine the actual travel route of a given
GPS trajectory by aligning the GPS location sequence with an
underlying road network. These matched trajectories then can
be safely exploited for many trajectory-based applications, such
as navigation [60], traffic sensing [34], traffic prediction [35],
digital map updating [6], and travel time prediction [57].

Tremendous map matching approaches have been pro-
posed [7], while many of them [8], [19], [23], [37], [41],
[49], [54] have been developed based on the Hidden Markov
Model (HMM), which is good at modeling the sequence of
GPS samples by incorporating additional features, e.g., road
connectivity and travel directions. In general, those approaches
regard GPS samples as observations and nearby road segments
as hidden states in HMM. Specifically, they determine candi-
date states for each observation by querying the road network
within a searching rage γ, and then compute the most likely
travel route by utilizing the Viterbi algorithm [41]. Although
HMM can derive high map matching accuracy [14], [45], it
incurs extremely huge computation overheads. For instance,
HMM has to involve about n× k2 computations of the short-
est paths [47], where n is the number of observations in a
trajectory and k is the average number of candidate states for
these observations.

Valuable efforts have been made to reduce inference time of
HMM-based map matching approaches by exploiting parallel
computing frameworks [3], [58] or some advanced deep learn-
ing models [26], [45], [47]. However, these approaches either
require expensive hardware resources, e.g., clustered machines,
or heavily depend on a large amount of well-labeled trajectory
data, since the deep learning models are usually data-hungry and
data-sensitive [14].

By inspecting the HMM process, we find the key to cut-
ting down computation overheads is to reduce the candidate
states for each observation. Nevertheless, existing HMM-based
approaches primarily rely on traditional index structures, e.g.,
R-tree [18], to index road network data, which may return many
irrelevant road segments and thus are inefficient. Additionally,

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0001-8470-7246
https://orcid.org/0000-0003-2356-5875
https://orcid.org/0000-0003-2216-0737
mailto:zhidanliu@hkust-gz.edu.cn
mailto:zhidanliu@hkust-gz.edu.cn
mailto:zhouyingqing2020@email.szu.edu.cn
mailto:liuxiaosi2022@email.szu.edu.cn
mailto:liuxiaosi2022@email.szu.edu.cn
mailto:hdzhang@szu.edu.cn
mailto:dongyb@zju.edu.cn
mailto:ldm@zju.edu.cn
mailto:wuks@hkust-gz.edu.cn

424 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 1, JANUARY 2025

these works adopt a fixed searching range γ to search candidate
states for all observations [41], [54]. In fact, GPS positioning
errors differ greatly across various areas of a city. Specifically,
GPS performs poorly in some urban canyons, while achieving
accurate positioning in other urban areas [52]. A fixed searching
range is thus less effective in practice.

To address these limitations, we present LiMM, a Learned
road network index structure for efficient Map Matching. LiMM
is compatible with existing HMM-based map matching ap-
proaches, and improves their computation efficiency while en-
suring the matching accuracy by providing refined candidate
states. We achieve this attractive target through two ingenious
designs. First, we propose a novel learned index structure that
is particularly tailored to road network data by considering the
characteristics of road segments. Specifically, we have devised
a scaling method, which partitions the road network into regular
hexagons and then maps road segment data into one-dimensional
keys given their geographical and directional information. We
sort these keys and then employ a hierarchy of simple machine
learning models to approximate their distribution. Based on
these learned index models, LiMM supports typical range queries
for the map matching task.

Second, we further enhance LiMM’s query performance for
map matching with a reinforcement learning (RL) [27] based
adaptive searching range mechanism. Rather than adopting a
fixed γ for all samples, we separately train a RL model for
each hexagon by leveraging matched trajectory samples. By
interacting with the learned road network index for training
samples, RL models record the query experiences of various
γ values, which are measured with a reward function, and can
pick the suitable searching range γ for each incoming query. As a
result, range query with adaptive γ can effectively filter out irrel-
evant candidates. Furthermore, we propose a coverage-oriented
trajectory selection method, which heuristically chooses a subset
of raw trajectories for map matching, to quickly initialize the RL
models for all hexagons.

Based on the above designs, LiMM can effectively support
various HMM-based map matching approaches. Given a GPS
sample, LiMM chooses an appropriate searching range γ for
the range query, and returns a refined candidate set to conduct
efficient and accurate map matching.

We summarize our major contributions as follows.
� We have identified the computation bottleneck of HMM-

based map matching approaches, and present LiMM to
address their limitations with improved computation ef-
ficiency and ensured matching accuracy.

� We devise a novel learned index structure particularly for
the road network data by considering the characteristics of
road segments.

� We propose an adaptive searching range mechanism for
HMM-based map matching, which can determine the suit-
able searching ranges for GPS samples based on their
locations to derive refined candidate sets.

� We conduct extensive experiments using three large real-
world trajectory datasets. Experimental results demon-
strate that LiMM significantly outperforms the baseline
methods in terms of matching time with an average

speedup of 11.7×, yet with a subtle accuracy loss of only
1.8%.1

The rest of this paper is organized as follows. Section II intro-
duces the preliminary of map matching and discusses the limi-
tations of existing approaches. Section III presents the overview
of LiMM, followed by detailed designs of learned road network
index and adaptive searching range mechanism in Section IV
and Section V, respectively. We evaluate LiMM in Section VI,
and review the related works in Section VII. Finally, Section VIII
concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce basic concepts and define
the map matching problem. Then, we describe the general
process of Hidden Markov Model (HMM) based map matching
approaches, and further analyze their limitations.

A. Problem Definition

Definition 1. (GPS Sample): A GPS sample gi is denoted by a
triplet < t, lat, lng >, indicating that the object of interest was
located at latitude lat and longitude lng at timestamp t.

Definition 2. (GPS Trajectory): A GPS trajectory Tj is
a sequence of time-ordered GPS samples, denoted by Tj =
{g1, g2, . . . , g|Tj |}, where |Tj | indicates the trajectory length.

Definition 3. (Road Network): A road network (also known
as road map) is modeled as a directed graph G = {V, E}, where
each vertex v ∈ V represents an intersection or a road end, and
each edge e ∈ E represents a directed road segment.

Definition 4. (Travel Route): A travel routeRj is a sequence
of connected edges on graph G, i.e., Rj = {e1, e2, . . . , e|Rj |},
where |Rj | is the number of edges on routeRj . Noting that the
end point of ei is the start point of ei+1.

Due to the measurement errors of GPS devices, GPS position-
ing is not precise [52]. Thus, we have to perform a procedure
of map matching to pre-process GPS trajectories for supporting
various trajectory-based applications [63].

Definition 5. (Map Matching): Given a road network G and
a GPS trajectory Tj , map matching aims to determine the most
likely travel route Rj that represents the sequence of road
segments traveled by trajectory Tj .

Fig. 1 demonstrates a map matching example, where the input
GPS trajectory T 2 is transformed to a travel route.

B. HMM-Based Map Matching

Although there exist many map matching approaches [7],
HMM is one of the most widely used map matching models.
Because HMM is not only good at modeling the sequence of GPS
samples, but also flexible and robust to incorporate auxiliary
data, including the road network topology and user’s mobility
information, e.g., travel speed and direction.

1LiMM is open-sourced at https://github.com/SZU-BDUC/LiMM. We hope
that LiMM can benefit the community and serve as an inspiration for future
research endeavors.

2We will omit the subscript if the context is clear.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/SZU-BDUC/LiMM

LIU et al.: LEARNING ROAD NETWORK INDEX STRUCTURE FOR EFFICIENT MAP MATCHING 425

Fig. 1. An example of HMM-based map matching, where a GPS trajectory
T = {g1, g2, g3, g4} is map matched to recover its actual travel route (i.e., the
red line) on the road network.

HMM treats each GPS sample of a trajectory as the obser-
vation, and the object’s actual location on the road, which is
to be inferred, as the hidden state. Due to GPS measurement
errors, all road segments near an observation could potentially
be the object’s actual located road (state), each of which has a
probability (i.e., emission probability). Along the timestamps in
a trajectory, the transition between two consecutive observations
is conducted by the travel probability (i.e., transition probability)
between their candidate states. The objective is thus to find the
optimal path that can properly connect one candidate state in
every observation. The object’s actual travel route can be inferred
by the Viterbi algorithm by leveraging the idea of dynamic pro-
gramming. In general, HMM-based map matching approaches
transform a trajectory to its actual travel route through three
stages, i.e., candidate preparation, transition calculation, and
Viterbi inference. Next, we will follow the typical setting in
HMM-based map matching [41] to explain each stage.

(1) Candidate preparation: To tolerate GPS positioning er-
rors, HMM considers all road segments that are within or inter-
sected with a searching circle, centered at the observationgt ∈ T
with a radius of γ, as the candidates. Specifically, HMM regards
the projection zit of gt to each candidate road segment ei as a
hidden state, and all such hidden states form the candidate setCt

for gt. For example, we can get a candidate set C1 = {z11 , z21}
for observation g1 in Fig. 1 by conducting a range query on the
road network.

By modeling GPS noises as zero-mean Gaussian distribution,
the emission probability of candidate state zit ∈ Ct is defined as

p(gt|zit) =
1√
2πσz

e
0.5

(
dist(zi

t
,gt)

σz

)2

, (1)

where σz is the standard deviation of GPS measurement errors,
and dist(zit, gt) returns the distance between observation gt and
candidate state zit. As a result, these candidate states closer to the
observation will have larger emission probabilities than those far
away.

(2) Transition calculation: For any two consecutive observa-
tions, there may exist many combinations for their candidate
states. By assuming that the road network distance between
two hidden states should be similar to the geographic distance
between their observations, the transition probability between
state zit−1 of observation gt−1 and state zjt of observation gt is

Fig. 2. Viterbi inference procedure for trajectory T shown in Fig. 1.

calculated as

p(dt) =
1

η
e
−dt
η , (2)

dt =
∣∣∣dist(gt−1, gt)− route

(
zit−1, z

j
t

)∣∣∣ , (3)

where dist(gt−1, gt) calculates the geographic distance between
observation gt−1 and gt, while route(zit−1, z

j
t) computes the

road network distance between the two candidate states. Pa-
rameter η describes the difference between route distances and
geographic distances, and can be estimated from real trajectory
dataset [41]. In practice, Dijkstra or A∗ algorithm can be used
to compute the shortest path between two locations [54].

(3) Viterbi inference: Given candidate states for all obser-
vations in a trajectory T , along with their associated emission
probabilities and transition probabilities, the Viterbi algorithm
makes use of dynamic programming to infer T ’s actual travel
route, which visits a sequence of candidate states linked by road
segments. The route having the highest accumulated product
value of emission probabilities and transition probabilities is
finally identified as the optimal travel route for T .

Fig. 2 shows the hidden states for all the four observations
in trajectory T = {g1, g2, g3, g4}, and the Viterbi inference pro-
cedure between these states. The red arrows represent the final
inference result, which indicates the actual travel route is the
most likely to be the one sequentially linking candidate state z11 ,
z22 , z33 , and z14 .

Many HMM-based map matching approaches have already
been proposed to pre-process GPS trajectories [7], [25]. These
works usually follow the same definition of emission probability,
i.e., (1), but mainly differ in the definition of transition prob-
ability by considering different travel preferences, e.g., travel
speeds [21], moving directions [8], and route choices [59].
They incorporate such auxiliary information to optimize HMM
modeling, yet without changing underlying backbone.

C. Motivation: Road Network Index Matters

Despite having gained a great success on obtaining accu-
rate map matching results, HMM severely suffers from huge
computation overheads, which limits its adoptions in some
time-sensitive applications [17]. Formally, given a trajectory T
consisting of n GPS samples, the computation complexity of
HMM-based map matching could be O(n · k2 · τ), where k is

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

426 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 1, JANUARY 2025

Fig. 3. Visualization of candidate road segments retrieved by different index
structures, which search candidates using the blue circle or rectangle.

the average number of candidate states for GPS samples and τ is
the computation cost for transition calculation between any two
consecutive candidate states. In particular, τ is dominated by
the shortest path computation that would be a huge cost over a
large-scale road network graph G. Therefore, HMM-based map
matching approaches have to conduct n · k2 times of shortest
path computation for trajectory T , resulting in a significant
response delay.

By analyzing the HMM-based map matching procedure, we
find that the number k of candidate states is highly relevant to
the computation cost. Existing HMM-based approaches usually
build an index structure, e.g., R-tree [4] or Quad-tree [15], to
organize road network graph G, and perform a range search
over the pre-built index with a predefined parameter γ to re-
trieve candidate states for each GPS sample. Therefore, we can
identify two factors in determiningk, namely index structure and
searching range γ. We conduct experiments to investigate their
influences by using a representative HMM-based map matching
approach [41]. More details about the experimental settings can
be found in Section VI-A.

Impact of index structure: We organize the road network
graph G by using various index structures, including NoIndex,
R-tree [18], Quad-tree [15], and LISA [30]. Specifically, NoIndex
represents the range searches over the road network G without
index structure, and LISA is an emerging learned index structure
that uses machine learning models to generate an optimized data
layout and provides efficient search for spatial datasets [30]. In
this experiment, we fix the searching range γ = 50m for all the
index structures.

For each index structure, we perform candidate searching for
2000 GPS trajectories collected in Porto city, and report the
statistics. The average numbers of candidate states retrieved
by NoIndex, R-tree, Quad-tree, and LISA are 16, 20, 20, and
12, respectively. We find that R-tree and Quad-tree generally
obtain more candidates than NoIndex, while LISA has the fewest
candidates. A road segment is usually represented as a pair of
start and end vertices, and traditional R-tree and Quad-tree index
road segments using rectangles, e.g., the minimum bounding
rectangles (MBRs). However, rectangles are redundant in the
spatial space, and they inevitably return irrelevant candidate road
segments.

To better understand the performance of these indexes, we
visualize the query results of NoIndex, R-tree, Quad-tree, and
LISA in Fig. 3 for the same GPS sample. We find that these in-
dexes have returned different candidate sets. Specifically, R-tree

Fig. 4. Impact of searching range γ on map matching performance.

and Quad-tree return the same candidates, some of which are
irrelevant, due to the spatial redundancy of rectangles. On the
contrary, LISA only returns road segments that have both end-
points within the searching circle, and thus may miss the “right”
road segment. Compared to traditional indexing techniques,
learned index, e.g., LISA [30], is storage-efficient and speedy in
query processing [38]. However, existing learned index methods
are not specially designed for the road network data, and cannot
get the accurate query results.

Impact of searching range γ: In addition to the index struc-
tures, searching range γ can also affect candidate state query.
Taking R-tree as the index structure, we conduct experiments
using 2000 GPS trajectories from Porto city to examine the
impact of γ by varying its values from 10 m to 100 m. Fig. 4
shows the experimental results. When γ is small, the candidate
set is small and may miss the “right” road segment, resulting in
low matching accuracy. When searching candidate states with a
larger γ, we obtain more candidates that will include the correct
one with a high probability. The larger γ can help to increase
map matching accuracy, while more candidates also incur longer
matching time, as shown in Fig. 4.

Existing map matching approaches determine the searching
range γ by analyzing the positioning errors of massive trajecto-
ries [41], [47], and adopt a fixed γ to retrieve candidate states
for all samples. However, GPS positioning performance varies
in different areas, leading to distinct GPS errors. In general, GPS
could work well in most urban areas, but has poor positioning
performance in some places, e.g., urban canyons. For example,
by analyzing the trajectory data of GPS-equipped buses, a recent
study [36] reports that the average GPS error is 9.1 m in urban
areas, while the error could reach 50 m in urban canyons. To
ensure the map matching accuracy, existing approaches typically
use a conservative searching range, e.g., γ = 50m, and as a
result, they get many irrelevant candidates for samples that
originally have small positioning errors.

Takeaways: Existing HMM-based approaches severely suffer
from huge computation overheads, and our experiments validate
that their computation inefficiency mainly stems from inappro-
priate candidate states, due to inefficient index structures and
the conservative searching range. These irrelevant candidate
states will incur substantial unnecessary computations, and thus
significantly increase the matching time.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: LEARNING ROAD NETWORK INDEX STRUCTURE FOR EFFICIENT MAP MATCHING 427

Fig. 5. Framework of LiMM.

In response, we present LiMM, a solution with (i) a novel
learned road network index structure, which is tailored for
road network data for fast map matching; and (ii) an adaptive
searching range mechanism that can adjust γ across different
areas based on GPS error distribution. Based on the two key
designs, LiMM can provide refined candidate states for existing
HMM-based approaches and greatly improve their computation
efficiency.

III. OVERVIEW OF LiMM

Architecture: Fig. 5 illustrates the framework of LiMM, which
consists of two key modules, i.e., learned road network index
and adaptive search range. At the high-level, LiMM takes road
network graph G and GPS trajectories as input and enhances
existing HMM-based map matching approaches to process each
trajectory in an accurate and efficient way.
� The learned road network index module (Section IV) aims

to index road network data and retrieve candidate states
for each GPS sample. This module represents each road
segment e ∈ E as unique and sortable keys through a
novel scaling method by considering both geographical
and direction information of e. Then, LiMM builds a set of
machine learning models to approximate the order of these
scaled keys. In addition, query processor of this module
can conduct the range query, given a GPS sample gi and a
searching range γ, on the learned models, and return a key
setCi to HMM-based map matching approaches as refined
candidate states.

� The adaptive searching range module (Section V) learns
appropriate searching ranges for different locations accord-
ing to their GPS error distribution by analyzing the already
matched GPS trajectories. To speedup the learning, LiMM
carefully selects a subset of GPS trajectories that can cover
as many road segments as possible for the initial map
matching, and then exploits the matched trajectory dataset
to train a reinforcement learning model via Q-learning.
The learned searching ranges are stored in Q-tables as
the experiences for future uses. Once a GPS sample gi
is coming, this module picks up a searching range γ given
gi’s location and sends the γ value to the learned road net-
work index module for range query execution. Noting that
these experiences can be continuously updated by learning
from newly matched trajectories. Therefore, the impact of

Fig. 6. Illustration of learned index models for the road network.

GPS error variations due to environmental changes, e.g.,
building demolitions, can be eliminated.

Workflow: Assuming that both learned index models and
Q-table experiences have been successfully initialized, LiMM-
enhanced map matching works as follows. Given a GPS tra-
jectory Tj = {g1, g2, . . . , g|Tj |}, each GPS sample gi ∈ Tj is
sent to the adaptive searching range module to obtain a suitable
parameter γ. Using gi and γ, the query processor retrieves a
set Ci of keys as the query result from the learned models. The
HMM-based map matching approach regards Ci as candidate
states for gi, and derives candidate states for other samples
in Tj following the same operations. After all candidates have
been prepared, the map matching approach executes transition
calculation and Viterbi inference, and recovers the actual travel
routeRj . At last, Tj andRj are saved in the database and used
to update the experiences via reinforcement learning later.

IV. LEARNED ROAD NETWORK INDEX

As shown in Fig. 5, the learned road network index module
of LiMM consists of three components, i.e., road segment repre-
sentation, learned models, and query processor.

Furthermore, as illustrated in Fig. 6, we present the process by
which LiMM represents road segments as keys and employs ma-
chine learning models to approximate the distribution of sorted
keys. LiMM conducts a range query on the learned index models
when given a GPS sample and a searching range. The outcome
of this range query is a set of keys representing candidate road
segments for the given sample in map matching tasks.

A. Road Segment Representation

One important step of learned index is to transform multi-
dimensional data, where road segments can be represented as
four-dimensional data with the coordinates of start and end
vertices, into one-dimensional keys, which can be easily sorted
and approximated. To this end, a scaling method is required
to group these multi-dimensional data points according to their
distribution and project them into one-dimensional keys. The
derived keys should preserve the proximity of road segments,
i.e., spatially adjacent road segments have similar keys, and more
importantly each key corresponds to one and the only one road
segment.

Inspired by the idea of iDistance index [24], we pro-
pose a novel scaling method that can assign one-dimensional
keys to road segments by leveraging their geographical and
directional information. Specifically, iDistance index is a

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

428 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 1, JANUARY 2025

well-known reference-based scaling method, which maps one
multi-dimensional data pointp into a one-dimensionalkey based
on key = c× i+ dist(oi, p), where oi is the closest reference
point to p and i is the reference index, c is a constant parameter
to partition the multi-dimensional data points into predefined
ranges, and dist(oi, p) calculates the distance between reference
oi and p. In LiMM, we extend the idea of iDistance index by
considering the characteristics of road segments and mapping
them to their keys through the following two operations.

(1) Determining references: To determine a set of suitable
reference points for the road network G, we partition G using
regular hexagons with a parameterized side length L. Compared
to circles or grids, regular hexagon can be easily operated, and
meanwhile it is the closest geometry to a circle. In addition, the
distance between the centroid of a hexagon and any data point
falling within the hexagon can be well bounded by parameter
L. The centroid of each hexagon thus serves as the reference for
neighboring data points. To distinguish these reference points,
we regard the central hexagon of graphG as the origin, and assign
hexagon IDs in a spiral pattern. The i-th hexagon is denoted by
Hi, and its centroid is treated as reference point oi.

As road segments are not evenly distributed in a city, some
hexagons may contain significantly more road segments than
others. To guarantee that we can obtain distinguishable keys for
all road segments, if hexagonHi covers too many road segments,
e.g.,≥ λ, it will be further divided into seven sub-hexagons with
side length as L√

7
. The sub-hexagons are assigned IDs based on

index i. Specifically, the central sub-hexagon is labeled as i.0,
while other sub-hexagons are spirally assigned IDs from i.1 to
i.6. The left part of Fig. 6 shows how we divide a hexagon
and re-number these sub-hexagons. Moreover, each hexagon is
divided into six blocks, each of which corresponds to different
directions with respect to the hexagon’s centroid. The blocks
are numbered spirally from B0 to B5, as shown in Fig. 6. By
doing this, a road segment can be located more precisely by both
hexagon and block.

(2) Assigning keys: Using the hierarchical hexagons and the
reference points, any road segment e ∈ E can be coarsely de-
scribed by three parts: hexagon Hi, direction block Bj of Hi,
and distance to centroid oi of Hi. However, a road segment
may pass through more than one block of a hexagon or even
several hexagons, leading to multiple keys for one road segment.
To compute all keys for road segment e, we complete the key
assignments as following steps:

1© In addition to the start and end vertices of road segment
e, we generate b virtual points by sampling along e, such that
these virtual points can equally divide segment e. In practice,
it is extremely rare for two road segments to completely over-
lap. Therefore, aside from the start and end vertices, any two
road segments are unlikely to share common virtual points.
To mitigate the issue of common points like the start or end
vertex, we associate the start vertex only with its corresponding
road segment e. Consequently, the b+ 1 points form a point set
Pe = {pu|u = 1, 2, . . . , b+ 1} for road segment e.

2© For each point pu ∈ Pe, we find the closest reference point
oi to pu, and thus determine its locating hexagon Hi. Noting
that Hi could be a sub-hexagon. Regarding true north as the

zero-degree direction, we calculate a direction θu from pu to
oi, and determine the block index as Bj = � θuω �, where ω is a
predefined parameter. For each point pu, we thus obtain a triplet
< pu, Hi, Bj >.

3© We classify all triplets into groups, where each group
shares the sameHi andBj . For each group, we find the minimum
distance, denoted by dist(oi, p), between each point p of this
triplet group and reference oi. We can then compute a key for
this triplet group as

keye = c1 × i+ c2 ×Bj + c3 × �dist (oi, p)� , (4)

where c1, c2, and c3 are parameters that serve to partition data
points into predefined ranges, stretching the ranges differently
based on their values. By calculating a key for each triplet group,
we thus derive a set of keys for e. Different from previous
learned index techniques [38], we generate multiple keys for
each road segment. This is because each road segment consists
of numerous points, and we do not want to miss any candidate
road segments when querying the index for each GPS sample.

The appropriate settings for parameters c1, c2, and c3 are
contingent upon the distribution of road segments. These pa-
rameters are crucial for generating keys without false positives,
which are caused by mapping road segments far from each other
to the same key. In principle, by properly setting the scaling
parameter c1 and c2, we can ensure that road segments falling
into different hexagons and blocks have keys in distinct ranges.
Similarly, with appropriate setting of parameter c3, we can
distinguish the keys of neighboring points belonging to different
road segments. Since we have associated the start vertex with its
corresponding road segment, any two road segments rarely have
common points, ensuring that the key generated by (4) uniquely
corresponds to one and only one road segment.

B. Learned Models

Once the scaling keys for all road segments are obtained,
we sort these keys and then build learned index models to
approximate the distribution of these sorted keys.

Structure: Several learned index structures are available in
the literature [38], while we utilize the popular recursive model
index (RMI) structure [28] to index road segment keys, due to
its simplicity and efficiency. Rather than building one single
model, RMI builds a hierarchy of models, which searches the
position of a given key in multiple stages. Given an input key, the
model at each stage provides a prediction for picking a model
of the next stage, or the position of the key when the final stage
is reached. The multi-stage models approximate the cumulative
distribution function (CDF) of a sorted array, modeled as y =
F(x)×N , where x is the lookup key, N is the number of keys,
F(·) is the CDF approximator that estimates the proportion of
keys less than the particular lookup key x, and y is the estimated
position. While imperfect, RMI can guarantee that the lookup
key is within the proximity of predicted position y, i.e., [y −
δ, y + δ] with bounded error δ. An advantage of learned index
is that it will never produce an incorrect search bound [38].

We realize the learned road network index using RMI, as
illustrated in Fig. 7, which is a three-stage model in accordance

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: LEARNING ROAD NETWORK INDEX STRUCTURE FOR EFFICIENT MAP MATCHING 429

Fig. 7. A hierarchy of models for indexing road segment keys.

with road network partitions. The CDF approximator for road
segment keys and their positions is composed of a single stage-
one model f1, a number of stage-two and stage-three models.
Intuitively, we exploit the stage-one model to predict which
hexagon the input key belongs to, and utilize each stage-two
model f i

2 to approximate the CDF of keys within a hexagon.
If a hexagon has been divided into sub-hexagons, the RMI
model will further make the corresponding stage-two model
to predict which sub-hexagon the input key belongs to, and
key/position pairs of each sub-hexagon will be modeled by a
stage-three model f j

3 . Therefore, the top stage model provides a
rough position of the lookup key, while the bottom stage model
improves the prediction. As a position y is predicted with a
certain error δ that could be known when training the model, we
search for the correct position within error bound [y − δ, y + δ].
Since keys are sorted in an ascending order, binary search can
be adopted to speed up the searching.

Training: We implement the model in each stage as a linear
regression model. Despite its simplicity, the linear regression
models are sufficient to approximate a subset of the given
key/position dataset, leading to accurate and fast searching. Once
we obtain the keys for road segments, we sort and store them
in the memory as <key, position> pairs, which are used as a
dataset for index model training. Formally, let (x, y) ∈ D be the
set of key/position pairs in the dataset, we train the RMI model
by adjusting the parameters in each stage model, i.e., f1, f i

2, and
f j
3 , to minimize the loss:∑

(x,y)∈D
(F(x)− y)2 . (5)

We train the RMI model in a top-down manner. Specifically,
we first train the stage-one model, and fine-tune the predictions
by training stage-two models, followed by training over stage-
three models if necessary. We thus iteratively train each stage
model to build the complete RMI model.

Extensibility: While the road network in a developed city is
relatively static with rare constructions or removals of road seg-
ments, the RMI model is still extensible in inserting or deleting
key/position pairs due to possible road changes. As suggested
by [12], we should periodically create additional gaps in the
key array to keep a sufficient number of gaps for supporting
fast insertions. In general, the insertion or deleting operations
requireO(N + κ) time, where N is the size of dataset D and κ
is the number of road segment keys to be inserted or deleted.

C. Query Processor

For the map matching task, we mainly concern range query
on the learned index. Formally, given a GPS sample g and a
searching range γ, the query processor is expected to return a set
of road segment keys, where the geographical distance between
each found road segment and g is no more thanγ.LiMMprocesses
such a range query in three steps:

1© We identify the hexagons (or sub-hexagons) set Hg that
overlaps with the searching circle centered at g with a radius
of γ. To this end, we compute the distance between each ref-
erence point oi and g, denoted by dgo, and add the associated
hexagon (or sub-hexagon) into Hg if dgo < dedge + γ, where

dedge =
√
3
2 L indicates the distance from centroid oi to any side

of hexagon Hi.
2© For the overlapping area associated with hexagon Hi ∈

Hg , we compute the shortest distance dmin and the longest
distance dmax from reference point oi of Hi to the area. Specif-
ically, if dgo ≤ γ, the shortest distance dmin = 0 because the
circle’s center g is within the hexagon’s range; Otherwise,
dmin = dgo − γ. Therefore, we have the following formula for
the shortest distance calculation:

dmin =

{
0, if 0 ≤ dgo ≤ γ;

dgo − γ, if γ < dgo < dedge + γ.
(6)

Similarly, we have the following formula for the calculation of
longest distance dmax through analysis of geometrical relation
between hexagon Hi and the searching circle:

dmax =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dgo + γ, if dgo + γ ≤ dedge;

dedge, if dgo + γ > dedge and dgo ≤ dedge;

dgo + γ, if dgo > dedge and dgo + γ ≤ L;

L, if dgo > dedge and dgo + γ > L.
(7)

Additionally, by leveraging the reference point oi and the
uppermost and lowermost points of the overlapping area, we
can derive the minimum block index Bmin and maximum block
index Bmax. According to the key assignment scheme in (4), we
estimate the low bound key keyl and upper bound key keyu for
this overlapping area using (8) and (9), respectively.

keyl = c1 × i+ c2 ×Bmin + c3 × dmin (8)

keyu = c1 × i+ c2 ×Bmax + c3 × dmax (9)

We then separately input keyl and keyu into the learned index
models, and obtain the position searching bound [yl − δl, yl +
δl] and [yu − δu, yu + δu] forkeyl andkeyu, respectively, where
yl and yu are the predicted positions of keyl and keyu, respec-
tively, and δl and δu are the corresponding error bounds. At
last, we scan the two searching bounds to retrieve the keys of
candidate road segments in this overlapping area.

3©We repeat step 2© for all hexagons in Hg , and merge these
derived key sets to form the final query resultKg , which includes
all candidate road segments for sample g.

As one road segment may have multiple keys, we map the
keys in Kg back to their corresponding road segments, which

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

430 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 1, JANUARY 2025

together form the candidate state set Cg of sample g for the map
matching operations, as shown in Fig. 5.

V. ADAPTIVE SEARCHING RANGE

Rather than adopting a fixed searching range γ for candidate
preparation, LiMM uses an adaptive γ, which can vary across
different areas according to the GPS positioning errors.

A. Searching Range Determination Modeling

A straightforward way to finding suitable γ is to treat the
average GPS error of trajectory samples collected within each
hexagonHi as its searching range. However, this approach omits
the road network index, and thus may produce inappropriate
query results, e.g., missing the “right” candidate or returning
too many irrelevant candidates.

To determine the suitable searching range γ for hexagon Hi,
we have to extensively query the road network index with differ-
ent γ values for a given GPS sample and examine the candidate
set. The best γ value for each hexagon Hi should find the
“right” candidate road segment while minimizing the candidate
sets for most GPS samples located within Hi. To this end, we
model the searching range determination for hexagon Hi as a
Markov Decision Process (MDP) problem, where road network
index is viewed as the environment and a given map matching
algorithm is the agent. Specifically, our MDP is formally defined
as follows:
� State s: We treat each possible searching range value as

a state. Considering the typical GPS errors in an urban
city, we set the maximum searching range value as γmax =
100m [52], and discrete the possible values with a gap of
Δ = 5 meters. Therefore, we have in total 20 states, i.e.,
S = [5, 10, 15, . . . , 95, 100].

� Action a: Given current state s, the agent may have at most
three possible actions to adjust the searching range. Specif-
ically, a = 1 indicates to increase s byΔ, a = −1means to
decrease s byΔ, while a = 0will keep s unaltered. Noting
that, state s = 5 has two actions only, i.e., a = 1 or 0, while
state s = 100 also has two actions as a = −1 or 0.

� Reward r: As the feedback from the environment, a reward
r is calculated to evaluate the action given current state. In
our problem setup, for a given GPS sample g we prefer
the state s that can retrieve a refined candidate state set Cg

over the road network index. In particular, the refined setCg

must contain the “right” candidate state for g. Therefore,
we define the reward function as follows:

r =
φ(Cs′

g , g)

|Cs′
g |

, (10)

where s′ is the next state after applying an action on state s,
|Cs′

g | is the size of candidate set for GPS sample g given the
searching range s′. In addition, φ(Cs′

g , g) indicates whether
set Cs′

g contains the “right” candidate state for g. If it does,
φ(Cs′

g , g) = 1; otherwise φ(Cs′
g , g) = 0.

Offline training: The goal of the MDP is to find the optimal
strategy, which guides the decision-making at each state based

Algorithm 1: Q -Learning for Hexagon Hi.

on estimating the state-action value function (i.e., Q-function)
of the agent. Based on the above MDP modeling, we exploit the
reinforcement learning (RL) algorithm [27] to learn the suitable
searching ranges for all hexagons. To that end, LiMMwill employ
tabular Q-learning to approximate the Q-function. Q-learning is
an off-policy, value-based RL algorithm to learn the value of an
action in a particular state, and can produce a state-action value
table (i.e., Q-table) to indicate the best action for a particular
state. Given the input training dataset, Q-learning dynamically
updates the Q-table through exploitation and exploration with
the ε-greedy policy [56].

To speedup the model training, we directly take some well
map-matched GPS trajectories as the input. More specifically,
we make use of GPS samples and their matched road segments
to calculate the rewards, as expressed in (10). By classifying
those GPS samples into different hexagons based on samples’
locations, we then exploit GPS samples of each hexagon Hi,
denoted by GHi

, to separately learn a Q-table for hexagon Hi.
Algorithm 1 presents the pseudocode of Q-learning frame-

work of adaptive searching range determination for hexagon
Hi. The algorithm takes samples GHi

as the input, and outputs
the learned Q-table for hexagon Hi. At first, the values in
Q-table are initialized as zeros. Then, it continuously updates
the Q-table for a predefined episodes based on the training data.
In each episode, the algorithm initializes state s as the maximum
searching range, i.e., smax (line 3), and then uses all samples to
dynamically update the state-action value function (line 4-10).
At each step, it retrieves a GPS sample g, and chooses an action
a with ε-greedy policy. By interacting with the road network
index, the algorithms computes immediate reward using (10).
The total Q-value is updated as:

Q(s, a)← Q(s, a) + α[r + βmax
a′

Q(s′, a′)−Q(s, a)], (11)

where α is the learning rate and β is the discount factor.
Online use: Once the Q-table for hexagon Hi has been

learned, we can get the appropriate searching range γ for GPS
samples that fall within Hi to search their candidate states over
the road network index. Specifically, according to the historical
experiences stored in the Q-table, we take γ as the state owning

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: LEARNING ROAD NETWORK INDEX STRUCTURE FOR EFFICIENT MAP MATCHING 431

Algorithm 2: Heuristic Trajectory Selection Method.

the highest Q-value, i.e.,

γ = argmax
s∗∈S

Q(s∗, a). (12)

In principle, such a searching range γ can return refined can-
didate sets for most GPS samples. While for few special cases
that miss the “right” candidate road segment, we can gradually
increase γ by Δ for the next candidate searching.

B. Coverage-Oriented Training Trajectory Selection

Since the RL model needs map matched GPS samples for
computing Q-tables for all hexagons, it is necessary to carefully
select a subset of trajectories for the initial map matching. These
matched trajectories then can serve as the bootstrap to quickly
initialize the Q-tables, which can speedup the consequent map
matching tasks. Moreover, the follow-up map matched trajectory
data would be fed into the RL model to further update the
experiences in Q-tables.

There are two requirements for the selection of raw tra-
jectories. First, we would like to leverage as few trajectory
data as possible to learn the experiences, due to the expensive
computation overheads of map matching. Second, GPS samples
of those selected trajectories should fully cover all hexagons and
be sufficient for each hexagon to learn its Q-table. To this end, we
propose a coverage-oriented trajectory selection method, which
selects training trajectories in a heuristic manner.

Given the budget B of raw GPS trajectories to select, our
method iteratively selects trajectories that can maximize the
hexagon coverage. For each trajectory Tj in candidate set T,
we transform its GPS samples into a sequence of hexagons,
which is denoted by Tj .lh, according to the samples’ locations.
In addition, for each hexagon Hi, we also maintain a list to
record the trajectories that pass through hexagon Hi, which is
denoted byHi.lt. Based on these information, we run Algorithm
2 to select B trajectories from T. We iteratively select GPS
trajectories to cover all hexagons H, and repeat for multiple
times to guarantee that each hexagon can be covered by sufficient
trajectory samples. Specifically, in each iteration (line 4-13), we
first find the hexagonHi that owns the fewest pass-by trajectories

TABLE I
STATISTICS OF THE THREE GPS TRAJECTORY DATASETS

Fig. 8. Density distribution of trajectory lengths for the three datasets.

(line 5), and then select the trajectory Tj from Hi.lt that has
passed the most hexagons (line 6).

VI. PERFORMANCE EVALUATION

A. Experimental Setup

Datasets: We conduct extensive experiments to evaluate LiMM
using three real-world GPS trajectory datasets: (i) Chengdu
dataset includes the GPS trajectories of ride-hailing vehicles,
which record their status every 1 s, in Chengdu city, China.
This dataset was publicly released by Didi’s GAIA initiative.
(ii) Porto dataset contains taxi trajectories in Porto city, Portugal.
Each taxi reports a GPS sample every 15 seconds. This dataset
can be publicly accessed in Kaggle [2]. (iii) Shenzhen dataset
contains GPS trajectories that are generated by buses and taxis
with an average sampling rate of 10 seconds in Shenzhen city,
China. The dataset is provided by our collaborator for research
purpose only. In addition, we have downloaded the road net-
work data from OpenStreetMap (OSM) [1] for the three cities,
respectively.

Table I presents statistics about the datasets. Specifically, we
have the largest road network in Shenzhen dataset, while we have
the most trajectories/samples in Porto dataset.

We analyze the distribution of trajectory length, i.e., the
number of GPS samples in each trajectory, and visualize the
results in Fig. 8. We find that Porto and Shenzhen datasets
contain more short trajectories with less than 50 GPS samples,
while the density distribution of trajectories in the Chengdu
dataset is relatively more uniform. We classify GPS trajectories
into three categories as short, medium, and long according to
their lengths. For performance evaluation, we will randomly
select 5000 trajectories from each dataset for the experiments,
which consist of short, medium, and long trajectories with
the compositions following the density distribution profiled in
Fig. 8. Table II shows detailed information about the selected
experiment trajectories.

Baselines: We realize a famous HMM-based map match-
ing algorithm [41] as the underlying backbone, which invokes
a given indexing method to search candidate states for GPS

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

432 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 1, JANUARY 2025

TABLE II
COMPOSITION OF SELECTED GPS TRAJECTORIES FOR THE EXPERIMENTS,

WHERE #S REPRESENTS THE NUMBER OF GPS SAMPLES AND #T REPRESENTS

THE NUMBER OF TRAJECTORIES

samples. We compare the performance of LiMM with the fol-
lowing indexing methods.
� Quad-tree is a spatial index structure [15] that recursively

subdivides the two-dimensional space, e.g., a road network
G, into four quadrants until the number of spatial objects,
e.g., road segments, in each quadrant is smaller than a
predefined threshold. To identify candidates for a GPS
sample with a searching range γ, Quad-tree obtains the
quadrants that intersect with the searching circle, and then
examines each candidate in the intersected quadrants.

� R-tree is another traditional tree-based spatial index struc-
ture [18] that groups nearby objects, e.g., road segments,
and represents them with their MBRs in the upper level of
the tree. Each leaf node of R-tree contains only one object.
To query candidate road segments for a GPS sample g with
searching range γ, R-tree first constructs a query rectangle
that centers at g with side length as 2× γ. Then, R-tree
traverses the tree and returns these objects, whose MBRs
have intersected with the query rectangle.

� LISA is the state-of-the-art learned index structure for
spatial data [30]. Given an arbitrary spatial dataset, LISA
maps spatial data into one-dimensional values, and then
learns a set of machine learning models to generate the
searchable data layout in disk pages. For the given road
network data, we transform each road segment into a
four-dimensional spatial point with the coordinates of start
and end vertices, and then employ LISA to build the learned
index. LISA supports range query by constructing a query
rectangle using a GPS sample g and searching range γ as
the input. However, spatial points derived by LISA need
to be mapped back to road segments according to their
start/end coordinates.

� LiMM-50 is one variant of our LiMM. The only difference
with LiMM is that this variant adopts a fixed searching range
γ = 50m to search candidate states.

Performance metrics: To generate ground truth travel routes
for the experiment GPS trajectories, we utilize HMM-based map
matching algorithm [41], which adopts the R-tree index structure
with a conservative searching range γ = 100m, to map raw
trajectories to the road network for obtaining their actual travel
routes. Following the previous work [45], we define the matching
accuracy for a given trajectory Ti as follows:

accuracy =
len(R∗i

⋂
R̄i)

len(R∗i)
, (13)

TABLE III
MAJOR PARAMETER SETTINGS, WHERE THE DEFAULT VALUE IS MARKED IN

BOLD

where R̄i andR∗i are the mapped travel route by a given method
and ground truth travel route for trajectory Ti, respectively.
Additionally,R∗i

⋂
R̄i indicates the correctly matched road seg-

ments, and function len(·) calculates the road network distance
for a given travel route. This metric favors indexing methods that
can return query results containing the correct road segments.
Higher values of accuracy indicate that the indexing method
more precisely identifies the correct road segments. We also
record the end-to-end matching time for each trajectory Ti.

To evaluate query processing performance of indexing meth-
ods, we utilize the metrics of the number of candidates, hit ratio,
and query time. For a given GPS sample g and searching range γ,
each indexing method will query the index structure and return
a candidate set Cg . Hence, the number of candidates is |Cg|,
and query time is the execution time for an indexing method
to obtain Cg upon receiving the query. The hit ratio is defined
as the fraction of samples for which a method has retrieved the
“right” road segments.

For performance evaluations, we only report the average
experimental results for all performance metrics.

Implementation: We implement LiMM and other baseline
methods in Python 3.7. We have carefully tuned the parameter
settings of baselines to achieve their best performance, and fix
their searching range γ = 50m. To evaluate LiMM, we examine
different sizes of hexagons by varying side length L. If the
number of road segments covered by a hexagon exceeds the
capacity threshold λ, this hexagon will be divided into sub-
hexagons with side length as L√

7
. Each hexagon (or sub-hexagon)

is also divided into blocks every ω degrees. To produce unique
keys for road segments, we set the scaling factors in (4) as
c1 = 10000, c2 = 1000, and c3 = 1. To train the RL models,
we set learning rate α = 0.1, discount factor β = 0.8, and select
actions with ε = 0.9 probability. We set the budgetB = 2000 for
training trajectory selection. Table III shows the major parameter
settings.

All experiments are conducted on a server with CPU of
Intel(R) Core(TM) i7-10700K 3.80 GHz and memory of 32 GB.

B. Performance Comparison

Accuracy: Table IV summarizes the matching accuracy re-
sults of all methods over different trajectory categories across
the three datasets. We have the following key observations.

(1) In general, each method can achieve a higher matching
accuracy when the processed trajectories become longer. This is
because the HMM model can infer hidden states more accurately
with more observations, i.e., GPS samples.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: LEARNING ROAD NETWORK INDEX STRUCTURE FOR EFFICIENT MAP MATCHING 433

TABLE IV
OVERALL PERFORMANCE COMPARISON FOR DIFFERENT INDEXING METHODS ON THE MATCHING ACCURACY

Fig. 9. Overall performance comparison on matching time.

(2) Quad-tree and R-tree derive the best matching accuracy
across all experiments. With the same searching range γ = 50m
as the two methods, LiMM-50 achieves comparable matching
accuracy, with an average gap of only 0.3%.

(3) The learned index LISA has the lowest matching accuracy.
This is because LISA only returns the road segments, whose
start and end vertices both fall into the searching circle, as the
candidates, and thus will miss many “right” candidates, resulting
in poor matching accuracy.

(4) With adaptive searching ranges, LiMM can achieve rea-
sonably high accuracy. Compared to the best results, LiMM has
only, on average, 1.9%, 0.6%, and 2.9% accuracy reduction on
the Chengdu, Porto, and Shenzhen dataset, respectively. Overall,
LiMM has comparable matching accuracy as Quad-tree/R-tree,
with an average gap of only 1.8%.

Computation efficiency: We compare the matching time of
all methods in Fig. 9, where logarithmic scale is applied to the
y-axis for clear comparisons. Since the computation complexity
of HMM model is highly related to the trajectory length, each
method will take more time to map match a trajectory when it
contains more GPS samples, just as shown in Fig. 9. Across
all the experiments, our methods, both LiMM-50 and LiMM, can
complete the map matching tasks much faster than the other
three methods. Moreover,LiMM further acceleratesLiMM-50 with
a considerable speedup, e.g., on average enhancing the map
matching process by 5.8×. According to the results in Fig. 9,
LiMM significantly outperforms Quad-tree, R-tree, and LISA in
terms of computation efficiency, with an average speedup of
10.3×, 11.4×, and 13.3×, respectively, across the three datasets.

Query processing: To better understand the results shown in
Fig. 9, we further compare the average number of candidates

Fig. 10. Comparison on the average size of candidate sets.

TABLE V
COMPARISON ON THE QUERY TIME (UNIT: MS)

returned by different indexing methods in Fig. 10. We observe
that LiMM derives the smallest candidate sets, when compared
to other methods, over the three road networks. Although LISA
obtains the second smallest candidate sets, it needs to transform
the query results back to specific road segments, introducing
extra post-processing time. Therefore, the overall matching time
of LISA is much greater than LiMM, as shown in Fig. 9. Even
with the same searching range γ = 50m as Quad-tree and R-
tree, LiMM-50 retrieves much fewer candidates. It implies that
the two traditional index structures are still redundant on the
query results, while LiMM can precisely represent and index road
segments, which benefits the map matching task to derive refined
candidates.

Furthermore, we compare the query time of different methods
in Table V. Specifically, R-tree is generally more efficient than
Quad-tree, while LISA has the longest query time, due to the
post-processing operations. LiMM is the most efficient on query
processing. As LiMM can adaptively adjust the searching range,
it performs better than LiMM-50 and can return the candidate set
for each GPS sample within 0.5 ms.

Construction costs: Fig. 11 shows the index construction
costs of all methods over the three road networks. Due to the
varying distributions of road segments, each method consumes
different time to construct the road network index, which may
occupy different memory space. In terms of construction time,

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

434 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 1, JANUARY 2025

Fig. 11. Construction time and index sizes.

Fig. 12. Impact of different searching range γ values.

LiMM needs a bit more time than other methods, except on the
Chengdu’s road network. While the index construction of LiMM
is considerably prompt, as LiMM only takes 67.7s to build the
index for Shenzhen’s road network, which is pretty large. In fact,
we can save the pre-built index on the hard disk, and load it into
memory within only a few seconds (i.e., 0.5s ∼ 5s), as shown
by “LiMM (load)” in Fig. 11.

The index size of LiMM is comparable with traditional index-
ing methods, e.g., Quad-tree. The index size of LiMM is less than
75.0 mB, which is negligible for modern machines.

C. Detailed Evaluations

Effectiveness of adaptive searching range γ: We conduct
experiments to evaluate the query performance by comparing
different γ values with adaptive searching range using the Shen-
zhen dataset. In principle, a larger γ generates a greater searching
circle, which can find more candidate states (see Fig. 12(a)),
leading to a longer query time (see Fig. 12(b)) and a higher
hit ratio (see Fig. 12(c)). Instead of adopting a fixed γ value,
LiMM adjusts the searching range for each area by analyzing
historical trajectory data via RL models. Fig. 12 shows that our
adaptive searching range can derive the most refined candidate
sets, e.g., reducing irrelevant candidates up to 405% compared
to γ = 100m, yet with a moderate query time, i.e., 0.5 ms, and
a high hit ratio, i.e., 97.6%.

Effectiveness of coverage-oriented trajectory selections: To
derive the adaptive searching range for each hexagon, LiMM
needs to train a RL model using a set of map matched trajectories.

Fig. 13. Impact of different trajectory selection methods.

Fig. 14. Impact of different hexagon settings.

Rather than randomly selecting the training trajectories, we
propose a heuristic method that aims to fully cover all hexagons.
We conduct an experiment to compare the random and our
heuristic method in the Shenzhen dataset, which has the most
hexagons as 2249. In this experiment, we set the trajectory
budget B = 2000. As shown in Fig. 13(a), our heuristic method
achieves 100% hexagon coverage using only 1400 trajectories,
whereas the random method merely covers a maximum of 70.3%
of the hexagons. In addition, our method covers each hexagon
Hi multiple times, so that we can have sufficient samples to learn
Hi’s suitable searching range.

Fig. 13(b) compares the map matching performance of dif-
ferent trajectory selection methods. Compared to the fixed
γ = 50m setting, both random and heuristic methods greatly
improve the matching time by3.0× and6.4×, respectively, at the
accuracy loss of about 1.9% and 2.4%, respectively. If a hexagon
is not covered by any trajectory samples, we cannot derive its
adaptive searching range, and LiMM has to adopt the default
γ = 50m setting. This is why random method has a bit higher
accuracy than the heuristic method. With the learned adaptive
searching range, heuristic method outperforms random method
in terms of matching time with an improvement of 45.9%.

Impact of hexagon settings: The hexagon settings, including
side length L, block degree threshold ω, and capacity threshold
λ, determine the key assignments for road segments (see (4)),
and thus affect LiMM’s query performance, especially on the
evaluation metric of query time.

We test various hexagon sizes by varying L. Fig. 14(a) shows
that too small or too large hexagons will result in a longer query
time. This is because a given searching circle may overlap with
more hexagons if L is small, and LiMM has to verify many

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: LEARNING ROAD NETWORK INDEX STRUCTURE FOR EFFICIENT MAP MATCHING 435

irrelevant candidates. On the other hand, large hexagons usually
contain more candidates, which also increase the query time.
According to our experiments, L = 500m is a good choice for
quick query processing.

We have observed similar experiment results for the block
degree threshold ω, as shown in Fig. 14(b). A suitable ω should
well distribute the road segment keys and facilitate query pro-
cessing. We find that ω = 60◦ is a good setting for our testing
road networks.

Lastly, we explore the impact of capacity threshold λ. If a
hexagon covers more than λ road segments, it is divided into
sub-hexagons. Therefore, a small λ will generate many sub-
hexagons and thus increase the query time. While a larger λ

allows each hexagon to contain more road segments, and thus
more irrelevant road segments are returned. Fig. 14(c) suggests
that λ = 256 can lead to the smallest query time.

VII. RELATED WORK

Map matching: Existing map matching works can be clas-
sified into two major categories, i.e., traditional model-based
approaches and emerging learning-based approaches.

Traditional map matching models can be further divided into
four classes [7], i.e., similarity model, state-transition model,
candidate evolving model, and scoring model. Considering the
wide popularity of Hidden Markov model (HMM) in map
matching, we mainly discuss the HMM-based map matching
approaches, while readers can refer to [7], [25], [29] for a com-
prehensive survey. As introduced in Section II-B, HMM consists
of three stages for mapping a trajectory to its actual travel
route [41]. Existing HMM-based approaches follow this work-
flow, and primarily focus on improving the matching accuracy
by leveraging various information, e.g., road connectivity [32],
[42], travel speeds [17], [21], moving directions [8], [10], [20],
route choices [23], [49], [59], and driver behaviors [56]. Despite
the high matching accuracy, HMM-based approaches still suffer
from huge computation costs. Some research works make use
of parallel-computing frameworks, e.g., MapReduce [22] and
Spark [3], [58], or pre-computing techniques [54] to speedup
the map matching process for large trajectory datasets. However,
these methods require extra resources, e.g., clustered machines
or memory storage.

Different from these works, LiMM builds a novel learned road
network index and selects suitable searching ranges to opti-
mize candidate preparations, which determine the computation
complexity of HMM-based map matching approaches. Hence,
LiMM provides refined candidate sets for existing approaches and
thereby improves their efficiency.

Learning-based approaches exploit deep learning technique
and abundant historical trajectory data to learn deep models
that can directly transform a trajectory to its corresponding
route [14], [26], [45], [47]. For example, based on the sequence-
to-sequence (Seq2Seq) multi-task learning, MTrajRec [45] can
recover low-sampling-rate trajectories and map match them to
the road network simultaneously. DeepMM [14] exploits the
Seq2Seq framework with attention mechanism to map trajec-
tories to the road network. While DMM [47] utilizes a recurrent

neural network to identify the most likely travel route for a se-
quence of cellular trajectory. Additionally, L2MM [26] employs
multiple deep learning models to learn a mapping function from
trajectories to travel routes. However, learning-based approaches
heavily rely on massive well-labeled trajectories, and cannot
tolerant road network changes.

Indexes for spatial data: Many traditional index structures
can be employed to organize spatial data, and they are classified
into three categories [16]: (i) data partitioning based indexes,
e.g., R-tree [18] and R*-tree [4], (ii) space partitioning based
indexes, e.g., Quad-tree [15], Octree [39] and KD-tree [5], and
(iii) mapping based indexes, e.g., B+ tree [9] and UB-tree [44].
Existing HMM-based map matching approaches typically use
R-tree or Quad-tree to index road networks.

Recently, Kraska et al. [28] introduce the idea of learned
index to substitute traditional indexes with machine learning
models. The intuition is to learn the cumulative distribution
function (CDF) of a sorted dataset using implicit models that
can effectively remember the storage addresses of all data.
Some valuable learned index structures have been proposed
to extend the idea of learned index to spatial data, including
ML-index [11], Tsunami [13], LISA [30], LHist [31], RSMI [43],
Flood [40], and Qd-tree [55]. Since the spatial data are generally
multi-dimensional, these indexes thus first scale spatial data
into one-dimensional values, and then learn the CDF of values
with machine learning models [38]. For example, ML-index [11]
utilizes the iDistance technique [24] to map data points to
one-dimensional values and organizes them using multiple mod-
els. The state-of-the-art LISA [30] partitions data with grids
and transforms them into one-dimensional values based on the
numbered grid cells. The mapped values are further used to
train models. Different from these works, we propose a learned
index structure for the road networks by leveraging a novel
hexagon-based scaling method, which particularly considers the
characteristics of road segments.

Reinforcement learning (RL): RL aims to learn appropriate
actions from observed states and received rewards based on the
interactions between an agent and the environment [27]. Due
to its generality, RL has been widely applied to solving vari-
ous challenging problems, including vehicle dispatching [33],
arrangement of crowdsourcing tasks [46], network congestion
control [53], APP usage prediction [48], distance querying in
road networks [61], [62], and graph matching [50], [51]. In this
work, we employ RL to determine suitable searching ranges
for HMM-based map matching, which can greatly reduce the
subsequent computations.

VIII. CONCLUSION

In this paper, we present LiMM to alleviate the computation
bottleneck of HMM-based map matching. We design LiMM with
two functional modules, i.e., a learned road network index and
an RL-based adaptive searching range mechanism. The two key
designs together refine candidate states for existing HMM-based
map matching approaches, and thus improve their computation
efficiency. Extensive experiments are performed with three large
real-world trajectory datasets, and the results demonstrate that

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

436 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 1, JANUARY 2025

LiMM significantly outperforms baseline methods with an aver-
age speedup of 11.7× in terms of matching time, yet with a
subtle accuracy loss of only 1.8%.

REFERENCES

[1] Openstreetmap. Accessed: Jun. 2024. [Online]. Available: http://www.
openstreetmap.org/

[2] Porto dataset in kaggle. Accessed: Jun. 2024. [Online]. Available:
https://www.kaggle.com/competitions/pkdd-15-predict-taxi-service-
trajectory-i/data

[3] D. Alves Peixoto, H. Quoc Viet Nguyen, B. Zheng, and X. Zhou, “A
framework for parallel map-matching at scale using Spark,” Distrib. Par-
allel Databases, vol. 37, no. 4, pp. 697–720, 2019.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
An efficient and robust access method for points and rectangles,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 1990, pp. 322–331.

[5] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[6] C. Cao, Z. Liu, M. Li, W. Wang, and Z. Qin, “Walkway discovery from
large scale crowdsensing,” in Proc. 17th ACM/IEEE Int. Conf. Inf. Process.
Sensor Netw., 2018, pp. 13–24.

[7] P. Chao, Y. Xu, W. Hua, and X. Zhou, “A survey on map-matching algo-
rithms,” in Proc. Australas. Database Conf., Springer, 2020, pp. 121–133.

[8] C. Chen, Y. Ding, X. Xie, S. Zhang, Z. Wang, and L. Feng, “TrajCompres-
sor: An online map-matching-based trajectory compression framework
leveraging vehicle heading direction and change,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 5, pp. 2012–2028, May 2020.

[9] D. Comer, “Ubiquitous B-tree,” ACM Comput. Surv., vol. 11, no. 2,
pp. 121–137, 1979.

[10] G. Cui, W. Bian, and X. Wang, “Hidden markov map matching based
on trajectory segmentation with heading homogeneity,” GeoInformatica,
vol. 25, pp. 179–206, 2021.

[11] A. Davitkova, E. Milchevski, and S. Michel, “The ML-Index: A multidi-
mensional, learned index for point, range, and nearest-neighbor queries,”
in Proc. 23rd Int. Conf. Extending Database Technol., 2020, pp. 407–410.

[12] J. Ding et al., “ALEX: An updatable adaptive learned index,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2020, pp. 969–984.

[13] J. Ding, V. Nathan, M. Alizadeh, and T. Kraska, “Tsunami: A learned
multi-dimensional index for correlated data and skewed workloads,” in
Proc. VLDB Endowment, vol. 14, no. 2, pp. 74–86, 2020.

[14] J. Feng et al., “DeepMM: Deep learning based map matching with
data augmentation,” IEEE Trans. Mobile Comput., vol. 21, no. 7,
pp. 2372–2384, Jul. 2022.

[15] R. A. Finkel and J. L. Bentley, “Quad trees: A data structure for retrieval
on composite keys,” Acta Informatica, vol. 4, no. 1, pp. 1–9, 1974.

[16] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Comput. Surv., vol. 30, no. 2, pp. 170–231, 1998.

[17] C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, and P. Jaillet,
“Online map-matching based on hidden markov model for real-time traffic
sensing applications,” in Proc. IEEE Conf. Intell. Transp. Syst., 2012,
pp. 776–781.

[18] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984, pp. 47–57.

[19] A. Hansson, E. Korsberg, R. Maghsood, and E. Nordén, and Selpi, “Lane-
level map matching based on HMM,” IEEE Trans. Intell. Veh., vol. 6, no. 3,
pp. 430–439, Sep. 2021.

[20] Y.-L. Hsueh and H.-C. Chen, “Map matching for low-sampling-rate GPS
trajectories by exploring real-time moving directions,” Inf. Sci., vol. 433,
pp. 55–69, 2018.

[21] G. Hu, J. Shao, F. Liu, Y. Wang, and H. T. Shen, “If-matching: Towards
accurate map-matching with information fusion,” IEEE Trans. Knowl.
Data Eng., vol. 29, no. 1, pp. 114–127, Jan. 2017.

[22] J. Huang, S. Qiao, H. Yu, J. Qie, and C. Liu, “Parallel map matching on
massive vehicle GPS data using MapReduce,” in Proc. 10th IEEE Int. Conf.
High Perform. Comput. Commun. IEEE Int. Conf. Embedded Ubiquitous
Comput., 2013, pp. 1498–1503.

[23] G. R. Jagadeesh and T. Srikanthan, “Online map-matching of noisy and
sparse location data with hidden markov and route choice models,” IEEE
Trans. Intell. Transp. Syst., vol. 18, no. 9, pp. 2423–2434, Sep. 2017.

[24] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang, “iDistance: An
adaptive B-tree based indexing method for nearest neighbor search,” ACM
Trans. Database Syst., vol. 30, no. 2, pp. 364–397, 2005.

[25] L. Jiang, C. Chen, C. Chen, H. Huang, and B. Guo, “From driving
trajectories to driving paths: A survey on map-matching algorithms,” CCF
Trans. Pervasive Comput. Interaction, vol. 4, no. 3, pp. 252–267, 2022.

[26] L. Jiang, C.-X. Chen, and C. Chen, “L2MM: Learning to map matching
with deep models for low-quality GPS trajectory data,” ACM Trans. Knowl.
Discov. Data, vol. 17, no. 3, pp. 1–25, 2023.

[27] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:
A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[28] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2018, pp. 489–504.

[29] M. Kubicka, A. Cela, H. Mounier, and S.-I. Niculescu, “Comparative
study and application-oriented classification of vehicular map-matching
methods,” IEEE Intell. Transp. Syst. Mag., vol. 10, no. 2, pp. 150–166,
Summer, 2018.

[30] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan, “LISA: A learned index
structure for spatial data,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2020, pp. 2119–2133.

[31] Q. Liu, Y. Shen, and L. Chen, “LHist: Towards learning multi-dimensional
histogram for massive spatial data,” in Proc. IEEE Int. Conf. Data Eng.,
2021, pp. 1188–1199.

[32] X. Liu, K. Liu, M. Li, and F. Lu, “A ST-CRF map-matching method for
low-frequency floating car data,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 5, pp. 1241–1254, May, 2017.

[33] Z. Liu, J. Li, and K. Wu, “Context-aware taxi dispatching at city-scale using
deep reinforcement learning,” IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 3, pp. 1996–2009, Mar. 2022.

[34] Z. Liu, Z. Li, M. Li, W. Xing, and D. Lu, “Mining road network correlation
for traffic estimation via compressive sensing,” IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 7, pp. 1880–1893, Jul. 2016.

[35] Z. Liu, Z. Li, K. Wu, and M. Li, “Urban traffic prediction from mo-
bility data using deep learning,” IEEE Netw., vol. 32, no. 4, pp. 40–46,
Jul./Aug. 2018.

[36] Z. Liu, J. Liu, X. Xu, and K. Wu, “DeepGPS: Deep learning enhanced
GPS positioning in urban canyons,” IEEE Trans. Mobile Comput., vol. 23,
no. 1, pp. 376–392, Jan. 2024.

[37] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-
matching for low-sampling-rate GPS trajectories,” in Proc. 17th ACM
SIGSPATIAL Int. Conf. Adv. Geograph. Inf. Syst., 2009, pp. 352–361.

[38] R. Marcus et al., “Benchmarking learned indexes,” in Proc. VLDB Endow-
ment, vol. 14, no. 1, pp. 1–13, 2020.

[39] D. Meagher, “Geometric modeling using octree encoding,” Comput.
Graph. Image Process., vol. 19, no. 2, pp. 129–147, 1982.

[40] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska, “Learning multi-
dimensional indexes,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2020, pp. 985–1000.

[41] P. Newson and J. Krumm, “Hidden markov map matching through noise
and sparseness,” in Proc. ACM SIGSPATIAL Int. Conf. Adv. Geograph. Inf.
Syst., 2009, pp. 336–343.

[42] T. Osogami and R. Raymond, “Map matching with inverse reinforcement
learning,” in Proc. Int. Joint Conf. Artif. Intell., 2013, pp. 1–7.

[43] J. Qi, G. Liu, C. S. Jensen, and L. Kulik, “Effectively learning spatial
indices. Proc. VLDB Endowment, vol. 13, no. 12, pp. 2341–2354, 2020.

[44] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer,
“Integrating the UB-tree into a database system kernel,” in Proc. 26th
Int. Conf. Very Large Data Bases, 2000, pp. 263–272.

[45] H. Ren et al., “MTrajRec: Map-constrained trajectory recovery via
Seq2Seq multi-task learning,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2021, pp. 1410–1419.

[46] C. Shan, N. Mamoulis, R. Cheng, G. Li, X. Li, and Y. Qian, “An end-to-end
deep RL framework for task arrangement in crowdsourcing platforms,” in
Proc. IEEE Int. Conf. Data Eng., 2020, pp. 49–60.

[47] Z. Shen, W. Du, X. Zhao, and J. Zou, “DMM: Fast map matching for
cellular data,” in Proc. ACM Annu. Int. Conf. Mobile Comput. Netw., 2020,
pp. 1–14.

[48] Z. Shen, K. Yang, W. Du, X. Zhao, and J. Zou, “DeepAPP: A deep
reinforcement learning framework for mobile application usage pre-
diction,” in Proc. 17th Conf. Embedded Netw. Sensor Syst., 2019,
pp. 153–165.

[49] S. Taguchi, S. Koide, and T. Yoshimura, “Online map matching with route
prediction,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 1, pp. 338–347,
Jan. 2019.

[50] H. Wang, Y. Zhang, L. Qin, W. Wang, W. Zhang, and X. Lin, “Reinforce-
ment learning based query vertex ordering model for subgraph matching,”
in Proc. IEEE Int. Conf. Data Eng., 2022, pp. 245–258.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

http://www.openstreetmap.org/
http://www.openstreetmap.org/
https://www.kaggle.com/competitions/pkdd-15-predict-taxi-service-trajectory-i/data
https://www.kaggle.com/competitions/pkdd-15-predict-taxi-service-trajectory-i/data

LIU et al.: LEARNING ROAD NETWORK INDEX STRUCTURE FOR EFFICIENT MAP MATCHING 437

[51] Y. Wang, Y. Tong, C. Long, P. Xu, K. Xu, and W. Lv, “Adaptive dynamic
bipartite graph matching: A reinforcement learning approach,” in Proc.
IEEE Int. Conf. Data Eng., 2019, pp. 1478–1489.

[52] H. Wu, W. Sun, and B. Zheng, “Is only one GPS position sufficient to
locate you to the road network accurately?,” in Proc. ACM Int. Joint Conf.
Pervasive Ubiquitous Comput., 2016, pp. 740–751.

[53] R. Xie, X. Jia, and K. Wu, “Adaptive online decision method for initial
congestion window in 5G mobile edge computing using deep reinforce-
ment learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 2, pp. 389–403,
Feb. 2020.

[54] C. Yang and G. Gidofalvi, “Fast map matching, an algorithm integrating
hidden markov model with precomputation,” Int. J. Geographical Inf. Sci.,
vol. 32, no. 3, pp. 547–570, 2018.

[55] Z. Yang et al., “QD-Tree: Learning data layouts for Big Data analytics,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020, pp. 193–208.

[56] Y. Yin, R. R. Shah, G. Wang, and R. Zimmermann, “Feature-based map
matching for low-sampling-rate GPS trajectories,” ACM Trans. Spatial
Algorithms Syst., vol. 4, no. 2, pp. 1–24, 2018.

[57] H. Yuan, G. Li, Z. Bao, and L. Feng, “Effective travel time estimation:
When historical trajectories over road networks matter,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2020, pp. 2135–2149.

[58] A. Zeidan, E. Lagerspetz, K. Zhao, P. Nurmi, S. Tarkoma, and H. T. Vo,
“GeoMatch: Efficient large-scale map matching on apache spark,” ACM
Trans. Data Sci., vol. 1, no. 3, pp. 1–30, 2020.

[59] Y. Zhang and X. Sui, “RCIVMM: A route choice-based interactive voting
map matching approach for complex urban road networks,” IEEE Trans.
Big Data, vol. 8, no. 5, pp. 1414–1427, Oct. 2022.

[60] B. Zheng et al., “SpeakNav: Voice-based route description language un-
derstanding for template-driven path search,” in Proc. VLDB Endowment,
vol. 14, no. 12, pp. 3056–3068, 2021.

[61] B. Zheng et al., “Reinforcement learning based tree decomposition for
distance querying in road networks,” in Proc. IEEE Int. Conf. Data Eng.,
2023, pp. 1678–1690.

[62] B. Zheng et al., “Workload-aware shortest path distance querying in road
networks,” in Proc. IEEE Int. Conf. Data Eng., 2022, pp. 2372–2384.

[63] Y. Zheng, “Trajectory data mining: An overview,” ACM Trans. Intell. Syst.
Technol., vol. 6, no. 3, pp. 1–41, 2015.

Zhidan Liu (Member, IEEE) received the PhD de-
gree in computer science and technology from Zhe-
jiang University, Hangzhou, China, in 2014. After
that, he worked as a research fellow with Nanyang
Technological University, Singapore, and a faculty
member with the College of Computer Science and
Software Engineering, Shenzhen University, Shen-
zhen, China. He is currently an assistant professor
with Intelligent Transportation Thrust, System Hub,
The Hong Kong University of Science and Tech-
nology (Guangzhou). His research interests include

Internet of Things, urban computing, and Big Data analytic. He is a senior
member of CCF and a member of ACM.

Yingqian Zhou received the BS degree from the
Guangdong University of Technology, Guangzhou,
China, in 2020, and the master’s degree from Shen-
zhen University, Shenzhen, China, under the supervi-
sion of Dr. Zhidan Liu, in 2023. Her research interests
are in the areas of trajectory data analysis and urban
computing.

Xiaosi Liu received the BE degree in software
engineering from Nanchang University, Nanchang,
China, in 2022. She is currently working toward the
master’s degree with the College of Computer Sci-
ence and Software Engineering, Shenzhen University,
Shenzhen, China, under the supervision of Dr. Zhidan
Liu. Her research interests include spatio-temporal
data analysis and urban computing.

Haodi Zhang (Member, IEEE) received the PhD
degree from the Department of Computer Science
and Engineering, Hong Kong University of Science
and Technology, Hong Kong, in 2016. He is currently
a tenured associate professor with the College of
Computer Science and Software Engineering, Shen-
zhen University, Shenzhen, China. His research inter-
ests include knowledge representation and reasoning,
deep learning, crowdsourcing over probabilistic and
uncertain databases, and natural language processing

Yabo Dong received the PhD degree in computer
science from Zhejiang University, Hangzhou, China,
in 2002. He is currently an associate professor with
the College of Computer Science and Technology,
Zhejiang University. His research interests include
Internet of Things, sensor data mining and processing,
and cultural relics protection.

Dongming Lu is currently a professor with the Col-
lege of Computer Science and Technology, Zhejiang
University, Hangzhou, China, and the vice president
with NingboTech University. He was selected as a
member of the Program for New Century Excellent
Talents by the Ministry of Education of China, in
2004, and one of the 151 Talents Program from Zhe-
jiang Province, in 2008. He has co-authored more
than 200 refereed papers and has 34 patents granted.
His research interests include virtual reality, computer
vision, Internet of Things, and Big Data.

Kaishun Wu (Fellow, IEEE) received the PhD de-
gree in computer science and engineering with The
Hong Kong University of Science and Technology.
Before joining HKUST(GZ) as a full professor with
DSA Thrust and IoT Thrust, in 2022, he was a dis-
tinguished professor and director with Guangdong
Provincial Wireless Big Data and Future Network
Engineering Center, Shenzhen University. He is an
active researcher with more than 200 papers published
on major international academic journals and confer-
ences, as well as more than 100 invention patents,

including 12 from the USA. He received the 2012 Hong Kong Young Scientist
Award, the 2014 Hong Kong ICT Awards: Best Innovation, and 2014 IEEE
ComSoc Asia-Pacific Outstanding Young researcher Award. He is an fellow of
IET, and AAIA.

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on January 02,2025 at 02:58:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

