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Regional Knowledge Transfer for Urban Traffic
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Abstract—In traffic flow prediction, the efficacy of deep learn-
ing models is largely contingent upon the availability of extensive
training datasets, presenting a formidable challenge in data-
scarce environments. Transfer learning has emerged as a promis-
ing strategy to address this challenge by leveraging abundant
data from source cities to enhance predictive accuracy in target
cities with limited data. Nonetheless, existing methods frequently
neglect the distinct characteristics and interrelationships among
various regions within cities, leading to predominantly city-level
knowledge transfers that underutilize the potential of transferred
information. In this paper, we present SERT, a fine-grained
regional knowledge transfer method specifically designed to
mitigate data scarcity in traffic flow prediction. SERT initiates
the process by establishing relationships between source and
target regions through the integration of satellite imagery and
Points of Interest (POI) data, effectively capturing region-specific
features to create matched region pairs. Subsequently, we propose
an innovative contrastive domain adaptation strategy to align
the features of these matched regions, thereby facilitating inter-
regional knowledge transfer while maximizing the feature dis-
tance of unmatched regions to reduce interference from irrelevant
data. This approach enables the effective transfer of valuable
knowledge from the source cities to its relevant counterparts in
the target city. Comprehensive experimental results demonstrate
that SERT outperforms existing methods in terms of prediction
accuracy while ensuring significant computational efficiency. The
code is available at https://github.com/MobiXg/SERT.

Index Terms—Transfer learning, traffic flow prediction, satel-
lite imagery, contrastive learning.

I. INTRODUCTION

RAFFIC flow prediction constitutes a vital component
of smart city applications, emphasizing the forecasting
of urban traffic patterns for future time periods [1], [2]. With
the emergence of deep learning, models such as Convolutional
Neural Networks (CNNs) [3], [4], Recurrent Neural Networks
(RNNs) [5], [6], and Graph Neural Networks (GNNs) [7], [8]
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(d) Traffic flow patterns in regions with varying attributes.

Fig. 1. Regions with varying attributes often exhibit distinct traffic patterns.
Different from city-level transfer, regional-level transfer can effectively align
the regions with similar attributes.

have become increasingly prominent in this domain, primarily
owing to their strong feature extraction capabilities. Neverthe-
less, these models often necessitate extensive traffic data for
effective training [9], presenting a significant challenge for
urban cities with limited data availability.

To mitigate the challenges posed by data scarcity, transfer
learning has emerged as an effective strategy, wherein models
are trained using data-rich source domains and subsequently
applied to data-deficient target domains [10]. In the con-
text of traffic flow prediction, each city is regarded as a
distinct domain, with the target city typically possessing a
reduced volume of traffic data relative to the source city.
Recent researches [11]-[14] have made noteworthy strides
in facilitating knowledge transfer for traffic flow prediction
across different cities. However, it is important to recognize
that cities comprise various regions characterized by unique
attributes (e.g., education, entertainment), as illustrated in Fig.
1(a). These attributes give rise to distinct spatial-temporal
patterns. For instance, Fig. 1(d) depicts the traffic flow over
one week in two regions: one adjacent to a school (left) and
the other near a shopping mall (right). It is evident that traffic
flow in the educational region peaks on weekdays and dimin-
ishes on weekends, while the entertainment region exhibits
an inverse trend. Existing studies [11]-[14] predominantly
focuses on knowledge transfer at the “city level” (referring
to the granularity of the transferred knowledge), neglecting
the extraction of region-specific features and the establishment
of inter-regional relationships (Fig. 1(b)). This oversight can
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Fig. 2. Satellite images and weekly traffic flow values from regions in Chicago
(CHI) and Washington (DC). Regions A and B exhibit a greater presence of
green spaces, while regions C and D are characterized by a higher density of
buildings. This suggests a positive correlation between imagery characteristics
and traffic flow patterns.

align regions with entirely different spatial-temporal patterns,
leading to two significant issues: (i) suboptimal transfer, where
valuable knowledge from the source city is misapplied to inap-
propriate locations within the target city, thereby diminishing
its effectiveness; and (ii) negative transfer, wherein detrimental
knowledge from the source city is inappropriately transferred
to the target city, adversely impacting prediction performance.
In light of this analysis, we pose the question: “Can
we optimize the efficacy of transfer learning by facilitating
knowledge transfer on a region-to-region basis?” If feasible,
as depicted in Fig. 1(c), knowledge could be transferred be-
tween source and target regions exhibiting analogous spatial-
temporal patterns. This targeted approach not only leverages
valuable knowledge but also filters out irrelevant information,
thereby preventing the transfer of counterproductive knowl-
edge. However, the implementation of fine-grained regional
knowledge transfer is non-trivial due to two pivotal challenges:

+ Region-specific feature extraction for inter-regional
relationship establishment: Previous studies have uti-
lized check-in data [11] and human mobility data [14]
as proxies for traffic flow data in the derivation of city
features. However, these auxiliary data sources are not
universally available for all cities and may lack general-
izability across diverse contexts [15].

o Effective knowledge transfer between regions: Fine-
tuning methods [11], [12], [14] often encounter perfor-
mance degradation due to substantial discrepancies in
inter-domain data distributions [16]. Domain adaptation
techniques [13] often overlook the unique characteristics
of intra-domain samples [17] and are susceptible to
model collapse [18]. These challenges complicate their
application to regional knowledge transfer.

In response to these challenges, we propose a novel transfer

learning method for traffic flow prediction, termed SERT

(Satellite imagery Enabled Regional Transfer). To tackle the
first challenge, we introduce the innovative use of satellite
imagery as an auxiliary source for extracting region-specific
features. In contrast to traditional auxiliary sources [11], [14],
satellite imagery provides comprehensive global coverage,
ensuring data availability even in less developed urban areas
[19]. Additionally, satellite imagery contains rich information
that reflects indicators closely related to traffic conditions, such
as population density [20], [21] and economic status [22], [23].
Fig. 2 illustrates the utility of satellite imagery by presenting
images of regions from different cities alongside their traffic
flow variations over the same week. It is apparent that re-
gions exhibiting similar imagery characteristics demonstrate
comparable traffic flow patterns in terms of value range and
periodicity, even when situated in different urban locales (our
statistical analysis revealed that over 55% of the regions across
two cities support this conclusion). Consequently, satellite im-
agery serves as an effective tool for extracting region-specific
features. We also incorporate Points of Interest (POI) data as
another auxiliary source, which is also widely accessible [15].
The features extracted from these auxiliary data sources will
henceforth be referred to as auxiliary features.

To address the second challenge, we propose a contrastive
domain adaptation approach for the transfer of regional knowl-
edge. Contrastive learning [24], [25], which aligns posi-
tive samples while distinguishing negative ones, effectively
extracts discriminative representations and alleviates model
collapse, thus presenting a viable solution to the limitations
commonly encountered in fine-tuning [11], [12], [14] and
domain adaptation [13]. Motivated by this, we employ this
methodology to tackle the complexities of regional transfer.
Specifically, we identify groups of regions with the most sim-
ilar auxiliary features from different cities as positive samples,
while treating the remaining regions as negative samples. This
strategy facilitates finer-grained adaptation between similar
regions and mitigates interference from irrelevant regions.

In summary, the contributions of this paper are as follows:

o We introduce SERT, a novel transfer learning method
designed to enable region-to-region knowledge transfer,
mitigating data scarcity issues in traffic flow prediction.

o By harnessing the generalizability and rich informational
content of satellite imagery, we extract region-specific
features to establish inter-regional relationships.

e We develop an innovative contrastive learning based
knowledge transfer approach, which effectively facilitates
the transfer of valuable knowledge between regions while
addressing prevalent challenges typically encountered in
fine-tuning and domain adaptation.

o Experiments show that SERT outperforms existing meth-
ods in traffic flow prediction tasks with notable efficiency.

The remainder of this paper is structured as follows: Section
IT reviews the related work. Section III introduces the key
concept definitions and formally states the problem. Section
IV describes the proposed methodology in detail. Section V
presents the experimental results, followed by a comparative
analysis of our method against existing approaches. Section
VI concludes the paper by summarizing the main findings.
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II. RELATED WORK

A. Traffic Flow Prediction

Traffic flow prediction aims to forecast traffic patterns across
various urban regions over future time periods based on
historical data [9]. Traditional approaches typically rely on
statistical time series methods such as ARIMA [26] and Holt-
Winters [27]. However, these approaches are constrained by
their limited capacity for feature extraction, which frequently
results in suboptimal predictive performance.

In recent years, deep learning models, including CNNs [3],
[28], RNNs [5], [29], and GNNs [7], [30] have garnered
increasing attention for traffic flow prediction. For instance,
ConvLSTM [31] achieves improved spatial-temporal corre-
lations extraction by extending the fully connected LSTM
[32] to incorporate convolutional structures in both the input-
to-state and state-to-state transitions. Additionally, PDFormer
[33] employs spatial-temporal self-attention mechanisms to
effectively capture dynamic long-range dependencies within
traffic data. These models demonstrate superior capabilities in
modeling complex spatial-temporal dependencies, thereby sig-
nificantly improving prediction accuracy. Nevertheless, their
performance often depends on the availability of large-scale
training datasets, which presents a considerable challenge for
cities with limited traffic flow data.

B. Transfer Learning for Traffic Flow Prediction

To mitigate the challenge of data scarcity, transfer learning
leverages abundant data from source cities to acquire knowl-
edge that is subsequently transferred to target cities, enhancing
prediction performance in data-limited environments [34].
Common transfer learning techniques include fine-tuning [11],
[12], [14] and domain adaptation [13].

Fine-tuning methods typically involve pre-training a model
on the source city, followed by fine-tuning it on the target
city. RegionTrans [l1] firstly pre-trains model on the
source city, then transfers knowledge from the entire source
city to the target city, leveraging check-in data to construct
regional relationships for optimizing the fine-tuning process
on the target city. We define this strategy as “city-to-region”!
transfer. In contrast, MetaST [12] employs meta-learning [35]
to develop a model on source cities that can more rapidly
adapt to a target city, described as a “cities-to-city” transfer.
Similarly, CrossTReS [14] utilizes a meta-learning to assign
weights to each source region, optimizing the pre-training
stage for “region-to-city” transfer. Despite these strategies, the
conventional two-stage process (pre-training followed by fine-
tuning) can introduce gaps in the transfer process between
cities [36]. When cities exhibit significantly different data
distributions due to factors such as varying development levels,
fine-tuning can lead to substantial performance declines in the
target city [16].

IThe term “city-to-region” demonstrates a deficiency in fine-grained fil-
tering and optimization of the knowledge sourced from the city, whereas a
detailed analysis is conducted on how this transferred knowledge is utilized
in the target region. The meanings of other terms, such as “region-to-city”,
follow the same logic.

Domain adaptation [37], [38] addresses data distribution
discrepancies by aligning features between source and target
domains. ST-DAAN [13] utilizes a deep adaptation network
[39] for “city-to-city” transfer. However, domain adaptation
often requires the formulation of complex feature alignment
criteria, such as Maximum Mean Discrepancy (MMD) [40],
which can result in significant computational complexity,
thereby limiting its applicability compared to fine-tuning in
related research areas. Furthermore, coarse-grained domain-
level alignment methods may overlook the unique characteris-
tics of individual samples within domains, potentially leading
to negative transfer [17].

In contrast to existing works that remain at the city-
level transfer, we propose a more nuanced “region-to-region”
knowledge transfer method that takes into account the distinct
characteristics of each region to minimize the transfer of detri-
mental knowledge. Additionally, we introduce an innovative
contrastive domain adaptation method that facilitates efficient
end-to-end domain feature alignment, thereby mitigating the
adverse effects of data distribution differences.

III. CONCEPTS AND PROBLEM STATEMENT

We define the essential concepts and notations used in this
paper and state the problem aimed to be addressed.

Definition 1 (Region). A city C is divided into Ho x W
square grids?, where Ho and W denote the number of
grids along the latitude and longitude, respectively. Each grid
corresponds to a specific region r, and the set of all regions
in city C' is denoted as R¢, where r € R¢.

Definition 2 (Traffic Flow). The traffic flow of an area
refers to the statistical count of vehicles (e.g., taxis, bicycles)
moving within that area over a certain period of time (e.g.,
one hour). The time steps for a city C' are denoted as
Te = {1,2,...,tc}, where a larger t¢ indicates more data
for the city. The traffic flow at a specific time step t € T¢ is
denoted as z% for region r and as X} = {z! | r € R¢} for
all regions in city C. The entire traffic flow dataset for city C
is denoted as Xo = {X} |t € T}

Problem Statement (Transfer Learning for Traffic Flow
Prediction). Given a source city S with abundant traffic data
Xs and a target city 7' with limited data X7 (i.e., tg > tr1),
transfer learning for traffic flow prediction aims to develop a
model F'(-). This model first extracts spatial-temporal features
from both Xg and A7p. Subsequently, knowledge acquired
from S is transferred to 7" to enhance traffic flow prediction in
T. Finally, F(-) forecasts traffic flow for each region in T for
the next time step based on historical data from the preceding

2Qur work primarily focuses on grid-based traffic flow data, where flow
values are aggregated based on uniformly distributed grid cells. This differs
from some graph-based approaches [8], [41], where flow data is collected
from detection devices distributed unevenly across the road network. As a
result, this paper does not extensively cover graph-based methodologies.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

o

o pol

il

|_Image Encoder }—> l l

'Iu}—’l l l

L= Ly 0+ (L + L) (1-0),

]

Traffic Features @ 2 1
P \ s I

Target Source Source City

Regions Regions rSZ rss

[ Al T ninjnin
Sy |

SEREE |

Gt

e

' .
Source City (b) Auxil Feat Extracti ' Soleelcl H
e uxiliary Features Extraction l - Knowledge 3 : +
Target City ! rs4 E Selection rT E‘.
[ = H
3| _Image Encoder }—) 4. . .
0 | S
A I Inter-Region . q
( POI g I—>| l l Relationships Contrastive Domain Adaptation
-, (c) Regional Matching and Knowledge Filtering ¢ (d) Knowledge Transfer
p—— -
", e A T1 ]
T . (Target Traffic Features for Adaptation) :
A& J () Spatial-Temporal Features Extraction © Concatenation @: Similarity Calculalioné

Fig. 3. Overview of SERT. Both the source and target cities include traffic flow data and two auxiliary data sources (i.e., satellite imagery and POI data).
The ST-Net and Prediction modules are responsible for extracting traffic flow features and predicting future traffic values, respectively. The POI Embedding
and Image Encoder modules are tasked with extracting features from POI data and satellite images, respectively. The training process of SERT is guided by

a combination of two prediction losses and a transfer loss.

k time steps. The objective is to minimize the prediction error
in T'. This process can be mathematically formulated as:

F + train(F, Xg, Xr)

tr—1
min Z Z error (241, 211 | (1)
t=k r€Rr
where &0 = F ([0 2l]) .

Here, 2! and 2!*! represent the actual and predicted values
for region 7 in the target city at the subsequent time step,
respectively. The prediction error is typically evaluated using
metrics such as Mean Squared Error (MSE).

IV. METHODOLOGY
A. Framework Overview

We propose a novel framework — SERT, as illustrated in
Fig. 3, to address the challenges associated with regional
transfer learning for traffic flow prediction. SERT commences
by extracting traffic features from the traffic flow data of both
source and target cities to predict future traffic flow values and
acquire spatial-temporal knowledge. Concurrently, it extracts
auxiliary features from satellite imagery and POI data for
each region, identifying these as region-specific characteristics.
By analyzing the similarity of these auxiliary features, SERT
constructs matched pairs of regions between the source and
target cities. Ultimately, leveraging these traffic features and
matched pairs, SERT facilitates knowledge transfer between
corresponding regions through contrastive domain adaptation.

B. Traffic Flow Data Processing

We detail the extraction of spatial-temporal features from
traffic flow data and prediction of future traffic flow values
for both the source and target cities.

1) Spatial-Temporal Features Extraction: By partitioning
each city into square grids, we transform the historical traffic
flow data into images as input for the feature extraction
network. Each image represents the traffic flow of a city at
a specific time step, where the image dimensions Heo X W
represent the number of grids. The value of each pixel indi-
cates the traffic flow in a particular region at that time step.

To encode image sequences, we utilize the ST-Net model
[12], which integrates CNNs [42] and LSTMs [32] to effec-
tively extract spatial-temporal features. Specifically, a sliding
window of length £ + 1 time steps is used to slice the
entire sequence along the temporal axis, where the first &
time steps serve as historical values and are fed into the
model as a single batch, while the (k + 1)-th time step serves
as the prediction target. Initially, the image sequences are
fed into CNNs to learn spatial dependencies, capturing the
relationships between local neighboring regions. Subsequently,
the output from the CNNs is processed by LSTMs to capture
temporal dependencies across sequences. The images from
both the source and target cities undergo processing through
the ST-Net with shared weights, resulting in their respective
traffic feature representations, which can be expressed as:

zc = ST-Net ([Xé?"”l, . ,Xg]tc’l) ,

t=k (2)

where C € {S,T}.
Here, z¢ € RIfclXdst represents the spatial-temporal features
(i.e., knowledge) of city C, where each row corresponds to
the features of a specific region, with a dimensionality of d;.
2) Traffic Flow Prediction: Once spatial-temporal features
have been extracted from both the source and target cities,
these features are fed into a prediction network to forecast
traffic flow for each region at the next time step. This process
not only equips the model with traffic prediction capabilities
but also enhances its understanding of the data distributions
in both cities. We utilize a Multilayer Perceptron (MLP) with
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ReLU activation [43] to generate the predictions, where W ()
and b(¥) denote the weights and biases of the /-th layer:

Xt = WO (ReLUWVze + b1)) +b@),
where C' € {S,T}.

Subsequently, we calculate the prediction loss for both
the source and target cities individually by comparing their
predicted values to the ground truth data. The Mean Squared
Error (MSE) is utilized to quantify this prediction loss:

3)

ts—1
Loe= Y MSE(X§™, X,

o @)
Lig= Y  MSE(X{, Xi).

t=k

Compared to fine-tuning methods [11], [12], [14], which
entail distinct pre-training on the source city followed by
fine-tuning on the target city, our approach processes traffic
data from both cities simultaneously in one integrated stage.
This unified strategy facilitates the subsequent establishment of
relationships and feature alignment between the source and tar-
get regions, mitigating the negative impact of data distribution
disparities and promoting more efficient knowledge transfer.

C. Inter-Region Relationships Establishment

To address the first challenge of establishing relationships
between source and target regions, we utilize auxiliary data
to extract region-specific features, thereby obtaining matched
region pairs while filtering out irrelevant source regions.

1) Auxiliary Features Extraction: Due to the limited avail-
ability of comprehensive traffic flow data in the target city,
which may hinder the extraction of high-quality features,
auxiliary data plays a critical role in extracting representative
features for each region. We collect satellite images and Points
of Interest (POI) data for all regions in both the source and
target cities to serve as auxiliary data. For detailed descriptions
of these data sources, please refer to Section V-Al.

To extract high-quality image features from satellite im-
agery, we employ contrastive learning [20] in a self-supervised
manner, minimizing reliance on labeled data. Specifically, for
a batch of N satellite images, we calculate the geographic
distance between each pair of images using the Haversine
formula [44], based on the latitude and longitude of each
image’s center point. For a given image (the anchor), the
image that is geographically closest is identified as its positive
sample, while the remaining N — 2 images are considered
negative samples. To extract features, both the anchor image
I; and the positive sample image I; are processed through a
ResNet [45], and their features are projected into a new feature

space using an MLP, formulated as follows:
hz:mg — RCSNCt(Ii), h;'_mg = ResNet(Ij)’ 5)
pi = MLP(b{"™), p; = MLP(hi"™).

Then, the Normalized Temperature-Scaled Cross Entropy Loss
(NT-Xent) [24] is employed to train this contrastive model:

exp (sim (ps, py) /7)
SO Ljgosy) exp (sim (py, pr) /7)

(6)

gi,j = — log

where sim(-) denotes the cosine similarity, 7 is a temperature
parameter, and 1, is an indicator function that equals 0
when & = ¢, and 1 otherwise. The final loss is aggregated
across all positive pairs. After training, the satellite imagery
of region r is fed into the trained model, and the output of the
ResNet, i.e., hf]"-q € R%ms  is treated as the satellite imagery
features for region 7.

The POI data comprises 14 distinct categories for each
region, along with the corresponding count for each category.
For a given region r, we represent its POI data as a vector
he°t € R, where each element indicates the quantity of
a particular type of POI. Subsequently, we normalize both
the satellite imagery features hi9 and POI features h2°! for
region 7 to mitigate differences in the numerical ranges of the
two modalities. To integrate these features while maximizing
the retention of their respective information, we concatenate
the normalized features to form the auxiliary features for
region r as follows:

h®“* = concat(h™9, hP°"),
where r € {Rg, Rr}.

2) Region Pairing and Selection: Once the auxiliary fea-
tures for all regions have been derived, they are utilized to
establish relationships between the source and target regions.
This is accomplished by calculating the cosine similarity
between the auxiliary features of the target city, denoted as

hgwe ¢ RIFrIX(dimg+14) "and those of the source city, denoted
as hgum c R\Rs\x(dimg—klél):

)

hauz . hauzT
D = sim(h7**, hg"*) = HhaTuJ:” . ”iauz”’ (®)
T S
where “T” denotes the matrix transpose. As a result, we obtain
a similarity matrix D € RIF7!XIEs| where D(i, ;) indicates
the similarity score between the i-th target region and the
j-th source region. By identifying the position index of the
maximum score in each row of D, we can determine the most
similar region in the source city for each target region, thereby
forming matched region pairs. Subsequently, using the indices
of these matched pairs, we filter and reorganize the spatial-
temporal features (i.e., the knowledge) from the source city,
expressed as follows:

index™ = argmax (D, axis = 1), 9
zq = zglindex™, ], ®
where zg € RIfs!xdst denotes the initial spatial-temporal
features extracted from the source city, which may contain
a significant amount of irrelevant or potentially detrimental
knowledge, while zy € RIEr[¥dst represents the selected
spatial-temporal features of the source city. In knowledge
selection, a “top-1” selection strategy is adopted, where only
the source region with the highest similarity to each target
region is selected for matching. Source regions that are not
selected throughout the process are discarded to filter out ir-
relevant knowledge and to reduce the computational overhead

associated with transferring that knowledge.
Notably, both auxiliary feature extraction and region pairing
do not require traffic flow data. This allows it to be inde-
pendently trained prior to the SERT framework, enabling the
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pre-obtainment of region matching indices for adaptation to
various traffic prediction tasks and further reducing the overall
training cost of the model. Additionally, given the advantage
of frequent update cycles for satellite imagery and POI data,
auxiliary features can be updated in a timely manner to provide
more accurate representation of city conditions.

D. Contrastive Domain Adaptation

Having established relationships between source and target
regions, we next address the challenge of facilitating effective
knowledge transfer between these correspondingly matched
regions. Traditional domain adaptation methods [13], [38],
[39] often assess domain discrepancy at the domain level.
For instance, ST-DAAN [13] employs MMD to evaluate the
divergence between source and target domain distributions.
However, this approach overlooks the differences and connec-
tions between regions within each domain [17], complicating
direct application to region-to-region transfer. Additionally,
existing techniques [11], [46], [47] primarily focus on mini-
mizing domain disparities to facilitate knowledge transfer. For
example, RegionTrans [11] minimizes the squared error
between the representations of source and target regions. Such
approaches can result in model collapse [18], where the model
excessively aligns features from the source and target domains
to a single point in the feature space, driving the alignment
loss towards zero and impeding effective training process.
To address these challenges, we propose a novel contrastive
learning-based domain adaptation method to facilitate finer-
grained regional knowledge transfer.

Following the procedures outlined in Sections IV-B1 and
IV-C2, we derive the spatial-temporal features zp for the
target city and the selected features zy for the source city.
By selecting and reorganizing features from the source city,
the row vectors in zp and zig that share the same index can
be considered as matched pairs of target and source region
features. This alignment facilitates the transfer of knowledge
from the source region to the corresponding target region.
Initially, a shared-weights projection head (i.e., an MLP) is
employed to project zp and z’y into a new feature space:

es = project(zy),

10
er = project(zr). (10

Building on the projected features eg and er, and aligning
with the principles of contrastive learning [24], for the i-th
region in the target city, we designate its features er[i, :]
as the anchor. The features from the source region that are
aligned with this target region, egli,:], are identified as the
positive sample. All other row features in eg, excluding the
i-th row, are treated as negative samples. The objective is to
minimize the distance between the anchor and the positive
sample while maximizing the distance between the anchor and
the negative samples in the feature space, thereby promoting
effective knowledge adaptation between similar regions and
mitigating interference from dissimilar regions.

The transfer loss is crafted around a classification task to
train the contrastive framework, ensuring each region identifies
the corresponding matched region in another city, as detailed in

Algorithm 1 Pseudocode of L.4,, PyTorch-like
# e_s, e_t: projected features of source and target cities
# n: number of target regions
# d: regional feature dimensionality
# .t(): matrix transpose
# tem: temperature parameter

# L2 normalization
e_s = normalize(e_s, dim=-1) # (n, d)
e_t = normalize(e_t, dim=-1) # (n, d)

# regional feature cosine similarity
logits = matmul(e_s, e_t.t()) = tem # (n, n)

# loss calculation

labels = arange(n) # ground truth, an identity matrix
loss_s = cross_entropy(logits, labels)

loss_t = cross_entropy(logits.t(), labels)

loss_cda = (loss_s + loss_t) / 2 # the final transfer loss

Algorithm 1. Specifically, the framework treats the anchor and
its positive sample as belonging to the same category, targeting
a mutual prediction result of 1, when negative samples are
assigned different labels with a mutual prediction outcome
of 0. Actual predictions rely on cosine similarity, with a
temperature parameter in the range (0,1) to modulate the
degree of contrast, where lower temperature values enhance
separation between positive and negative samples [48]. The
label prediction loss is calculated using cross-entropy [49].
Since both source and target regions must predict each other,
the final contrastive domain adaptation loss, L.4,, is obtained
by averaging the two cross-entropy losses.

Through the implementation of the aforementioned con-
trastive domain adaptation, we can achieve effective regional
knowledge transfer. Unlike traditional knowledge transfer
techniques [11]-[14], our approach leverages the unique char-
acteristics of samples within the domain, facilitating knowl-
edge transfer at the regional level. This enables the filtering of
irrelevant knowledge while applying valuable information to
the appropriate locations. Additionally, our contrastive domain
adaptation method benefits from the balancing effect of neg-
ative samples, which mitigates the risk of regions becoming
overly clustered or dispersed in the feature space. This bal-
ance reduces inter-domain data distribution discrepancies and
effectively prevents model collapse. Furthermore, our method
employs straightforward cross-entropy loss, eliminating the
need for complex feature alignment criteria and significantly
reducing training overhead.

Finally, the SERT framework is optimized by simultane-
ously minimizing three loss functions: the traffic flow predic-
tion losses for both the source and target cities, denoted as
Lgre and Lyg (as defined in (4)), along with the knowledge
transfer loss L4, (as detailed in Algorithm 1). The combined
loss function is represented as:

£:Wﬁcda"i_(l_w)(‘csrc"’_ﬁtgt); (]])

where w is a hyperparameter in the range (0, 1) that balances
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TABLE I
STATISTICS OF TRAFFIC FLOW DATASETS.

Cities Longitude Latitude Grids Time Span Taxi Trips (million)  Bike Trips (million)
NY [-74.059, -73.863]  [40.645, 40.848] 20 x 23 133 13.8

CHI [-87.740, -87.576]  [41.766, 42.013] 17 x 28 2016 (Jan 1 — Dec 31) 245 3.5

DC [-77.127, -76.926]  [38.798, 38.969] 21 x 20 10 2.7

knowledge transfer and traffic flow prediction objectives.

V. EXPERIMENTS

We conduct comprehensive evaluations of the model’s ef-
ficacy in the context of transfer learning for traffic flow
prediction. The experimental analysis is structured to assess
various aspects of the model’s performance, including:

o Overall Performance: Evaluating the predictive capabil-
ities of SERT in forecasting traffic flows in the target city,
particularly under conditions of limited data availability.

« Ablation Study: Dissecting the model to determine the
contribution of each component, with a focus on the
impact of auxiliary data and regional transfer.

o Sensitivity Analysis: Examining the robustness of SERT
to variations in critical hyperparameters to understand
their influence on the model’s overall performance.

A. Experimental Setup

1) Datasets: In accordance with prior research [14], we
conducted experiments using datasets from three major cities:
New York (NY)? *, Chicago (CHI)® °, and Washington (DC)’
8. Each dataset includes traffic flow data for two transporta-
tion modes: taxi and bike, which are further divided into
pickup and dropoff subsets, representing passenger boarding
and alighting, respectively. The cities were segmented into
numerous grid cells measuring 1 km x 1 km. This grid size
was selected as it efficiently delineates functional areas without
introducing unnecessary complexity to regional features and is
commonly adopted in previous studies [11], [14]. Traffic flow
data were aggregated by hourly time steps. Detailed statistical
information for the datasets is presented in Table I.

In addition to traffic data, we collected satellite imagery
and points of interest (POI) data for each region in all
cities. Using the open-source geographic information system
software QGIS®, satellite images for each city were obtained
and segmented. Each segmented imagery has a size of 512
x 512 pixels with an approximate ground resolution of 1.95
meters, allowing precise coverage of the geographic area
of each 1 km x 1 km region. The POI data, acquired
from OpenStreetMap'?, encompasses 14 categories, including
scenic spots, medical and health services, domestic services,

3https://www.nyc.gov
“https://citibikenyc.com
Shttps://data.cityofchicago.org
Shttps://divvybikes.com
https://opendata.dc.gov
8https://capitalbikeshare.com
https://www.qgis.org/
10https://www.openstreetmap.org/

residential areas, financial institutions, sports and leisure ser-
vices, cultural and educational services, shopping, housing ser-
vices, governments and organizations, corporations, catering,
transportation, and public services [14].

Unless otherwise specified, we designate New York and
Chicago as the source cities and Washington as the target
city, given that the former two have more extensive traffic
flow datasets. The data-rich source cities utilize a full year
of traffic flow data, divided into an 8-month training set, a
2-month validation set, and a 2-month test set. For the target
city, to simulate data scarcity, the training set is limited to only
30 days, 7 days, or 3 days of traffic data, with validation and
test sets configured similarly to those of the source cities.

2) Baselines: We compare SERT with the following base-
lines, which are widely utilized in traffic flow prediction tasks
or have demonstrated strong knowledge transfer capabilities:

e ARIMA [26]: The AutoRegressive Integrated Moving
Average (ARIMA) model is used for time series analysis,
modeling and forecasting by combining autoregression,
differencing, and moving average.

e ST-Net [12]: ST-Net leverages the strengths of both
CNNs and LSTMs. CNNs are utilized to capture spatial
relationships between regions, while LSTMs are tasked
with capturing temporal dependencies of these regions
across different time steps.

e Fine-Tuning: This process begins by pre-training the
ST-Net on data from the source city, followed by fine-
tuning the network using data from the target city.

e RegionTrans [11]: After pre-training on the source
city, RegionTrans establishes regional relationships
utilizing check-in data. It facilitates knowledge transfer
by minimizing the squared error between the matched
region features, thereby optimizing the model’s fine-
tuning stage for the target city.

e MetaST [12]: During the pre-training phase on the
source city, MetaST employs a meta-learning paradigm
[35] to derive a well-generalized model initialization,
thereby enhancing its adaptability to the target city.

e ST-DAAN [13]: This method utilizes a deep adaptation
network [39] to project the features of both source and
target cities into a common feature space, achieving inter-
city feature alignment through MMD.

e CrossTReS [14]: During the pre-training phase on
the source city, CrossTReS leverages human mobility
data and road network information to construct regional
features and employs meta-learning to learn the influence
weights of each source region on the target city.

Among these, ARIMA and ST-Net are non-transfer meth-
ods, trained solely on limited traffic data from the target city.
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TABLE II
TRAFFIC FLOW PREDICTION ACCURACY IN WASHINGTON (DC). RED: BEST RESULTS, BLUE: SECOND-BEST RESULTS.

NY CHI

Vehicle Methods 30 7 3 30 7 3
RMSE MAE RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE
SERT 3.781 1.353 3.976 1.445 4.150 1.493 | 3.792 1.355 3.971 1.408 | 4.125 1.492
=+ Std. Dev. 0.016  0.021 0.023  0.016 | 0.009 0.035 0.009 0.023 0.016 0.032 | 0016 0.023
CrossTRes 3.901  1.378 | 4.159 1.489 4.298 1.586 3.903 1.427 | 4.130 1.538 | 4247 1.611
Taxi ST-DAAN 4.139 1.468 4.274 1.528 4.522 1.736 4.124 1.503 4.246 1.536 4.482 1.627
MetaST 4.029 1.445 4.301 1.578 4.514 1.679 | 4.035 1421 | 4.284 1.580 | 4.528 1.698
RegionTrans 3.988 1.598 | 4.135  1.498 4.358 1.624 | 4.091 1.683 | 4219 1517 | 4.564 1.676
Fine-Tuning | 4.020 1.462 | 4.228 1.576 | 4.492 1.719 | 4.074 1.458 | 4.307 1.580 | 4.515 1.667
ST-Net 4.057 1.439 | 4.624 1.716 | 5500 2.067 4.057 1439 | 4.624 1.716 5500  2.067
ARIMA 4.771 3870 | 4.834 3928 5.108 4199 | 4.771 3870 | 4.834 3928 5.108  4.199
SERT 2114  0.954 2.245 1.000 | 2.341 1.033 2150 0949 | 2.269  0.986 2.346 1.005
=+ Std. Dev. 0.007  0.010 | 0.016 0.013 0.003  0.018 0.015  0.009 0.009 0.015 0.019  0.015
CrossTRes 2.240 1.000 | 2.359 1.050 2.489 1.086 2.278 1.005 2410 1.053 2.495 1.078
Bike ST-DAAN 2.352 1.061 2.764 1.274 2.832 1.338 2.372 1.060 2.751 1.280 2.784 1.302
MetaST 2.272 1.028 2412 1.081 2.500 1.129 2.310 1.034 2.465 1.087 2.563 1.153
RegionTrans 2.262 1.115 2.454 1.240 | 2.605 1.356 2.297 1.118 2.524 1.279 2.752 1.458
Fine-Tuning | 2.282 1.043 2.455 1.136 | 2.570 1.175 2.376 1.052 | 2.537 1.113 2.634 1.193
ST-Net 2.297 1.023 2.419 1.068 2.726 1.248 2.297 1.023 2.419 1.068 2.726 1.248
ARIMA 2773 2310 | 2788 2314 | 2873  2.386 27773 2310 | 2788 2314 2873  2.386

The other baselines are transfer learning methods that leverage
source city data to enhance performance in the target city.
3) Implementation Details:

o Unified Configuration: To ensure fair experimental com-
parisons, all deep learning-based methods utilize a
standardized ST-Net architecture for extracting spatial-
temporal features from traffic flow data. This ST-Net is
composed of three residual blocks, each with 64 output
channels, and a single-layer LSTM with a hidden size
of 128. The fine-tuning approaches (Fine-Tuning,
RegionTrans, MetaST, CrossTReS) undergo 100
epochs of pre-training followed by 80 epochs of fine-
tuning. In contrast, the domain adaptation methods
(ST-DAAN, SERT) are trained over 100 epochs. For
the traffic flow prediction task, we follow the setup of
previous work [14], predicting the next time step’s value
based on the past k = 6 time steps.

e SERT Configuration: The Image Encoder in Section
IV-C1 employs ResNet-18 [45] as its backbone to encode
each satellite imagery into a 512-dimensional vector,
which is then projected to 64 dimensions using a two-
layer MLP with ReLU activation. The projection head
for contrastive domain adaptation is a two-layer MLP
with ReLU, yielding an output dimension of 256. The
experiments utilize the Adam optimizer [50] with a
learning rate set to 10~3 and a batch size of 32.

o Baselines Configuration: When the source code is avail-
able, we adhere to the implementation and parameter
settings provided in their code repositories (MetaST!'!,
ST-DAAN'?, CrossTReS'?). To align the baselines with
the experimental setup of this study and to ensure fair

https://github.com/huaxiuyao/MetaST
2https://github.com/MiaoHaoSunny/ST-DAAN
Bhttps://github.com/KL4805/CrossTReS

comparisons, we made the following modifications: (i)
The original check-in data utilized in RegionTrans
was replaced with POI data, as the check-in data is
not publicly available. (ii) The initial implementation of
ST-DAAN did not incorporate labeled data from the target
city for training the traffic flow prediction model. To
enhance its predictive accuracy, we included the target
loss L4+ as defined in (4) into its loss function.

All experiments were conducted on a single NVIDIA

GeForce RTX 3090 GPU with 24GB of memory.

B. Overall Performance

We evaluate the performance of SERT in traffic flow
prediction from two perspectives: (i) prediction accuracy,
quantified by Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE), with lower values signifying superior
performance; and (ii) computational efficiency, assessed in
terms of training time and convergence speed. To reduce
the impact of randomness, each task is executed five times,
with the average results and standard deviations (Std. Dev.)
subsequently reported.

1) Prediction Accuracy: Table II presents the traffic flow
prediction accuracy results of various methods. Each reported
value is the average of the two results from the pickup and
dropoff subsets. We have the following three key observations:

e SERT consistently outperforms all other methods across

all tasks, achieving an average improvement of 4.4% in
RMSE and 5.1% in MAE compared to the strongest base-
line. These results highlight SERT’s superior capability
for knowledge transfer and generalization across different
cities and transportation modes, providing preliminary
validation of our regional knowledge transfer approach.

e CrossTReS consistently achieves the second-best per-

formance across most tasks, attributed to its “selective


https://github.com/huaxiuyao/MetaST
https://github.com/MiaoHaoSunny/ST-DAAN
https://github.com/KL4805/CrossTReS
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TABLE III
TRAFFIC FLOW PREDICTION ACCURACY IN CHICAGO (CHI) WITH MULTI-SOURCE TRANSFER.
Methods | SERT | MetaST | CrossTReS | RegionTrans
Metrics ‘ RMSE MAE ‘ RMSE MAE ‘ RMSE MAE ‘ RMSE MAE
. 7 1.694 0.669 1.761 0.698 1.781 0.681 1.820 0.750
NY — CHI Bike ‘ 3 ‘ 1.829 0.677 ‘ 1.872 0.741 ‘ 1.886 0.713 ‘ 1.867 0.716
. 7 1.729 0.654 1.809 0.698 1.796 0.713 1.847 0.737
DC = CHI Bike ‘ 3 ‘ 1.963 0.742 ‘ 2.004 0.840 ‘ 2.009 0.776 ‘ 1.999 0.787
. 7 1.637 0.646 1.727 0.677 / / / /
NY +DC — CHI Bike ‘ 3 ‘ 1.689 0.647 ‘ 1.815 0.730 ‘ / / ‘ / /
TABLE IV
THE COMPARISON OF TIME AND MEMORY OVERHEAD FOR VARIOUS METHODS DURING TRAINING.
NY — DC CHI — DC
Methods Time (s) Epoch Time (s) Epoch GPU Memory Usage
SERT 1557.1 [6, 6, 6, 6, 6] 1636.6 [6, 8, 6, 6, 5] 3.3 GB
CrossTReS 1903.6 + 55.8 [24, 15, 17, 16, 25] 2106.0 + 55.6 [28, 12, 14, 25, 20] 9.8 GB
ST-DAAN 2492.6 [14, 5, 12, 16, 10] 2801.2 [31, 15, 30, 16, 18] 2.6 GB
MetaST 1012.6 + 61.4 [59, 60, 60, 48, 54] 1162.2 + 60.8 [50, 66, 43, 57, 44] 7.9 GB
RegionTrans 41.0 + 58.0 [43, 40, 40, 65, 52] 45.0 + 58.4 [61, 38, 49, 48, 57] 2.7 GB
transfer” mechanism, which effectively reduces the trans- ~ ** \ — e “ — serr
. CrossTReS X CrossTReS
fer of harmful knowledge from the source city to the sTomn e SToA
. . . . 360 — Meta 3.60 —— Metat
target city. However, its design lacks a comprehensive , RegonTrans o RegionTans
a.nalysm of the target city, resul.tlng in tl}e m1sapp'hca- Z . 20 A A A Mnr
tion of relevant knowledge to inappropriate locations. 200 00 e e VAT
Notably, SERT outperforms CrossTReS with only 3 .4 280
16 19 36 47| 100 6 [14] 34 100

days of target training data, compared to CrossTReS’s
requirement of 7 days, across nearly all datasets. This
demonstrates SERT’s superior knowledge utilization and
highlights its robustness in the face of data scarcity.

e ST-DAAN exhibits the weakest performance among the
transfer learning methods, occasionally performing worse
than non-transfer approaches. This outcome highlights
our concerns regarding the negative transfer phenomenon
[51]. The city-to-city transfer design of ST-DAAN facil-
itates the transfer of substantial detrimental knowledge
from the source city to the target city, which not only fails
to enhance the prediction accuracy but actually degrades
it. This finding emphasizes the necessity for adopting
finer-grained, regional-level knowledge transfer strategies
to effectively filter out irrelevant information.

2) Multi-Source Transfer Performance: Among the base-
line methods, SERT and MetaST uniquely facilitate knowl-
edge transfer from multiple source cities to a single target city.
MetaST achieves this by extracting global spatial-temporal
patterns from all source cities and applying them to the target
city. In contrast, SERT expands its candidate matching set for
each target region to include regions from all source cities. In
this experiment, we designate NY and DC as source cities and
CHI as the target city. For each region in CHI, SERT identifies
matching regions in both NY and DC, facilitating knowledge
transfer from the two source regions to the target region. Table
IIT presents a performance comparison between single-source
and multi-source transfer approaches. The results clearly indi-
cate that multi-source transfer surpasses single-source transfer,

57|
Epoch

(a) NY to DC (b) CHI to DC

Fig. 4. Variation of RMSE on the validation set of the target city throughout
the model training process.

as it allows the target city to leverage knowledge from multiple
source cities. Moreover, among methods supporting multi-
source transfer, SERT delivers superior predictive performance
compared to MetaST, owing to its special design that elimi-
nates reliance on iteration-heavy meta-learning.

3) Computational Efficiency: To assess the computational
efficiency of various methods, we recorded both the training
time and GPU memory usage for each approach. Table IV
summarizes the statistics from five independent runs for each
method. Here, “Time” denotes the average training time across
five runs: for fine-tuning methods, this is expressed as “pre-
training time + fine-tuning time”, whereas for domain adap-
tation methods, it simply indicates the “training time”. For
SERT, the reported values do not include the training time of
the Image Encoder, as it only needs to be trained once and
can be directly used without retraining. “Epoch” refers to the
epoch at which the validation set for the target city achieves
its minimum RMSE during training (excluding the initial 100
epochs of pre-training for fine-tuning methods). The results
are based on the Bike-7days-pickup dataset.

In terms of absolute training time, SERT exhibits moder-
ate performance. However, given its design for finer-grained
region-to-region transfer, which necessitates detailed construc-
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TABLE V
TRAFFIC FLOW PREDICTION PERFORMANCE COMPARISON UNDER 2 KM X 2 KM GRID SIZE.
NY — DC Taxi CHI — DC Bike
Methods 30 7 3 30 7 3
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
SERT 10.585 3.936 11.023 4.179 11.517 4.263 4.468 1.724 4.690 1.858 4.839 1.847
CrossTRes 12.884 5.076 13.925 5.601 15.036 6.451 6.617 2.840 7.111 2.960 7.539 3.182
ST-DAAN 12014 4578 | 12720  5.058 | 13.071 5432 | 5807 2297 | 6070 2537 | 6864  2.920
MetaST 13.202 5.203 13.828 5.307 14.248 5.780 6.733 3.212 7.304 3.396 7.618 3.602
RegionTrans 12.851 4.920 13.279 5.214 13.755 5.608 7.227 2.820 7.328 2.970 7.595 3.185
tion of inter-regional relationships, this efficiency is commend- ~ ** = sert 106 == seRt
able. Particularly when compared to the coarse-grained trans- .. o senrrol 108 o cEnrrol
fer approach of ST-DAAN, SERT demonstrates a significant 23 102
advantage in training time, highlighting the efficiency of the %zzz 20
proposed contrastive domain adaptation method. Regarding  ,, 098
convergence speed, SERT significantly surpasses other meth- 22 096
ods. By leveraging its regional-level transfer design, SERT ef-  ** NY oHl NY cHI
fectively filters out irrelevant knowledge, enabling the transfer (a) RMSE for SERT Variants (b) MAE for SERT Variants
of higher-quality knowledge to the target city and facilitating o
faster model convergence. = =
To intuitively demonstrate SERT’s convergence speed and '
knowledge filtering capability, Fig. 4 presents the RMSE 4, g“"
variation during training for each method (only the fine- *, 110
tuning phase is shown for fine-tuning methods). The regional 100
transfer design of SERT effectively selects valuable knowledge I i 050 i .

from the source city and applies it to suitable locations in
the target city, enabling faster convergence in the target city.
Additionally, ST-DAAN maintains a consistently high RMSE
in the early stages (approximately before epoch 20) due to
its MMD-based feature alignment approach [40], which leads
to local collapse. MetaST, on the other hand, exhibits more
pronounced RMSE fluctuations as a result of its reliance on
meta-learning [35], making it highly sensitive to hyperparam-
eters such as the learning rate.

In summary, SERT achieves superior predictive accuracy
with a more streamlined design and relatively lower training
time and memory requirements.

4) Prediction Performance in Larger Regions: By default,
each city is divided into 1 km x 1 km regions, as this scale
effectively represents functional areas in real-world scenarios.
To investigate the impact of region size on the model’s
prediction performance, we expanded each region to 2 km
x 2 km (i.e., merging four adjacent regions into a new one)
and conducted experiments.

The results are shown in Table V. Clearly, compared to the
prediction results under the 1 km x 1 km grid size in Table II,
the prediction error for each method significantly increases un-
der the larger grid size. The reasons for this are twofold: on one
hand, larger regions exhibit greater traffic flow values, which
increases the base value for prediction, making the increase
in prediction error reasonable. On the other hand, oversized
regions may encompass areas with diverse functions and
characteristics, leading to overly complex regional features that
make effective urban representation challenging for the model.
Consequently, the performance decline for methods utilizing
auxiliary data (e.g., SERT, CrossTRes, RegionTrans) is

(c) RMSE for RegionTrans Variants (d) MAE for RegionTrans Variants

Fig. 5. Evaluation of the effectiveness of auxiliary data (satellite imagery and
POI data) through SERT and RegionTrans variants.

more pronounced. Nevertheless, SERT still achieves the best
results among all methods, demonstrating its generality of
excellent performance under different grid division strategies.

C. Ablation Study

We evaluate the efficacy of the two main design components
proposed in this paper: (i) the effectiveness of satellite imagery
and POI data as auxiliary data for extracting region-specific
features; and (ii) the improvement in prediction performance
through regional knowledge transfer via contrastive domain
adaptation compared to city-level transfer.

1) Effectiveness of Auxiliary Data: We evaluate the effec-
tiveness of satellite imagery and POI data as auxiliary data,
resulting in the development of SERT variants: SERT-POI
(using only POI data) and SERT-SAT (using only satellite
imagery). Figs. 5(a)-(b) illustrate the prediction performance
of SERT and its variants on the Bike-7days datasets. When
either POI or satellite imagery is used in isolation, predic-
tion performance declines, particularly for SERT-POI. This
highlights the importance of incorporating satellite imagery as
an auxiliary data to extract region-specific features. Notably,
although SERT-SAT and SERT-POTI exhibit slightly inferior
performance compared to SERT, their overall performance
still surpasses the second-best method, CrossTReS. This
demonstrates the reliability of using satellite imagery and POI
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TABLE VI
PERFORMANCE COMPARISON OF SERT WITH DIFFERENT IMAGE ENCODER BACKBONES FOR TRAFFIC FLOW PREDICTION.
Models SERT SERT-VGG SERT-ViT
Metrics RMSE MAE RMSE MAE RMSE MAE
30 3.781 1.353 3.923 1.365 3.842 1.368
NY — DC Taxi 3.976 1.445 4.129 1.474 4.000 1.440
3 4.150 1.493 4.276 1.527 4.232 1.473
30 2.114 0.954 2.199 1.002 2.127 0.935
NY — DC Bike 2.245 1.000 2.346 1.051 2.233 0.970
3 2.341 1.033 2419 1.079 2.421 1.073
30 3.792 1.355 3919 1.450 3.886 1.411
CHI — DC Taxi 7 3.971 1.408 4.070 1.436 4.026 1.450
3 4.125 1.492 4.192 1.557 4.157 1.519
30 2.150 0.949 2.196 0.959 2.152 0.934
CHI — DC Bike 7 2.269 0.986 2.404 1.034 2.293 0.988
3 2.346 1.005 2424 1.068 2.452 1.050
’ = serr e = serr MMD criterion aligns spatial-temporal features between the
280 BN SERT-MMD BB SERT-MMD . . .
270 130 source city and the target city, mathematically expressed as:
M 1.20 2
%250 § 1 n 1 m )
240 1.10 [: — = d’L _ (d_] ) (12)
o . mmd n;¢( S) m;(b T )
220 - J= H
2 N cHi 00 Y cHi where ¢ denotes the Gaussian kernel function, H represents
(a) RMSE for SERT-MMD (b) MAE for SERT-MMD the Hilbert space, and d indicates the data samples [13]. Within
SERT-MMD, the original loss term L4, in (11) is supplanted
w oo o g by Lonma-
380 Figs. 6(a)-(b) illustrate the performance of SERT-MMD on
1.60 . .
360 w150 the Bike-7days datasets. The MMD-based domain adaptation
< .

g = a0 method degrades the granularity of knowledge transfer to the
520 130 city level, introducing harmful source city knowledge and
. 120 obstructing the application of useful knowledge to appropriate
2 NY CHI " NY CHI

(¢) RMSE for ST-DAAN-CDA (d) MAE for ST-DAAN-CDA

Fig. 6. Evaluation of the effectiveness of our contrastive domain adaptation
approach through SERT and ST-DAAN variants.

data individually as auxiliary data, as well as the superiority
of SERT’s regional-level transfer mechanism.

To further validate the generalizability of our design for
extracting region-specific features from satellite imagery,
we applied this approach to RegionTrans, creating vari-
ants RegionTrans—-POI (utilizing only POI data) and
RegionTrans—SAT (utilizing only satellite imagery). The
results presented in Figs. 5(c)-(d) demonstrate that the in-
clusion of satellite imagery significantly improves the per-
formance of RegionTrans, suggesting that incorporating
satellite imagery as auxiliary data can boost the predictive
capabilities of other methods across different cities.

2) Effectiveness of Contrastive Domain Adaptation: To
assess the predictive performance improvements achieved
through regional transfer, we replaced the contrastive domain
adaptation in SERT with the Maximum Mean Discrepancy
(MMD)-based alignment method used by ST-DAAN, resulting
in a variant named SERT-MMD. This modification downgrades
SERT from regional-level transfer to city-level transfer. The

locations in the target city. Consequently, it results in signifi-
cant performance deterioration.

To further emphasize the necessity of regional transfer,
we replaced the MMD-based adaptation in ST-DAAN with
our contrastive domain adaptation, termed ST-DAAN-CDA.
As shown in Figs. 6(c)-(d) (following the original ST-DAAN
paper [13] settings without using target city data labels for loss
calculation, so the results may be inferior to those in Table
II), ST-DAAN-CDA significantly outperforms the original
ST-DAAN, benefiting from the refined transfer granularity.
This highlights the generalizability of our proposed contrastive
domain adaptation across various baselines and confirms the
necessity of regional transfer.

3) Impact of Different Image Encoder Backbones on Model
Prediction Performance: In Section IV-C1, ResNet-18 [45]
was selected as the backbone to construct the Image Encoder
for extracting satellite imagery features, as it is one of the
most classic and widely-used backbones in computer vision
field with excellent performance in image feature extraction.
To analyze the impact of different backbones on SERT’s per-
formance and validate SERT’s stability, we replaces ResNet-
18 in (5) with VGG11 [52] and ViT-B-16 [53] respectively,
yielding two variants SERT-VGG and SERT-ViT for com-
parison with the original SERT, while keeping all other model
configurations unchanged.
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TABLE VII
THE IMPACT OF SIMILARITY METRICS (ED: EUCLIDEAN DISTANCE, CS: COSINE SIMILARITY) ON MODEL PERFORMANCE.
NY — DC Taxi CHI — DC Bike
Metrics 30 7 3 30 7 3
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
ED 3.819 1.368 3.992 1.422 4.152 1.458 2.173 0.937 2.285 0.972 2.351 1.007
cs 3.781 1.353 3.976 1.445 4.150 1.493 2.150 0.949 2269 | 0.986 2.346 1.005

o Wwooe T Wooe influence of the latter. The temperature parameter modulates

288] A~ CHI—DC 288) _p— CHI-DC .. . .. . .

285 the distribution of positive and negative samples within the
28 feature space during contrastive domain adaptation, with lower
%:Z values resulting in more dispersed sample distributions and en-

275 hancing contrast. The results indicate that SERT’s performance

273 273 remains robust within the parameter range (0, 1), with RMSE

270757 02 03 04 05 06 07 08 09 270757 02 03 04 05 06 07 08 09 differences confined to 0.1.

(a) Transfer Loss Weight (b) Temperature Parameter 2) Training Data Volume: Figs. 7(c)-(d) depict the impact

e o of varying training data volume for either the source or

S 2c0] & M8 target city on SERT’s performance on the target city’s test

8 4 2 1 . 30 7 3 1

(c) Source City Data Volume (Months) (d) Target City Data Volume (Days)

Fig. 7. Evaluation of SERT’s sensitivity to various hyperparameter settings
and available data amount.

The traffic flow prediction results of SERT and its variants
are shown in Table VI. SERT based on ResNet achieves the
best performance. SERT-ViT performs better in a few tasks
but is slightly inferior to SERT overall, mainly because ViT’s
unique operation of splitting input images into patches makes
it difficult to capture pixel-level details, especially for high-
resolution images such as satellite imagery [54]. SERT-VGG
exhibits the worst performance due to the absence of residual
connections found in ResNet, which increases the risk of
gradient explosion or vanishing and makes the model prone to
overfitting. Therefore, this paper adopts ResNet as the default
backbone for the Image Encoder.

D. Sensitivity Analysis

We analyze the influence of critical hyperparameters on
the performance of SERT, including: the transfer loss weight
w as defined in (11); the temperature parameter introduced
in Algorithm 1; the volume of training data available for
both source and target cities; the methodology employed for
computing regional feature similarity as described in (8); and
the size of the region.

1) Transfer Loss Weight and Temperature Parameter:
Figs. 7(a)-(b) demonstrate the performance of SERT on the
validation set of the target city concerning variations in the
transfer loss weight and the temperature parameter, utilizing
the Bike-7days datasets. The transfer loss weight balances
the traffic flow prediction loss against the knowledge transfer
loss in SERT’s objective function; higher values increase the

set, utilizing the Bike datasets. In Fig. 7(c), with the target
city training set fixed at 30 days, a decrease in source city
data results in a performance decline, suggesting that reduced
knowledge from the source city adversely affects outcomes.
In Fig. 7(d), with the source city training set fixed at 8
months, reducing the target city training set from 30 days to
3 days results in a more gradual performance decline, as the
model effectively compensates with source city knowledge.
However, when the target city data is limited to just 1 day,
performance significantly deteriorates due to the insufficient
data (only 24 time steps) for accurately capturing the target
city’s data distribution, resulting in substantial interference
from the source city’s data distribution. This observation
highlights the distribution discrepancies between domains and
emphasizes the necessity of contrastive domain adaptation to
align feature distributions across different cities.

3) Similarity Calculation Method: After extracting the aux-
iliary features of the regions, cosine similarity is used by
default to calculate regional similarity for matching region
pairs. To evaluate the robustness of SERT, we substituted the
cosine similarity metric with Euclidean distance and conducted
experiments. The results presented in Table VII demonstrate
that using either Euclidean distance (ED) or cosine similarity
(CS) has minimal impact on SERT’s final predictive perfor-
mance, indicating the model’s resilience to different similarity
metrics for assessing regional feature similarity.

E. Case Study

1) Effectiveness of Regional Feature Alignment: To evalu-
ate the effectiveness of contrastive domain adaptation in align-
ing regional features, we employed t-SNE [55] to project the
256-dimensional features of each region from both source and
target cities into a 2D space for visualization. This experiment
was conducted on the NY-Bike-7days-pickup datasets, with the
model trained for 10 epochs.

Fig. 8 illustrates the evolution of regional feature distribu-
tions throughout the training process. Initially, before domain
adaptation, a significant discrepancy exists between the feature
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Fig. 8. Evolution of regional feature distributions during the 10-epoch training process of SERT.
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Fig. 9. Comparison on regional knowledge utilization of CrossTReS and
SERT for three regions in the source city.

distributions of the two cities, attributed to factors such as
varying levels of urban development. As knowledge transfer
progresses, the features of the source and target regions grad-
ually converge, visually demonstrating the effectiveness of the
proposed contrastive domain adaptation in achieving feature
alignment between the regions. Notably, at epochs 5 and 9,
many source regions are sparsely distributed across the feature
space, without overlapping or forming dense clusters. This
phenomenon arises from treating dissimilar source regions as
negative samples in the contrastive domain adaptation pro-
cess, thereby increasing their distance from positive samples
through the L.4,. Consequently, the features of all regions
in the feature space are neither overly dense nor excessively
dispersed, effectively preventing model collapse.

2) Knowledge Selection Strategy: We compared SERT and
CrossTReS using real regional examples to highlight dif-
ferences in their knowledge selection strategies. CrossTReS
[14], as the pioneering approach proposing selective transfer,
utilizes meta-learning to assign weights to each source region,
reflecting its relevance to the target city. In contrast, SERT
filters out irrelevant source regions by extracting region-
specific features and establishing inter-region relationships.

The two strategies were evaluated using the NY-Taxi-30days-
pickup datasets. Fig. 9 presents the satellite images of three
specific regions in New York, annotated with: (i) Trips: total
annual taxi flow for the region; (ii) Weight: influence weight
attributed to the region by CrossTReS (a larger value indi-
cates higher regional importance); and (iii) Count: number of
target regions this region matches with in SERT. Additionally,
the rank of each value among all 460 regions in New York is
included (e.g., “top 0%” indicates the highest value). Based
on this comparison, the following observations can be made:

e CrossTReS tends to assign relatively high weights to

regions with limited traffic flow volumes (e.g., Region
E), while assigning lower weights to regions with sub-
stantial data (e.g., Regions F and G). Intuitively, regions

with more data should encompass richer spatial-temporal
knowledge and should and hold greater importance for
the target city, yet the actual weighting results from
CrossTReS diverge from this principle.

o In contrast, SERT leverages Regions F and G multiple
times, ensuring that knowledge from these regions is
extensively applied to the target city, while Region E is
excluded during the source region selection process due
to its limited knowledge.

We further conducted a statistical analysis across all regions
in New York to demonstrate that the aforementioned findings
are not isolated cases. On average, CrossTReS assigns a
weight of 0.092 to all source regions. For regions filtered out
by SERT, the average weight assigned by CrossTReS is
0.089, with 49.3% of these regions receiving a weight greater
than the overall average of 0.092. In contrast, SERT effec-
tively excludes these regions, with 65.8% of them exhibiting
significantly low data volumes.

The above analyses highlight SERT’s superiority over
CrossTReS in knowledge selection strategy. By eliminating
irrelevant source regions, SERT not only ensures higher-
quality knowledge transfer but also reduces the computational
cost associated with transferring extraneous knowledge. Fur-
thermore, SERT’s region-to-region transfer mechanism facil-
itates the application of selected knowledge to appropriate
locations in the target city, whereas CrossTReS lacks a
detailed analysis of this process.

VI. CONCLUSION

In this paper, we propose SERT, a novel transfer learn-
ing method designed to enhance traffic flow prediction in
data-scarce scenarios. By implementing fine-grained regional
transfer, SERT facilitates the transfer of relevant knowledge
from the source city to appropriate locations within the target
city. To establish inter-regional relationships, we incorporate
satellite imagery as auxiliary data to extract region-specific
features. We also propose a contrastive domain adaptation
approach that aligns features between matched regions and
mitigates the negative impact of unmatched regions. Experi-
ments on real-world datasets demonstrate that SERT outper-
forms state-of-the-art baselines in prediction accuracy while
maintaining exceptional computational efficiency.
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