
Data-Driven Pick-Up Location Recommendation
for Ride-Hailing Services

Zhidan Liu ,Member, IEEE, Hongquan Zhang, Guofeng Ouyang,

Junyang Chen , and Kaishun Wu ,Member, IEEE

Abstract—Ride-hailing service (RHS) has become an important transportation mode in our daily life. Although many works have been

proposed to improve RHS from different aspects, only few works focus on the selections of pick-up locations, where rider and driver

meet and start a trip. In this paper, we presentMPLRec, a data-driven pick-up location recommendation system that exploits riders’

specific mobility demands, e.g., destination, and historical experiences to meet riders’ travel requirements.MPLRec generates potential

pick-up locations over the road network and characterizes them with rich features that describe a location from the riders’ perspective.

We also build spatio-temporal indexes to organize potential pick-up locations and historical data for facilitating online recommending.

When processing an online recommendation request,MPLRec derives candidate pick-up locations and investigates them with

materialized features, which are computed from historical order and trajectory data while considering rider’s mobility demands. Based

on these features, a novel scoring function is used to derive the best pick-up location for each request. Moreover, we implement an RHS

simulator to evaluateMPLRec using large-scale practical ride-hailing datasets. Extensive experiments and simulations demonstrate

the effectiveness and efficiency ofMPLRec, which can complete each request within 0.5 s and largely reduce the ride-hailing costs

when compared to baseline methods.

Index Terms—Ride-hailing service, pick-up location, recommendation, mobility demand, spatio-temporal index
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1 INTRODUCTION

RIDE-HAILING service (RHS), e.g., Didi [1] and Uber [7], has
emerged as a novel on-demand transportation mode for

urban citizens. Different from traditional taxi services, RHS
allows a rider to easily hail a ride and timely track the vehi-
cle’s location with a smartphone, rather than standing at the
roadside to wait for an available taxi. By incentivizing pri-
vate vehicles to provide ride-hailing services, RHS also pro-
motes the sharing economy and enlarges the transportation
capacity of a city [38], [41]. With the great convenience and
flexibility, RHS becomes increasingly popular across the
world. According to a recent report, the global ride-hailing
service market will reach $126.52 billions in 2025 [4].

Tremendous research efforts have already been devoted to
improve the efficiency of RHS systems from various aspects,

e.g., order assignments to match ride-hailing orders with
drivers [25], [43], vehicle dispatching to balance supply and
demand across different locations [23], [41], incentive pricing
model to encourage more users and drivers [8], [29], safety
and privacy protection [30], [33], etc. while the problem of
docking riders and assigned drivers at the suitable pick-up
locations remains less explored. In fact, the pick-up location
in RHS matters a lot. Because pick-up locations will not only
determine the route planning, which can affect travel time
and ride-hailing fares, but also have much influence on users’
experiences, e.g., extra walking distance andwaiting time.

In the reality, most riders determine pick-up locations
based on their own experiences, while in an unfamiliar
environment riders tend to choose the adjacent curbside as
the trip origins. In the literature, there exist only a few
works focusing on the selections of pick-up locations [9],
[35], [51]. Most of existing works group historical pick-up
locations into clusters, and then recommend popular loca-
tion clusters that are the closest to riders [35], [51]. However,
these works have severely overlooked the rider’s destina-
tion while merely investigating walking distance or waiting
time of each candidate pick-up location. As a result, such
methods will recommend sub-optimal solutions that lead to
detoured routes yet not satisfy riders’ requirements on mul-
tiple metrics, e.g., walking distance to the recommended
pick-up location, waiting time for available vehicles, overall
travel time and the fare.

Some practical RHS systems, e.g., Didi [1], adopt a simi-
lar clustering based pick-up location recommendation
method. Fig. 1 illustrates a real ride-hailing example, where
the rider wants to take a ride to the nearby shopping mall
(i.e., the orange circle). The rider sends a request to the RHS
system (e.g., Didi in this example) at her current location
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(i.e., the blue circle) within our campus. Fig. 1(a) shows the
default pick-up location (i.e., the green circle) at adjacent
roadside, which is close to the rider, and the itinerary plan,
which incurs waiting time of 7mins, travel distance of
3.3 km, estimated travel time of 7mins, with a trip fare about
12.99 CNY. From Fig. 1(a), we see a clear detour in the route.
Due to the road network structure, the vehicle needs to make
a U-turn at some place and then heads to the destination. If
the rider is aware of this situation, she may set another pick-
up location to avoid such a turn around. In fact, she can walk
to another road intersection, and meets the assigned driver
there, as shown in Fig. 1(b). With this new trip origin, the
RHS system reschedules the itinerary plan, and we find that
all trip metrics are largely reduced. According to the new
itinerary plan, the rider would arrive at the destination
4mins earlier, while saving fare by 1.55 CNY. The only cost
is that the rider needs to walk 200m more, with estimated
walking time less than 1min. Such a case is common in our
daily life, where inappropriate pick-up locations cause sub-
optimal itinerary plans with detoured trips and terrible user
experiences. Through the analysis of real-world ride-hailing
datasets, we find that about 61.21% ride-hailing orders
undergo detoured routes (seemore in Section 2.2).

In this paper, we present the Multiobjective Pick-up Loca-
tion Recommendation system –MPLRec, which considers the
rider’s specific mobility demands and historical experiences
learned from massive ride-hailing data to recommend suit-
able pick-up locations for RHS systems. MPLRec generates
potential pick-up locations over a road network, and charac-
terizes them with rich features of traffic conditions, travel
accessibility to other locations, and ride-hailing hotness,
which indicates the probability of successfully hailing
vehicles at a location. To optimize online recommending,
MPLRec builds spatio-temporal indexes to organize potential
pick-up locations and historical data. Therefore, MPLRec can
efficiently investigate each candidate pick-up location using
its materialized features, which are derived from historical
orders and trajectories, and the rider’s specific mobility
demands, e.g., destination. We propose a novel scoring func-
tion, which considers ride-hailing hotness and distance-

related factors, to compute the best pick-up location for each
rider. Furthermore, we propose an assessment methodology,
which can generate realistic ride-hailing orders and vehicle
statuses and simulates the RHS operations, to comprehen-
sively evaluate pick-up location recommendationmethods.

The key contributions of this work are summarized as
follows.

� To the best of our knowledge, we are the first to con-
sider multiobjective pick-up location recommenda-
tion (MPLR) problem, which aims to recommend
suitable pick-up locations for satisfying riders’ multi-
ple demands in RHS.

� To address the MPLR problem, we propose MPLRec,
a data-driven system that can efficiently recommend
pick-up locations by exploiting the rider’s specific
mobility demands and historical ride-hailing order/
trajectory data.

� We implement an RHS simulator to simulate realistic
RHS operations and evaluate MPLRec using real-
world data.

� We have conducted extensive experiments and sim-
ulations to evaluate the performance of MPLRec
based on the large real-world ride-hailing datasets.
Results demonstrate the effectiveness and efficiency
of MPLRec, which can complete each recommenda-
tion within 0.5 s and largely reduce various costs
when compared to the baselines.

The rest of the paper is organized as follows. In Section 2,
we present the motivation and problem statement. Section 3
elaborates the design of MPLRec, and Section 4 introduces
the assessment methodology. The performance evaluation
is described in Section 5. In Section 6, we review and discuss
the related works. Section 7 finally concludes this paper.

2 MOTIVATION AND PROBLEM STATEMENT

In this section, we will first present some preliminary defini-
tions about ride-hailing service (RHS), and then analyze the
real-world ride-hailing datasets to motivate our work.
Finally, we formulate the problem of multiobjective pick-up
location recommendation. Table 1 summarizes the key nota-
tions used in this paper.

2.1 Preliminary

A typical RHS transaction involves three stakeholders, i.e.,
a rider, a driver, and the RHS system. The centralized
RHS system continuously receives ride-hailing orders
from riders, and assigns them to suitable drivers, who will
deliver riders from the specified pick-up locations to their
destinations, following the travel routes planned on a road
network.

Definition 1 (Road Network). A road network is denoted by a
directed graph GðV; EÞ, where each vertex v 2 V represents a
geo-location (e.g., road intersection), and each edge e 2 E repre-
sents a road segment that is associated with a weight distðeÞ,
indicating the length of road segment e.

Definition 2 (Ride-hailing Order). A ride-hailing order is
denoted by ri ¼ fi; tori ; ‘

o
ri
; ‘pri ; ‘

d
ri
g, where i is the order ID, tori

and ‘ori indicate when and where the rider places the order,

Fig. 1. A real ride-hailing example in our daily life, where different pick-up
locations lead to distinct itinerary plans with varied costs.
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while ‘pri and ‘dri are the pick-up location and destination of the
order, respectively.

Typically, once a ride is needed, the rider opens an RHS
APP, which can access current location ‘ori of the rider and
recommends potential pick-up locations to the rider. After
determining the pick-up location ‘pri and destination ‘dri , the
rider submits an order ri to the RHS system at time tori . To
serve order ri, the system searches nearby drivers, and then
assigns this order to an appropriate driver according to
some order assignment algorithms [31], [43]. Assume at
time tari , the driver accepts ri at location ‘ari , and then drives
to location ‘pri to pick-up the rider at time tpri . Following a
travel route planned by the RHS system, the driver will
deliver the rider to destination ‘dri at time tdri .

Based on above process, we can derive several major per-
formance metrics for order ri, which are important for RHS
systems:

� Walking distance Lw
ri
measures the road network dis-

tance the rider walks from ‘ori to ‘pri , i.e., Lw
ri
¼

distð‘ori ; ‘
p
ri
Þ.

� Waiting time Tw
ri
indicates how long a rider will wait

for the assigned driver, i.e., Tw
ri
¼ tpri � tori .

� Driving distanceLd
ri
is the travel distance between pick-

up location and destination, i.e.,Ld
ri
¼ distð‘pri ; ‘

d
ri
Þ.

� Driving time Td
ri
indicates the time a rider spends in

the ride-hailing vehicle, i.e., Td
ri
¼ tdri � tpri .

An RHS systemwill continuously log vehicle status while
serving the ride-hailing orders, primarily for the purposes of
fleet management and billing [23]. All status records of an
order form this order’s vehicle trajectory. Once the rider
finally arrives at the destination, she would pay for the ride-
hailing fare.

Definition 3 (Order’s Vehicle Trajectory). The vehicle tra-
jectory T ri of an order ri consists of a series of time-ordered
records, where each record includes a timestamp, a driver ID,
an order ID, and a GPS location.

Definition 4 (Ride-hailing Fare). The ride-hailing fare F ri of
an order ri is usually calculated based on driving distance Ld

ri
and driving time Td

ri
, i.e., F ri � ðLd

ri
; T d

ri
Þ.

Different RHS systems have different formulations to cal-
culate the fare F ri , while most fare formulations are directly
related with Ld

ri
and Td

ri
. As a result, a rider usually prefers

the shortest path with less driving time as the travel route
that is jointly determined by pick-up location ‘pri , destination
‘dri , and traffic conditions.

2.2 Data Description, Analysis, and Motivation

To attract collective efforts on improving the performance of
RHS, Didi’s GAIA initiative [2] has opened some anony-
mized datasets. We have obtained such datasets for this
study, including an order dataset and a vehicle trajectory
dataset. These data were collected by Didi from downtown
area of Chengdu city, China, in November 2016. Specifi-
cally, each record in the order dataset represents an order ri,
which consists of an order ID, time tari and location ‘ari of a
driver while accepting this order, billing time when the
rider paid for the order, and destination ‘dri . However, Didi
does not open the ordering locations and time for these
orders, mainly due to privacy concerns. The vehicle trajec-
tory dataset contains trajectory records of all orders, where
each trajectory record includes a driver ID, an order ID, a
timestamp, and a GPS location.

We link the two datasets through order IDs. Since Didi
starts logging trip details only when serving orders and
stops logging once riders arrive at their destinations, we
derive key information for each order ri as follows: the pick-
up time tpri and location ‘pri are the first timestamp and GPS loca-
tion, respectively, in order ri’s trajectory, while time tdri of arriving
at destination ‘dri are the last timestamp and GPS location in ri’s
trajectory, respectively.

After filtering out erroneous data due to hardware fail-
ures and invalid orders canceled by the riders, we have in
total 7065907 valid orders and their trajectories. In addition,
we download road information of Chengdu city from Open-
StreetMap (OSM) [5], and model the road network as a
graph GðV; EÞ that consists of 214440 vertices and 466330
edges, covering an area of more than 70 km2. With road net-
work graph G, we exploit FMM, a fast map matching algo-
rithm [44], to map all trajectory data to the roads, and thus
recover the travel route for each order.

Definition 5 (Order’s Travel Route). Order ri’s travel route
Rri is a sequence of road segments, indicating the path between
any two consecutive GPS locations in ri’s trajectory T ri .

Statistics About Didi’s Datasets.We analyze these data and
derive some statistical results about the datasets. Fig. 2(a)
shows the driving distance distribution of all orders, while
Fig. 2(b) shows the distribution of driving time. In general,
most orders are short trips, e.g., 80% orders can be com-
pleted within 15mins with driving distances shorter than
6 km.

TABLE 1
Summary of the Key Notations

Notation Description

GðV; EÞ Road network graph

distð�Þ A function to calculate road network distance

ri The ith ride-hailing order

‘ori Ordering location of order ri
tori Ordering time of order ri
‘pri Pick-up location of order ri
tpri Pick-up time of order ri

‘dri Destination of order ri

tdri Time of arriving at destination for order ri
Lw
ri

Walking distance for order ri
Tw
ri

Waiting time for order ri

Ld
ri

Driving distance for order ri

T d
ri

Driving time for order ri
T ri Order ri’s vehicle trajectory

F ri Ride-hailing fare of order ri
Rri Travel route for order ri
Dj 2 T The jth time slot of T ¼ fD1;D2; . . . ;D96g
si;j Travel speed of road segment ei in time slot Dj

pi 2 P The ith potential pick-up location in P ¼ fp1; p2; . . . ; pjEjg
hi;j Ride-hailing hotness of pick-up location pi in time slot Dj

Gi 2 G The ith grid inG ¼ fG1; G2; . . . ; Gmg
b Searching range

fð�Þ A scoring function to evaluate pick-up locations
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Fig. 3(a) plots the distribution of pick-up distances between
acceptance locations and pick-up locations. Didi indeed
assigns nearby drivers to serve orders, e.g., the pick-up dis-
tances of 40% orders are only within 100m and 80% orders
are within 2 km. On the other hand, the riders need to wait
for the assigned vehicles coming. As shown in Fig. 3(b),
although waiting time of 60% orders are within 10 s merely,
we still find that more than 30% orders incur long waiting
time, e.g., more than 5mins.

Motivation. As the trip origin, pick-up location is very
important for RHS systems since it will affect system per-
formance. First of all, as the meeting points for riders and
assigned drivers, pick-up locations will determine the
route planning. An inappropriate pick-up location may
result in a detoured route that will increase both travel
time and fare. Second, pick-up location will also affect
user experiences. Because a rider usually places the order
a bit earlier before the trip at other places, e.g., home or
workplace, it thus takes time for the rider walking to the
pick-up location. A far away location obviously introduces
more walking distance. In addition, different locations
across the city own varied probabilities to hail an available
vehicle [40], [47], [50], leading to different waiting time for
the riders. Lastly, the “visibility” of pick-up locations is
also crucial [9], [51]. In reality, drivers often communicate
with the riders multiple times before eventually finding
the right meeting points, as some pick-up locations cannot
be easily found.

Existing pick-up location recommendation methods pri-
marily consider riders’ current locations and recommend
the most popular locations, which are the clustering results
over historical pick-up locations [35], [40], [51]. These meth-
ods, however, largely overlook riders’ destinations, and
only derive sub-optimal solutions.

To investigate pick-up location recommendation perfor-
mance of real RHS systems, i.e., Didi [1], we analyze the
order data of November 18, 2016, the day having the most
served orders. After filtering out short trips with driving
distances less than 1 km, we have 191670 orders for the anal-
ysis. For each order ri, on the one hand we calculate its driv-
ing distance Ld

ri
using the travel route. On the other hand,

we compute the shortest path on road network graph G
with A* algorithm [21] between the pick-up location ‘pri and
trip destination ‘dri , and denote the length of the shortest

path as Lsp
ri
. We keep 149327 orders with

L
sp
ri

Ld
ri

� 0:8, while for

the other orders we consider that drivers may intentionally
choose different routes rather than the shortest ones.

For each reserved order ri, we try to recommend a new
pick-up location. First, we search the road segments within
500m of the trip origin ‘pri ,

1 and treat the midpoint of each
road segment as a candidate pick-up location. Then, we
calculate the shortest path between each candidate pick-up
location and the trip destination ‘dri using A* algorithm.
The overall travel distance Lrec

ri
is the sum of walking dis-

tance from ‘pri to candidate pick-up location and driving
distance to the destination. The candidate with the smallest
overall travel distance L̂rec

ri
is set as the recommended pick-

up location. The difference ðLd
ri
� L̂rec

ri
Þ is considered as the

detour distance, since drivers may detour a bit to the short-
est path, due to inappropriate pick-up locations. Fig. 4
shows the proportion of orders under various detour dis-
tances. According to the statistics, we have found better
pick-up locations for 61.21% orders, i.e., ðLd

ri
� L̂rec

ri
Þ > 0.

Particularly, we find that 33878 out of 149327 orders, i.e., �
22:69%, have detour distances larger than 500m, and
7.14% orders may travel 1000m more due to the poor
selections of pick-up locations.

In reality, due to unaware of road network structures and
traffic conditions, most riders can only blindly take RHS’s
recommendations as the pick-up locations, which severely
overlooks the impact of destinations on the selections of
meeting points and thus leads to detoured routes. For exam-
ple, riders may stand on the opposite sides of roads with
respect to the destinations, and as a result the drivers have
to detour to the shortest paths after picking-up the riders.
Furthermore, a rider may choose an inappropriate pick-up

Fig. 2. CDF of driving distances and driving time for all orders.

Fig. 3. CDF of pick-up distances and waiting time for all orders.

Fig. 4. Proportion of orders that have detoured routes due to inappropri-
ate pick-up locations.

1. Since Didi’s datasets do not contain the ordering location ‘ori of
each order ri, we thus try to recommend an alternative pick-up location
other than the original one ‘pri for order ri.
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location and cause the driver run into traffic congestion, due
to unaware of road traffics. Therefore, it is necessary and
important to recommend suitable pick-up locations for the
RHS systems, so that to provide conveniences for both
riders and drivers.

2.3 Problem Statement

Recommending pick-up locations should take riders’ desti-
nations into account, and meanwhile satisfy riders’ various
requirements: (i) People usually prefers the nearby and con-
spicuous locations, which will introduce less walking dis-
tances and are easily spotted by the drivers. (ii) The hot
spots with more ride-hailing vehicles passing by will be
more preferable, since the riders can easily hail a vehicle
there and thus avoid the long waiting time. (iii) Riders
essentially want to arrive at the destinations as soon as pos-
sible, in order to save time and ride-hailing fares.

In view of above demands, we study the multiobjective
pick-up location recommendation problem that is defined
as follows.

Definition 6 (Multiobjective Pick-up Location Recom-
mendation problem, MPLR). Given a road network G ¼
fV; Eg, historical ride-hailing orders and vehicle trajectories,
for each ride-hailing order r,2 MPLR problem aims to recom-
mend a suitable pick-up location for r, such that walking dis-
tance Lw

r , waiting time Tw
r , and ride-hailing fare F r can be

minimized.

Challenges. Despite benefits of pick-up location recom-
mendations for RHS stakeholders, it is non-trivial to address
theMPLR problem, due to the following challenges.

(1) Quantitatively evaluating pick-up locations from historical
data. Although we could collect massive ride-hailing order
and vehicle trajectory data, how to exploit such data to quan-
titatively evaluate and recommend potential pick-up loca-
tions while considering riders’ mobility demands remains
unexplored. As a result, it calls for devising a novel quantita-
tivemethod to comprehensively evaluate pick-up locations.

(2) Recommending efficiency should be guaranteed. Once a
pick-up location recommendation request is received, the
RHS systems should immediately recommend the best
pick-up location. While it will take much time to retrieve,
process, and analyze a large amount of data to finalize the
recommendations. Therefore, how to optimize the computa-
tions is important and challenging.

(3) Effective assessment mechanism for pick-up location recom-
mendations is missing. So far, there exist no tools or platforms
to assess pick-up location recommendation methods. It is
not an option to deploy such methods on real RHS systems
for conducting online tests, neither. Thus, how to assess the
effectiveness of pick-up location recommendations remains
a challenge.

3 SYSTEM DESIGN

To address the MPLR problem, we propose a data-driven
pick-up location recommendation system – MPLRec. In this
section, we first present the system overview, and then elab-
orate the design details of each module.

3.1 Overview

Fig. 5 illustrates the system architecture ofMPLRec. At high-
level, MPLRec takes the road network and historical order
and vehicle trajectory data as the input to generate and
characterize potential pick-up locations in an offline man-
ner. Based on learned historical experiences, MPLRec
searches and evaluates candidate pick-up locations for each
recommendation request,3 and recommends the one with
the highest score, which is computed using a scoring func-
tion customized for the MPLR problem, for the rider.

MPLRec mainly consists of two major modules, i.e., Off-
line Data Mining and Online Recommendation. More specifi-
cally, the Offline Data Mining module aims to generate and
characterize potential pick-up locations and index historical
data for facilitating online recommendations. First of all,
this module pre-processes all historical order and vehicle
trajectory data. Then, MPLRec treats the midpoints of road
segments as potential pick-up locations and characterizes
them with features learned from historical data. In addition,
MPLRec partitions the road network into grids using Geo-
hash [3], which is a convenient geocoding method, and sli-
ces time of the day into slots. Therefore, the potential pick-
up locations, orders and trajectories can be indexed from
aspects of space and time. Considering human mobility pat-
terns in a city, MPLRec further indexes historical orders via
their moving directions.

The Online Recommendation module exploits the indexes
to efficiently process online requests. Given a request r with
ordering time tor , ordering location ‘or , and destination ‘dr ,
this module first conducts a range query around ‘or to
retrieve a set of candidate pick-up locations. Then, it com-
putes features of each candidate from historical data,
including walking distance Lw

r , probability h to successfully
hail a vehicle, and ride-hailing fare F r. With a scoring func-
tion fð�Þ that takes feature Lw

r , h, and F r as the input,
MPLRec computes a score for each candidate pick-up loca-
tion, and recommends the one p� with the highest score for
request r.

3.2 Offline Data Mining

3.2.1 Data Pre-Processing

We clean all historical data by filtering out erroneous data
due to hardware failures and invalid orders canceled by the

Fig. 5. The framework ofMPLRec, where PL stands for pick-up location.

2. We omit the subscript of orders when the context is clear. 3. We name an order, which is not submitted yet, as a request.
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riders. For example, if the GPS locations or timestamps are
invalid, we will discard these records. Then, we perform
map matching on these trajectory data and meanwhile pro-
file road speeds by exploiting map matching results.

We link the orders and their corresponding trajectory
records through order IDs, and utilize the fast map match-
ing (FMM) algorithm [44] to transform each vehicle trajec-
tory to its actual travel route. During the map matching,
noisy and erroneous GPS locations cannot match any road
segment. Thus we will remove an order and its associated
trajectory data if several consecutive GPS records, e.g., > 3,
of this order’s trajectory records are wrong.

After map matching, we can obtain the travel path
between any two consecutive GPS locations of a trajectory.
Note that the travel path could be on one road segment or a
sequence of connected road segments. Thus, we can calculate
a travel speed s, which is the ratio between road network dis-
tance of the two GPS locations and time difference between
them, for the road segment(s). If a vehicle traveled multiple
road segments within the time interval, we will assign travel
speed s, along with the average timestamp of the two trajec-
tory records, to all of these road segments. By scanning all
trajectories and their travel routes, each road segment may
be assignedwithmany time-stamped travel speeds.

Considering the data sparsity issue, we slice time of the
day into a sequence of time slots with size of 15mins. We
thus have 96 time slots in total, i.e., T ¼ fD1;D2; . . . ;D96g.
For a given road segment ei, we classify travel speeds on ei
into time slots according to their timestamps, and calculate
an average speed si;j for each time slot Dj using speeds fall-
ing into Dj. In case a road segment ei is not covered by any
trajectory in time slot Dj, the speed si;j will be temporally
substituted by the average speed of this road segment in
previous four time slots. Once ride-hailing vehicles have
traveled on ei later, we will update si;j using the real data.
Later, we will treat these travel speeds as roads’ traffic con-
dition indicators when recommending pick-up locations.

In fact, more complex time model can be adopted to rep-
resent urban traffic patterns, e.g., considering day of the
week and time of the day [27], [28], while we consider time
of the day for simplicity, and leave time modeling of urban
traffic patterns as a future work.

3.2.2 Pick-Up Location Generation andCharacterization

Previousworks [9], [40], [47], [50], [51] generate pick-up loca-
tions by clustering historical pick-up locations, while the
resultant clusters may be sparsely distributed and largely
omit the riders’ specific requirements. Considering the
“visibility” requirement on pick-up locations, we propose to
recommend midpoints of road segments as the meeting
points for drivers and riders. On the one hand, pick-up loca-
tions along road segments can help drivers and riders easily
discover each other. On the other hand, such pick-up loca-
tions are densely distributed, and we could finally seek one
that will satisfy each rider’s mobility demands.

For the road network G ¼ fV; Eg, we generate a set of
pick-up locations P ¼ fp1; p2; . . . ; pjEjg, where pi is the mid-
point of road segment ei 2 E. To facilitate the future recom-
mendations, we characterize each pick-up location from the
following aspects.

(1) The shortest paths to other vertices in graph G. An impor-
tant concern about each pick-up location is the driving dis-
tance to the destination, which will not only determine the
travel time, but also affect the ride-hailing fare. Therefore,
we pre-compute the shortest paths between the midpoints
of any two road segments using A* algorithm [21], and
cache these paths for future query. As drivers and riders
usually prefer the shortest paths [8], while shortest path cal-
culation is time-consuming, thus pre-computing and cach-
ing all the shortest paths can accelerate pick-up location
recommendations. We cache these shortest paths in a hash
mapM, whereMði; jÞ stores the path between pi and pj. As
a result, the shortest path query takes Oð1Þ time merely [37].

(2) Ride-hailing hotness. Another crucial concern is how
long a rider needs to wait for available vehicles at a location.
Previous works [40], [47], [50] generally build statistical or
machine learning models for a specific location to estimate
the waiting time from historical data, however, such meth-
ods suffer from data sparsity. Since we may have insuffi-
cient data at some places, and as a result the derived
models have poor estimation accuracy.

Instead of building the waiting time estimators, we esti-
mate the chance of successfully hailing a vehicle at each
pick-up location. To this end, we will calculate a success
probability of ride-hailing, which is referred as ride-hailing
hotness in this paper. Considering human mobility patterns,
the number of available ride-hailing vehicles at a location
will change across time, we thus calculate a hotness hi;j in
each time slot Dj for potential pick-up location pi. We derive
hi;j by mining historical order and trajectory data.

Definition 7 (Ride-hailing Hotness). The ride-hailing hot-
ness hi;j of pick-up location pi in time slot Dj is defined as the
ratio between number ni;j of distinct vehicles passing by road
segment ei within Dj and a thresholdH, i.e., hi;j ¼

ni;j
H .

ThresholdH is a pre-defined system parameter, and could
be set according to the RHS’s requirements. For example, we
can set H as the maximum number of distinct vehicles
observed in a road segment within a time slot. We have calcu-
lated the ride-hailing hotness of a peak time slot for each road
segment in Chengdu city by using oneweek of historical data,
and visualize the results in Fig. 6, where we see that the hot-
ness varies greatly across different locations. Therefore, it is
necessary to take the success probability of hailing a vehicle
into account for recommending the pick-up locations.

3.2.3 Spatio-Temporal Indexing

Since we aim to recommend suitable pick-up locations by
leveraging massive historical data, thus it is necessary to
efficiently index potential pick-up locations, order and tra-
jectory data, which will benefit the frequent data retrieval in
online recommending. To this end, we divide the road net-
work into partitions and index potential pick-up locations
using Geohash [3]. In addition, we will index all historical
orders and trajectories from aspects of space and time.

Grid Based Pick-Up Location Indexing.We partition the road
network G into grids G ¼ fG1; G2; . . . ; Gmg, where m is the
total number of grids, with Geohash, and index pick-up loca-
tions, along with their locating road segments, using these
grids.
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Geohash is a public domain geocode system that can
encode a geographic location expressed by a pair of latitude
and longitude into a short alphanumeric string [3]. By
adopting base32 encoding, Geohash can be visualized as a
division of the Earth into 32 grids, each of which is recur-
sively divided into 32 grids until achieving the specified
level [18]. It defines the grid level z as the division that
results in hash codes of string length z, and each code covers
a delimited area on the Earth. As a result, the child grids of a
certain grid share the same prefix, i.e., the hash code of their
parent. In particular, a z ¼ 6 level hash code spans a grid of
area about 1.22 km� 0.61 km, covering approximately 1 km2

area, which is a suitable grid size for searching nearby pick-
up locations. We thus choose z ¼ 6 grid level to derive the
grid set G. Fig. 7 demonstrates some grids of z ¼ 6 level on
the Chengdu city’s road network, where the nine grids
share the same prefix, i.e., “wm6n8,” and all locations within
a grid, e.g., the middle one, own the same hash code, e.g.,
“wm6n89”.

Given pick-up location pi, we can derive its hash code
through the Geohash function geohashðpiÞ, and know its
locating grid Gj. Therefore, we can easily index all potential
pick-up locations using grids. Note that, we treat pick-up
location pi as a representative of its locating road segment
ei, thus road segments in G can also be indexed by grids G
as well. Specifically, for each gridGj, we index pick-up loca-
tions belonging to grid Gj using a list Gj:Lp, which is con-
structed according to their hash codes.

Ride-Hailing Order Indexing. We index historical orders
from the aspects of space and time, which can greatly accel-
erate order querying later. On the one hand, we exploit time
slot T to index orders according to their pick-up time. Spe-
cifically, for each order r with pick-up time tpr , we first
assign it to time slot Dj where tpr falls into. Then for all
orders generated within time slot Dj, we adopt B-tree struc-
ture to further index them based on their pick-up time. We
denote ride-hailing orders belonging to Dj as DDj

.
On the other hand, considering that people usually travel

with varied directions within a city, we thus propose to
index historical orders according to their travel directions
as well. We treat true north as the zero degree of travel
direction, and calculate the travel direction ur for each order
r using its pick-up location ‘pr and destination ‘dr . We further
split travel directions into interval Q of size 5	, i.e., 72

intervals in total, and assign all orders into direction inter-
vals according to their travel directions. We denote ride-
hailing orders belonging to direction interval Qj as DQj

.
Trajectory Indexing. For trajectory T r of order r, we store

and index its route Rr. Due to the huge size of trajectory
dataset, we directly adopt PostGIS [6], a spatial database
extender for PostgreSQL database, to store all trajectories
and routes. PostGIS uses the generic index structure (GIST)
to index a route by expressing it with a string constituted by
the ID sequence of road segments inRr and a geometry. Spe-
cifically, GIST is a balanced, tree-structured access method
that acts as a base template in which to implement arbitrary
indexing schemes, e.g., R-tree. The geometry of a travel route
is bounded with a minimum bounding rectangle [16], which
is then used as the key to index this travel route. The geome-
try representation of orders’ trajectories enables filtering-ver-
ification and can largely optimize the query efficiency.

3.3 Online Recommendation

OnceMPLRec receives a request r, which specifies the order-
ing time tor , ordering location ‘or, and destination ‘dr , the sys-
tem will first perform a range query around ‘or to obtain a
set of candidate pick-up locations, and then compute fea-
tures of walking distance, hotness, and estimated fare for
each candidate. Finally, MPLRec recommends the candidate
pick-up location with the highest score calculated from a
scoring function to the rider.

3.3.1 Range Query

Given a request r, MPLRec searches for nearby pick-up loca-
tions to build a candidate set Cr with searching range b.
According to the recent studies [40], [51], we set b ¼ 500m,
since people generally accept a maximum walking distance
as 500m. MPLRec exploits Geohash grids to construct Cr

with following three steps.

1 MPLRec computes the hash code, i.e., geohashð‘orÞ, for r

using its ordering location ‘or , and thus obtains the grid Gr

where ‘or locates. Based on the encoding rules, we can also
retrieve the neighboring eight girds around Gr using grids’
hash codes. The nine girds together form the candidate grid
set Cr.


2 We construct a square area, which is centered at order-
ing location ‘or with side length as 2� b. According to the
boundary of grids and the size of square area, we can nar-
row down set Cr by only keeping the grids that intersect
with the square area.

Fig. 6. The hotness distribution for Chengdu city’s road network in a
peak time slot, where the hotness of each road segment (i.e., pick-up
location) is calculated with one week of historical data.

Fig. 7. Illustration of Geohash based road network partitioning, and its
application for location based querying.
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3 Finally, we retain all potential pick-up locations in the
grids of Cr into set Cr as the candidates for further evalua-
tion, i.e.,

Cr ¼ f[Gj2CrGj:Lpg: (1)

Fig. 7 illustrates above steps to narrow down the search-
ing space for candidate pick-up locations of a request r,
where the rider locates in the middle grid with hash code
“wm6n89” and the potential pick-up locations in blue grids
are kept in the candidate set Cr for further evaluation.

3.3.2 Candidate Pick-Up Location Evaluation

Given the request r and historical data, we compute the fea-
tures, which are riders’ main concerns about ride-hailing, of
each candidate pick-up location, say pi 2 Cr, from the fol-
lowing aspects:

(1) Walking distance. A walking route from ordering loca-
tion ‘or to candidate pick-up location pi can be planned using
the A* algorithm [21], and thus we can calculate the walking
distance Lw

r;pi
¼ distð‘or; piÞ. Considering the maximum

acceptable walking distance, if Lw
r;pi

is larger than b, we sim-
ply remove pi out of Cr and continue to evaluate next candi-
date. Otherwise, pi is considered as a valid candidate for
further evaluation.

(2) Ride-hailing hotness. We determine the time slot Dj

where ordering time tor falls into, and try to compute the hot-
ness hi;j of candidate pick-up location pi within Dj. In partic-
ular, we propose to calculate a customized ride-hailing hotness
for request r, since Definition 7 counts all vehicles passing by
road segment ei of pick-up location pi, resulting in a general
hotness. Imagine that if all historical orders passing by ei
travel to directions that are different from r’s moving direc-
tion, the derived hotness seems meaningless for r as histori-
cal orders differ from the current case. We thus count the
number n̂i;j of distinct vehicles, which have passed by ei
within Dj and meanwhile share similar travel directions as r,
e.g., direction difference within a threshold a.

We derive n̂i;j by mining historical orders from three
aspects of time, location, and moving direction. First, we cal-
culate moving direction ur of request r using candidate pick-
up location pi and destination ‘dr . Then, we obtain candidate
ordersOr by exploiting time slot andmoving direction based
order indexes, i.e.,

Or ¼ DDj
\ f[b2BfDQb

gg; (2)

where set B contains the direction intervals that are
included by or intersected with moving direction range
½ur � a; ur þ a�.

Second, candidate order set Or may still include many
irrelevant orders, we thusmake use of the geometry of trajec-
tory index to further filter out orders.We construct one circle,
which is centered at pi with radius b ¼ 500m, and leverage
the ST_intersects function of PostGIS [6] to retain the orders,
whose routes’ geometries intersect with the circle. These
retained ordersmay pass through the nearby area of pi.

Finally, we scan the route string of each retained order
and only keep these orders in Or, whose route strings con-
tain the ID i of rode segment ei. After above operations, n̂i;j

is set as the number of orders in Or, i.e., n̂i;j ¼ jOrj. We thus

calculate the customized ride-hailing hotness as hi;j ¼
n̂i;j
H .

Although there are numerous historical orders to be exam-
ined, we find that spatio-temporal index based filtering-ver-
ification is quite efficient, which can be completed around
160ms (See Section 5.2).

(3) Estimated ride-hailing fare. As the fare F r;pi is highly
correlated with the driving distance Ld

r;pi
and driving time

Td
r;pi

, which starts the trip at candidate pick-up location pi.
Thus, we will estimate Ld

r;pi
and tdr;pi , and then estimate the

fare F r;pi .

� Driving distance.Wefirstmap destination ‘dr to the clos-
est road segment edr , and thus derive its midpoint pdr .
Then, we retrieve the shortest path Ri;dr ¼ Mði; drÞ,
which links the midpoints of road segment ei and edr ,
from the cache. Therefore,we calculate the driving dis-
tanceLd

r;pi
for request r asLd

r;pi
¼ distðRi;drÞ.

� Driving time. Given the trip origin pi, destination ‘dr ,
and the travel route Ri;dr , we aim to estimate the
travel time by considering general road traffic condi-
tions. Although there exist some estimated travel
arrival (ETA) methods [39], [45], which exploit deep
learning models to mine massive historical travel
data for inferring ETA between any two locations, we
instead prefer a simple yet effective method to avoid
the cumbersome model training and predictions.
Given the route Ri;dr and road traffic conditions that
are dynamically updated from historical trajectory
data, we can estimate the travel time of routeRi;dr as

Td
r;pi

¼
X

ez2Ri;dr

distðezÞ
sz;j

; (3)

where j is the index of time slot ordering time tor falls
into, and distðezÞ returns the length of road segment
ez or the part covered by route Ri;dr . For simplicity,
we use road travel speeds of time slot Dj for driving
time estimation.

In our implementation, we directly adopt Didi’s fare for-
mulation [1] to estimate the fareF r;pi

4 for request r if the rider
chooses pi as the pick-up location. Specifically, Didi favors
more about the driving distance than the driving time, and
calculates ride-hailing fares with the following equation:

F r;pi ¼ Ld
r;pi

� 1:10þ Td
r;pi

� 0:20: (4)

3.3.3 Pick-Up Location Scoring and Recommending

Once we have calculated the features for each candidate
pick-up location, we need a mechanism to comprehensively
evaluate all candidates and recommend the best one to the
rider. Considering the relationship among walking distance
Lw
r;pi

, ride-hailing hotness hi;j, and fare F r;pi , we define
the scoring function fð�Þ to investigate each candidate
pick-up location pi as follows:

fðpiÞ ¼ ’ � hi;j þ ð1� ’Þ � 10

Lw
r;pi

� 1:25þ F r;pi

; (5)

4. We simplify the formulation by omitting the flag-down price and
these time-dependent pricing factors for fair and direct comparisons later.
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where ’ is a system parameter and satisfies 0 � ’ � 1. Since
people usually prefer to walk less, we thus assign a larger
weight (i.e., 1.25) for walking distance Lw

r;pi
than driving dis-

tance Ld
r;pi

(i.e., 1.10 in Eq. (4)). Specifically, the first term in
Eq. (5) measures the probability of successfully hailing a
vehicle at location pi, while the second term in Eq. (5) trans-
forms the costs of time and travel distances into ride-hailing
fare. Therefore, we introduce ’ to balance the impacts of
hotness and distance-related factors.

We calculate a score for each candidate pick-up location
with Eq. (5), and return p� ¼ argmaxpi2Cr

fðpiÞ, as the rec-
ommended pick-up location for request r.

4 ASSESSMENT METHODOLOGY

To validate and assess MPLRec under practical settings, we
design and implement an RHS simulator, which can gener-
ate realistic ride-hailing orders by mining real-world order
and trajectory data and manage a fleet of vehicles to serve
these orders.

4.1 Data Generation

For an RHS system, ride-hailing orders and vehicle statuses
are the two most important input data sources. To simulate
practical RHS transactions, the simulator is designed to
learn the distribution of real-world orders on the road net-
work over time of the day and the mobility patterns of ride-
hailing vehicles. For a simulation, we will select a specific
date and leverage the order and trajectory data of that date
to generate orders and initialize vehicles statuses.

Generating Ride-Hailing Orders. We take orders generated
at road segment ei 2 E within time slot Dj 2 T as an example
to illustrate how we generate realistic ride-hailing orders by
mining historical data. Similar as previous works [32], [35],
[47], [50], we assume the arrivals of orders on road segment
ei approximately follow a Poisson distribution (with parame-
ter �i

j) during time slot Dj. We count the numberNi
j of orders

that originated from ei within Dj in the order dataset, and
compute the parameter �i

j as

�i
j ¼

Ni
j

jDjj
; (6)

where jDjj indicates the size of time slots.
For each generated ride-haling order r, we enrich its

details as follows. The Poisson distribution assumes r is gen-
erated at pi, i.e., the midpoint of road segment ei, with a ran-
dom timestamp within Dj, which is the ordering time tor of r.
Other than directly adopting pi, we generate the ordering
location ‘or as a random point on a road segment within a
circle area, which is centered at pi with radius b ¼ 500m. To
generate the destination for r, we mine historical data to
derive transition patterns of trips originated on road seg-
ment ei. Specifically, we construct a vector Bj

i , whose ele-
ment bjik (k ¼ 1; 2; . . . ; jEj) indicates the transition probability
of riders, who had taken a ride-hailing vehicle on road seg-
ment ei and traveled to road segment ek. Probability bjik is
calculated as

bjik ¼
Nik

j

Ni
j

; (7)

where Nik
j is the number of historical orders that originated

from ei and destined to ek during Dj. Thus, we generate des-
tination ‘dr for order r based on the transition probability
vector Bj

i , and set the midpoint pk of selected road segment
ek as the destination ‘dr .

Note that historical order dataset only contains orders
that have been successfully served, while those unsatisfied
orders are not recorded. To consider this situation, we intro-
duce parameter h for the simulator, which will generate h

times the number of orders observed in the dataset. For
example, the simulator will generate h�Ni

j orders for road
segment ei within time slot Dj.

Updating Vehicle Statuses. To simulate the practical
scenario, we initialize ride-hailing vehicles by referring to
the trajectory data of a specific experiment date. Specifically,
we select a date and a particular time t0 of that date, and
treat vehicles appearing in the trajectory records within a
time range ½t0 � 5; t0 þ 5� (mins) as the testing vehicles. The
last location of each vehicle appearing in the trajectory
records is set as its initial location. In addition, we assume
all testing vehicles are vacant at the beginning of a simula-
tion. Each vehicle is managed by the RHS’s centralized plat-
form, and will serve an assigned order following the
scheduled route, or cruise to a nearby road segment ei,
which is within 1 km and has a high probability of meeting
potential riders, e.g., with a large number Ni

j of observed
orders within time slot Dj. The cruising strategy simulates
real-world taxi drivers, who will drive to hot spots for seek-
ing future passengers [12], [34], [47], [48].

4.2 Workflow of Simulator

Fig. 8 presents the framework of RHS simulator, which takes
road network and historical order/trajectory datasets as the
input to generate synthetic data and simulates an RHS sys-
tem’s operations. The RHS simulator consists of twomodules,
i.e., Data Generation and RHS Platform. Given an experiment
date and start time t0, the Data Generation module initializes
the status of testing vehicles, and continuously generates real-
istic orders, as explained in above subsection. On the other
hand, theRHS Platformmodule recommends suitable pick-up
location for each request, and serves this request once it is sub-
mitted by the rider. Next, we explain the simulationworkflow
for each generated request r as follows:


1 Once a ride is needed, a rider will open the RHS App,
which can access the rider’s current location ‘or , and inputs
the destination ‘dr . After knowing ‘or and ‘dr , the PL Recom-
mender component of RHS platform tries to recommend a

Fig. 8. Framework of the RHS simulator for investigating pick-up location
recommendation methods, where PL stands for pick-up location.
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suitable pick-up location by executing some pick-up location
recommendation methods, e.g., our MPLRec or any other
alternative methods like recommending nearby popular
pick-up locations [9], [35], [51]. The recommended pick-up
location then is displayed on the RHS App, while the rider
confirms this location ‘pr as the trip origin and submits an
order r ¼ fi; tor; ‘or; ‘pr; ‘drg to the RHS platform, which assigns
this order with an ID i.


2 After receiving order r, the Order Dispatcher compo-
nent will query nearby vacant vehicles, and assigns this
order to the nearest available vehicle (advanced order
assignment algorithms can be adopted to maximize certain
utility [43]). For each order-vehicle match, the Route Plan-
ning component will first plan a shortest route for the
assigned vehicle to the pick-up location ‘pr , and then calcu-
lates the shortest path Rr to order r’s destination ‘dr once
the rider gets in the vehicle. These shortest paths can be
pre-computed and cached to improve the simulation
efficiency.


3 Similar as real-world RHS systems, the Monitor com-
ponent continuously updates and records vehicle statuses
with an interval of 10 s. These vehicle statuses, e.g., instant
location, are mainly influenced by road traffic conditions.
For simplicity, we use road travel speeds calculated from
trajectory records of the experiment date to simulate the
real-time road traffic conditions. Therefore, the Traffic Esti-
mation component stores the time-slot indexed travel speeds
for all road segments in G, and the simulator can easily get a
travel speed sk;j for a road segment ek and time slot Dj cur-
rent simulation time falls into. As a result, the Monitor com-
ponent can update the instant locations of a vehicle
according to its travel route and road traffic conditions.


4 Once the vehicle arrives at order r’s destination ‘dr , the
Pricing model will calculate the ride-hailing fare F r for r. In
general, the fare F r is computed based on the driving dis-
tance and time. Although some complicated pricing mod-
els [8], [29] can be used, we adopt Didi’s pricing model, i.e.,
Eq. (4), for calculating orders’ fares in the RHS simulator. In
addition, once the order r is completed, the Monitor compo-
nent will supplement other details to the order r’s record,
e.g., the time tdr arriving at destination ‘dr . These order details
can be used for computing some performance metrics, e.g.,
driving distance and driving time.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of MPLRec by
conducting data-driven experiments and simulator based
simulations.

5.1 Experimental Setup

We make use of the Didi’s datasets, which have been intro-
duced in Section 2.2, and Chengdu city’s road network,
downloaded from OpenStreetMap [5], for the performance
evaluations. We keep the data of last week for testing, while
the remaining data are used for calculating ride-hailing hot-
ness of potential pick-up locations and profiling road
segments’ speeds.

Baselines. We compare MPLRec with the following
methods:

� GT is the real data, which serves as the benchmark of
a practical RHS systems’ strategy for recommending
pick-up locations. We can derive performance met-
rics from the order details and trajectory data in the
datasets.

� Closest will recommend the closest pick-up location,
i.e.,midpoint of the road segment closest to the rider’s
current location. In general, when people need a ride
at unfamiliar places, they usually choose the road seg-
ment that is the closest to themselves as the location to
wait for taxis.

� Prob calculates a probability of successfully hailing a
vehicle, like our ride-hailing hotness, for each poten-
tial pick-up location by mining historical trajectory
data. Given a rider’s ordering location, this method
queries nearby pick-up locations, and recommends
the one with the highest probability [40], [50]. Typi-
cally, this method allows a rider to get a vehicle
quickly, and thus reduces waiting time.

� Cluster classifies historical pick-up locations, which
are within a searching range of the rider’s ordering
location, into clusters by exploiting some clustering
algorithms, e.g., K-means [17], and recommends the
one that satisfies some conditions [35], [51], e.g., clos-
est to the rider’s location.

� Shortest calculates the overall travel distance, includ-
ing both walking distance and driving distance, for
each candidate pick-up location, and recommends
the one with the smallest overall travel distance.
Based on the road network graph G, this method uti-
lizes the A* algorithm [21] to plan a route that traver-
ses the ordering location, candidate pick-up location
and the destination.

Performance Metrics. For data-driven experiments, we
adopt the metrics of driving distance, driving time, walking
distance, hotness, ride-hailing fare, and average score calcu-
lated using Eq. (5) to evaluate all methods. For simulator-
based simulations, we utilize two additional metrics of
waiting time and order completion rate to compare different
methods. Specifically, waiting time is the time interval
between ordering time tor and pick-up time tpr for each order
r. The order completion rate is the ratio between the number of
served orders and the number of totally received orders. In
general, RHS systems try to serve all ride-hailing orders,
while some orders may not be served due to insufficient
vehicles.

Implementation. We implement MPLRec and the other
baseline methods in Java. We set the searching range b as
500m for all methods. In addition, we set the number of
clusters as K ¼ 9 for the Cluster method. We configure
MPLRec as follows: the size of time slot is 15mins; road net-
work G of Chengdu city is partitioned into 130 grids using
Geohash; the similar direction threshold a ¼ 30	. To calcu-
late the relative hotness for a request, we set threshold H as
the maximum number of vehicles passing by all candidate
road segments. By default, we set ’ ¼ 0:70 to balance the
impacts of hotness and distance-related factors in Eq. (5).
For the RHS simulator, we generate h ¼ 1:50 times of the
number of observed orders for each road segment.

The evaluation experiments are all conducted on a server
with CPU of Intel(R) Core(TM) i7-10700 K 3.80 GHz and

1010 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 2, FEBRUARY 2024

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 21,2024 at 07:41:14 UTC from IEEE Xplore.  Restrictions apply. 



memory of 16 GB. We report the average of 5 runs as the
experiment results.

5.2 Data-Driven Experiments

Impact of Parameter ’. First, we explore the impact of param-
eter ’ on the scoring function fð�Þ, which balances the rela-
tionship between hotness and distance-related factors. In
principle, a larger ’ favors candidate pick-up locations with
higher relative hotness, i.e., working similarly as the Prob
method, while a smaller ’ tends to recommend candidates
with less driving distance and time, i.e., degrading into the
Shortest method. We thus use Eq. (5) to evaluate the pick-up
location recommendations of Prob, Shortest, and our
MPLRec, and present the average scores of different meth-
ods under various ’ settings, as shown in Fig. 9. In general,
the average scores of the three methods decrease when we
increase ’. When ’ ¼ 0:70, Prob and Shortest achieve the
similar score, which implies a good trade-off between hot-
ness and distance-related factors to select the suitable pick-
up locations. Therefore, we set ’ ¼ 0:70 for the following
experiments and simulations.

Comparisons on Different Metrics. We summarize the
experiment results of various methods on different metrics
into two day types, i.e., workday and weekend, and compare
them in Table 2. In general, each method derives relatively
larger driving distances Ld and driving time Td on workday
than weekend, possibly due to busier urban traffic on work-
days. Since ride-hailing fare F is mainly determined by
driving distance and driving time, the fares of orders on
workdays are also a bit more than orders of weekend.

From Table 2, we find that Closest always recommends
these pick-up locations with the fewest walking distance
Lw, while Prob performs the best on the metric of hotness h.
In addition, Shortest can recommend the locations with the
fewest driving distances and driving time, and as a result, it
can save more money for the riders. In contrary, Cluster
achieves the moderate performance on these metrics.
Although our MPLRec does not perform outstandingly on
any individual metric, it can achieve the most comprehen-
sive and balanced performance on these metrics, by wining
the most times of second best results. For example, Shortest
indeed recommends some pick-up locations with the fewest
driving distances and time, while those recommended loca-
tions are less popular, as few ride-hailing vehicles have
passed by them in the historical trajectories. Fig. 10 further
compares the average scores of pick-up locations recom-
mended by different methods. We see that MPLRec has the

highest scores on both workdays and weekend. It also
implies that our scoring function fð�Þ in Eq. (5) can investi-
gate the comprehensive quality of candidate pick-up
locations.

We compare the performance of each method with the
ground-truth trajectory, i.e., GT, and calculate the propor-
tion of orders that have better performance than GT on each
individual metric, e.g., fewer driving distance/time or
higher hotness/score than GT. These statistics in Fig. 11 are
in accordance with the results in Table 2, e.g., Shortest out-
performs GT on distance-related factors while Prob beats GT
on the hotness. Different from these methods, MPLRec has a
well-balanced performance on these metrics.

Recommendation Efficiency. To recommend suitable pick-
up locations, MPLRec involves three key operations: (1)
range query that searches candidate pick-up locations within
a range b; (2) trajectory query that retrieves historical trajecto-
ries passing by each candidate pick-up location to calculate
its relative hotness; (3) route planning that computes a walk-
ing route and a driving route for each candidate pick-up
location. Noting that the driving route between any two
road segments has been pre-computed and cached, while
the walking route needs to be calculated just-in-time. We
summarize the average computation time for above opera-
tions in Table 3. It shows that these key operations can be
efficiently handled by MPLRec within only a few hundreds

Fig. 9. Impact of parameter ’ on recommendation scores of Prob, Short-
est, andMPLRec.

TABLE 2
Comparisons on Various Performance Metrics (Including
walking distance Lw, driving distance Ld, driving time Td,

hotness h, and ride-hailing fare F ) Among Different Methods

Day Type Method Lw (m) Ld (m) Td (s) h F

Workday

GT / 3854.69 890.94 0.48 7.21
Closest 83.64 3678.49 706.88 0.44 6.40
Prob 335.45 3730.49 705.82 1.00 6.46
Cluster 359.33 3714.54 770.21 0.56 6.65
Shortest 237.24 3353.46 660.88 0.39 5.89
MPLRec 325.05 3631.82 687.77 0.96 6.29

Weekend

GT / 3646.54 863.97 0.56 6.89
Closest 111.02 3544.76 674.27 0.53 6.15
Prob 333.32 3602.64 674.57 1.00 6.21
Cluster 358.25 3536.86 788.17 0.57 6.52
Shortest 238.97 3256.43 633.78 0.50 5.69
MPLRec 319.07 3485.89 654.76 0.95 6.02

The best result for each metric is marked in bold, while the second is marked
with underline.

Fig. 10. Comparisons on the recommendation scores derived by differ-
ent methods.
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of milliseconds, thanks to the spatio-temporal indexes that
accelerate the retrieval and processing of potential pick-up
locations, historical orders and trajectories. On average,
MPLRec can process each request with only 458.84ms and
382.25ms on workdays and weekend, respectively.

Case Study. Fig. 12 shows a concrete example, where
MPLRec recommends a better pick-up location than the
original one and thus significantly reduces the driving dis-
tance and time. Compared to actual order route (i.e., the
black line), the rider only needs to walk a distance of 207m
to the recommended location for hailing the vehicle, and
can save driving distance and time by 1573.82m (� 28:17%)
and 484.74 s (� 74:62%), respectively.

5.3 Simulations

Since human dynamics are not consistent across time and
demonstrate different mobility patterns [28], [41]. We thus
chose two periods of November 27 (Sunday) and November
28 (Monday), 2016, as experiment dates and time to evaluate
different methods under various mobility patterns. Specifi-
cally, we consider workday and weekend, and for each day
type we further select time periods to represent the non-peak
hours (e.g., 5:30AM-7:30AM) and peak hours (e.g., 7:30AM-
9:30AM). Therefore, we will consider varied scenarios of
four types, i.e., workday/non-peak hours (W-NP), workday/peak
hours (W-P), weekend/non-peak hours (NW-NP), and weekend/
peak hours (NW-P). For each scenario, we utilize real order
and trajectory data of corresponding time periods to gener-
ate synthetic data and initialize vehicle statuses for the
simulations.

Effectiveness of Order Generator. Fig. 13 has visualized the
distributions of real orders and generated orders on the
peak hours of a typical workday, where we see that gener-
ated orders share a similar heat distribution as the real
orders on the vast majority of locations. It implies that our
simulator can accurately learn riders’ mobility patterns
from historical order and trajectory data and generate realis-
tic orders for effective simulations.

Performance Comparisons. We compare the performances
of different methods using the RHS simulator and summa-
rize the average results in Table 4. Similar to the results in
Table 2, the five methods have quite similar performances
and relative rankings on the metrics of walking distance, driv-
ing distance, driving time, and hotness on both workday and
weekend. Different from Table 2, we consider the metric of
waiting time in the simulations, and we find that Cluster per-
forms quite well with relatively fewer waiting time.MPLRec
performs well on this metric as well, with close results as
the best one. Table 4 demonstrates that MPLRec achieves
the most comprehensive performance with pretty good
results across all metrics, and thus has the highest score
among the five methods.

We further compare order completion rates of different
methods under the four scenarios and show the results in
Fig. 14. In general, we find that there are more ride-hailing
vehicles on peak hours than non-peak hours across all simu-
lations. Except NW-NP scenario that has only about 180
vehicles, we usually have around 2500 vehicles for the other
scenarios. We thus find the order completion rates are quite
low for all methods in the NW-NP scenario. This is because
there are insufficient vehicles for serving all orders. In con-
trary, all methods can achieve almost 100% order comple-
tion rates in the W-NP scenario. Among the five methods,
Shortest can achieve the highest order completion rates in all
scenarios. Such a greedy method could finish each order

Fig. 11. Proportion of orders that outperform GT on each individual
metric.

TABLE 3
Computation Time (Unit:ms) for Each Key Operation in

MPLRec’s Pick-Up Location Recommendations

Day Type Range Query Trajectory Query Route Planning Total

Workday 83.53 164.81 210.50 458.84
Weekend 92.02 160.80 129.43 382.25

Fig. 12. A concrete example of pick-up location recommendation that
performs better than the actual order route on driving distance and time.

Fig. 13. Comparison on the distributions of real orders and generated
orders on the peak hours of a typical workday.
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with the fewest driving time (as shown in Table 4) and thus
can serve more orders given the same number of vehicles.
MPLRec has the moderate order completion rates, which are
actually quite close to Shortest’s results. The results in Table 4
and Fig. 14 demonstrate that our method can recommend
suitable pick-up locations for the riders, while still assuring
the efficiency of RHS systems.

6 RELATED WORK

Recommendations in Transportation.Numerous research efforts
have been made to provide recommendations for drivers or
riders to improve transportation services in urban cities. These
works can be classified into the following two categories.

(1) Recommendations for drivers. In the past decades, vari-
ous methods have been proposed to help drivers enhance
their services. By analyzing massive taxi GPS trajectory
data, traditional methods either recommend hot spots for
drivers to find potential passengers [10], [36], [40], [46], [47],
or plan the cruising routes for drivers to maximize the prob-
ability of “hunting” future passengers [11], [12], [13], [34],
[48]. As an example of the former works, TaxiRec [40] seg-
ments a road network into road clusters and proposes a
ranking-based extreme learning machine model to recom-
mend the candidate road clusters for taxi drivers to seek
passengers. As a representative of the latter works, Guo
et al. [13] recommend the right road segment to drivers at
every intersection by employing a force-directed approach
that considers rich features extracted from multi-source
urban data. In addition, Guo et al. [14] also explore the rela-
tionship between driver revenue and factors relevant to
seeking strategies, which could help drivers improve their
revenues in the ride-on-demand services. Recent works [19],
[20] tend to improve traditional methods by leveraging

deep learning models to learn passenger-hunting experien-
ces from historical data.

With the growing popularity of ride-hailing service
(RHS) that can be aware of both vehicle statuses and online
orders, increasing research interests [23], [26], [41] turn to
proactively dispatching vehicles to certain regions, where
vehicle supplies are insufficient for travel demands. Com-
pared to conventional ad-hoc recommendations for each
individual driver, the vehicle dispatching methods can bal-
ance supply-demand across different areas and maximize
the efficiency of RHS systems [23].

Different from above works, we aim to recommend suit-
able pick-up locations for riders in the RHS scenario. While
it is worthy noting that our pick-up location recommenda-
tions can also benefit drivers and RHS systems for improv-
ing the docking efficiency.

(2) Recommendations for riders. Research efforts of the other
category are devoted to improve users’ travel experiences in
transportation systems. In addition to locating potential pas-
sengers, taxi trajectory data can also implicitly help riders
know where to find available taxis [42], [47], [50]. For exam-
ple, Zheng et al. present a waiting time prediction method
that recommends some places for passengers to quickly find
vacant taxis [50]. In addition, Liu et al. implementHydra [24],
which provides personalized and context-aware multi-
modal transportation routes according to riders’ preference
and situational context. Besides, there exist not a few
works [22], [49] that aim to recommend next destination for
users given their personalized travel patterns.

In the literature, however, only a few works [9], [35],
[51] focus on recommending pick-up locations for riders in
the RHS scenario. Specifically, Chen et al. recommend a
set of locations as the alternatives of user’s common choice
to defend location inference attacks [9]. The other works
primarily cluster historical pick-up locations within a
searching range and recommend the clusters according to
estimated waiting time [35] or certain traffic factors (e.g.,
lane setting of the roads and identification difficulty) [51].
The technique details of [35], however, are quite unclear.
Our work differs from these works by considering the
multiobjective pick-up location recommendation (MPLR)
problem, which aims to recommend suitable pick-up loca-
tions by satisfying riders’ multiple mobility demands.
Furthermore, we propose an assessment methodology for
the MPLR problem by generating realistic ride-hailing
orders and vehicle statuses, which will inspire and benefit
future studies on the pick-up location recommendations
for RHS.

TABLE 4
Simulation Result Comparisons on Various Performance Metrics (Including walking distance Lw, waiting time Tw,

driving distance Ld, driving time Td, hotness h, and score) Among Different Methods

Method Workday Weekend

Lw (m) Tw (s) Ld (m) Td (s) h score Lw (m) Tw (s) Ld (m) Td (s) h score

Closest 93.91 325.61 3991.91 773.37 0.32 0.78 112.58 353.61 4082.38 791.56 0.42 0.87
Prob 331.69 247.14 3982.74 769.41 1.00 1.25 332.05 291.27 4053.55 787.66 1.00 1.25
Cluster 424.81 221.97 3989.96 853.50 0.52 0.83 405.85 268.77 4029.54 922.61 0.87 1.13
Shortest 234.38 264.24 3683.10 727.08 0.39 0.90 247.30 266.67 3752.37 745.23 0.46 0.96
MPLRec 325.69 246.93 3928.55 758.81 0.98 1.31 322.15 278.60 3984.85 774.93 0.98 1.33

The best result for each metric is marked in bold, while the second is marked with underline.

Fig. 14. Comparisons on order completion rates of different methods.
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Ride-Hailing Service. RHS has already become an impor-
tant transportation mode in our daily life, and various
research works have been conducted to improve the perfor-
mance of RHS systems from aspects of ride-hailing demand
prediction [38], order-vehicle matching [25], [43], vehicle
dispatching [23], [41], pricing model [8], [15], [29], safety
and user privacy [30], [33], etc. In this paper, we consider a
different problem, i.e., MPLR problem, which can improve
RHS’s efficiency and is compatible with those works.

7 CONCLUSION

In this paper, we study the multiobjective pick-up location
recommendation problem and present MPLRec. Different
from previousworks,MPLRec explicitly takes rider’s specific
mobility demands, e.g., destination, into account, and
exploits the experiences mined from historical order and tra-
jectory data to recommend suitable pick-up locations, which
can satisfy the riders’ various requirements in the RHS sce-
nario. Furthermore, we design and implement an RHS simu-
lator to generate realistic ride-hailing orders and vehicle
statuses for evaluating pick-up location recommendation
methods. Extensive experiments and simulations have dem-
onstrated the effectiveness and efficiency ofMPLRec.
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