
1

Joint Order Dispatching and Vehicle
Repositioning for Dynamic Ridesharing

Zhidan Liu, Member, IEEE, Guofeng Ouyang, Bolin Zhang, Bo Du,
Chao Chen, Senior Member, IEEE, and Kaishun Wu, Fellow, IEEE

Abstract—Dynamic ridesharing has gained significant attention in recent years. However, existing ridesharing studies often focus on
optimizing order dispatching and vehicle repositioning separately, leading to short-sighted decisions and underutilization of the
ridesharing potential. In this paper, we propose a novel joint optimization framework called JODR. By coordinating order dispatching and
vehicle repositioning, JODR enhances ridesharing efficiency while ensuring high-quality service. The core idea of JODR is to dispatch ride
orders with high demand in specific mobility directions to vehicles with sufficient available capacity, effectively balancing future supply
and demand in those directions. To achieve this, we introduce a novel mobility value function that can predict the long-term mobility
value of matching an order with its travel direction. By considering orders’ directional mobility values, service quality assessments, and
available vehicle capacities, JODR formulates the order dispatching as a minimum-cost maximum-flow problem to derive the optimal
order-vehicle assignments. Furthermore, the value function helps the intelligent repositioning of idle vehicles. Extensive experiments
conducted on a large real-world dataset demonstrate the superiority of JODR over state-of-the-art methods across various performance
metrics. These experimental results validate the effectiveness of JODR in improving the ridesharing efficiency and experience.

Index Terms—Dynamic ridesharing, order dispatching, vehicle repositioning, mobility value

✦

1 INTRODUCTION

D YNAMIC ridesharing services, offered by platforms like
Uber [2] and Didi Chuxing [1], allow multiple riders

with similar itineraries and schedules to share a single
vehicle to reach their respective destinations. With the wide
adoption of dynamic ridesharing, this form of shared mo-
bility has fundamentally transformed urban transportation,
offering convenient and efficient alternatives to traditional
modes of travel. Moreover, it brings forth various advan-
tages for urban cities, such as alleviating traffic congestion
and reducing energy consumption [52].

The fundamental goal of ridesharing systems is to ef-
ficiently connect available vehicles (i.e., supply) and spatio-
temporally distributed orders (i.e., demand), so that to max-
imize the number of served orders while guaranteeing
the service quality. If a ridesharing system can maintains
supply-demand equilibrium for the long term, the vehicle
supply could well serve all orders in time, thereby maximiz-
ing the order completion rate. Such an objective is mainly
determined by two essential tasks, i.e., order dispatching and
vehicle repositioning, both of which have great influences on

• Zhidan Liu is with Intelligent Transportation Thrust, System Hub,
The Hong Kong University of Science and Technology (Guangzhou),
Guangzhou, China, 511453. (E-mail: zhidanliu@hkust-gz.edu.cn)

• Guofeng Ouyang and Bolin Zhang are with College of Com-
puter Science and Software Engineering, Shenzhen University,
Shenzhen, China, 518060. (E-mails: {ouyangguofeng2021, zhang-
bolin2023}@email.szu.edu.cn)

• Bo Du is with Griffith Business School, Griffith University, Queensland,
Australia. (E-mail: bo.du@griffith.edu.au)

• Chao Chen is with State Key Laboratory of Mechanical Trans-
mission, Chongqing University, Chongqing, China, 400044. (E-mail:
cschaochen@cqu.edu.cn)

• Kaishun Wu is with DSA Thrust and IoT Thrust, Information Hub,
The Hong Kong University of Science and Technology (Guangzhou),
Guangzhou, China, 511453. (E-mail: wuks@hkust-gz.edu.cn)

the balance of supply and demand [42]. Specifically, order
dispatching aims to match orders with suitable vehicles,
where each vehicle owns remaining capacity for sharing
and the riders already in this vehicle have similar travel
route with the matched new order [24], [31]. Intuitively,
the decision of each order dispatching directly impacts the
spatial distribution of vehicle supply, which in turn affects
the outcome of future order dispatching decisions. On the
other hand, vehicle repositioning involves relocating idle
or underutilized vehicles to the areas where they are more
likely to receive future orders. This approach can potentially
help reduce riders’ waiting time, increase vehicle utilization,
and improve overall system efficiency [19]. Therefore, order
dispatching and vehicle repositioning are intricately linked
in dynamic ridesharing where the orders dynamically ap-
pear. Effective coordination between these two tasks plays
a pivotal role in guaranteeing a seamless and optimized
ridesharing experience for both riders and drivers.

Despite numerous research efforts aimed at enhancing
dynamic ridesharing, the majority of these works tend to op-
timize the two tasks separately. Some existing studies focus
on improving order dispatching performance by optimizing
specific objectives [4], [17], [24], [32], [43], [44], while others
concentrate on developing vehicle repositioning strategies
that redistribute vacant vehicles based on perceived supply
and demand [19], [26], [37], [53], [57]. However, the former
works often overlook the long-term impact of each order
dispatching decision and neglect the crucial role of vehi-
cle repositioning in balancing supply and demand. Mean-
while, the latter works primarily consider repositioning idle
vehicles and overlook the redistribution of underutilized
vehicles. Consequently, previous approaches tend to make
short-sighted decisions, failing to unleash the full potential
of ridesharing. Although some works [5], [12], [40] con-

2

sider joint optimization of order dispatching and vehicle
repositioning, focusing on ride-hailing services where each
vehicle serves one order. However, dynamic ridesharing is
much more complex, as vehicles can serve multiple orders
simultaneously, making these methods inapplicable.

To this end, we propose JODR, a Joint Order Dispatching
and vehicle Repositioning framework. JODR is designed to
optimize ridesharing efficiency while ensuring high-quality
service. By utilizing a batch-based processing model, JODR
collects a set of orders within a sliding time window and
then dispatches them to suitable vehicles, effectively coordi-
nating tasks of order dispatching and vehicle repositioning.

The core idea of JODR revolves around dispatching or-
ders with high demand in specific travel directions to these
suitable vehicles with sufficient capacity. By doing so, JODR
aims to balance future supply and demand in those direc-
tions. During the order dispatching process, several factors
are considered, including future demand in the order’s
travel direction, additional detour and waiting time caused
by ridesharing, and the remaining capacity of each vehi-
cle. This approach enables implicit repositioning of vehicle
supply through deliberate order dispatching. A key element
enabling this idea is the novel mobility value function V(·).
To model directional state changes in ridesharing activities,
we employ the Markov Decision Process framework. Specif-
ically, we utilize a deep reinforcement learning model’s
value network [35] to approximate the function V(·), which
predicts the long-term mobility value of matching an order
in its travel direction. Furthermore, we formulate the order-
vehicle matching problem as a minimum-cost maximum-flow
problem in network flow [8]. By applying optimization
methods, we can derive the optimal order-vehicle assign-
ments. Moreover, leveraging the insight of function V(·) on
identifying valuable travel directions, we enhance supply-
demand equilibrium by explicitly repositioning idle vehicles
towards directions with anticipated high future demand.

In summary, we make the following key contributions:

• We analyze the limitations of existing ridesharing
studies, and formulate the joint optimization prob-
lem of order dispatching and vehicle reposition in
dynamic ridesharing.

• We propose JODR, an innovative solution that effec-
tively coordinates the two tasks of order dispatching
and vehicle repositioning. By achieving a supply-
demand equilibrium, JODR enhances ridesharing ef-
ficiency while ensuring high-quality service.

• To implement JODR, we introduce a novel mobility
value function capable of predicting the potential
mobility values for different travel directions. We fur-
ther model the order dispatching as a minimum-cost
maximum-flow problem to determine the optimal
order-vehicle assignments.

• We conduct extensive experiments on a large real-
world dataset to investigate the efficiency and effec-
tiveness of JODR under various comparison and pa-
rameter settings. Experimental results demonstrate
that JODR significantly outperforms state-of-the-art
methods across a wide range of performance metrics.

The rest of this paper is organized as follows. Section 2
reviews the related works. Section 3 introduces the prelim-

inary of ridesharing and the problem statement. We elabo-
rate and evaluate JODR’s design in Section 4 and Section 5,
respectively. Finally, Section 6 concludes this paper.

2 RELATED WORK

Unlike traditional static ridesharing, a.k.a. carpooling [55],
where the information of both riders and shared vehicles
is known in advance, dynamic ridesharing has to serve
dynamically appearing ride orders by properly arranging
shared vehicles [17], [24], [31], [43], [44]. Dynamic rideshar-
ing is more aligned with real-world shared mobility applica-
tions, hence is our main focus. In this paper, we will partic-
ularly review the related works from two aspects, i.e., order
dispatching and vehicle repositioning, which are the two major
operations on determining the efficiency of ridesharing.

Order dispatching. Compared to ride-hailing that gen-
erally provides on-demand service for individual orders
[39], [42], order dispatching in dynamic ridesharing is more
challenging, as it involves multiple orders sharing a single
vehicle to travel together and split the cost of the trip
[18]. By matching orders with available vehicles, order
dispatching aims to optimize the overall system efficiency
while satisfying the requirements of all riders in terms of
waiting time, detour costs, and the deadlines of arriving
at destinations [4], [24], [25], [31], [32], [43], [44]. Existing
works on ridesharing order dispatching can be categorized
into real-time and batch-based methods.

Based on the first-come-first-served principle, real-time
solutions assigns each order to an available vehicle right
upon receiving the order [17], [24], [25], [29], [30], [31], [32],
[43], [46]. For each newly coming order, these methods first
search a set of candidate vehicles, and then determine the
best vehicle to serve this order based on some objectives
[27]. For example, Zheng et al. [31], [32] present T-Share,
which firstly searches the candidate vehicles through grid
index and then dispatches this order to the one with the
minimum increased travel distance. To improve T-Share,
Ma et al. [30] further incorporates quality-of-service as
the constraint for order dispatching. In addition, Liu et
al. [24], [25] develop a mobility-aware ridesharing system
called mT-Share. It constructs index structures for orders and
vehicles by exploiting both geographical information and
travel directions to refine candidate searching, and further
optimizes the route planning to improve computation ef-
ficiency. Inserting an order’s origin and destination into a
vehicle’s route without changing its current schedule is a
key operation for dynamic ridesharing. Tong et al. [44] thus
propose an insertion operator that uses a greedy strategy for
route planning, and further improve the insertion operation
by considering both online and predicted orders [43]. In par-
ticular, Wang et al. [46] have explored a special ridesharing
scenario with meeting points. While real-time methods can
swiftly respond to each order, they often face limitations
in accessing timely information during the decision-making
stage. As a result, these methods may overlook closely timed
information about orders and vehicles, leading to missed
opportunities for making optimal decisions.

Different from the real-time solutions, batch-based meth-
ods [4], [6], [59], [60] instead wait for a certain time interval,

3

which decides the batch size, before matching received or-
ders with available vehicles. Alonso-Mora et al. [4] propose
a two-step approach that firstly groups orders that can be
shared, and then assigns each group to an available vehicle
using the bipartite matching algorithm by minimizing the
total travel distance while serving all orders. In fact, the
bipartite matching algorithm has been adopted by vari-
ous batch-based methods, yet with different objectives, e.g.,
maximizing the platform’s revenue [59], [60], or minimiz-
ing total travel distances [6]. Nevertheless, these methods
typically involve enumerating all possible groups of orders
and validating the feasibility of each order group’s matching
with an available vehicle. This process incurs high time
complexity and significant response delays. The batch size
largely determines the computation efficiency [43]. Differ-
ent from these works, we divide a batch of orders based
on their travel directions, which can reduce computation
overheads greatly. Moreover, by jointly considering both
order assignments and vehicle repositioning, we achieve
substantial enhancements in ridesharing performance.

Vehicle repositioning. This task primarily focuses on
optimizing the distribution and relocation of idle or un-
derutilized vehicles to areas with high future demand [38].
We classify existing vehicle repositioning works into two
categories, namely explicit and implicit methods. Specifi-
cally, explicit methods proactively dispatch idle vehicles
across different areas, while implicit methods indirectly
redistribute idle or underutilized vehicles through demand-
aware order dispatching.

For explicit vehicle repositioning, traditional methods
usually focus on recommending cruising routes [23] or
popular locations [54] for vacant taxis, where they may
find passengers easily. With the wide availability of mo-
bility data, numerous data-driven approaches have been
proposed. These works build supply and demand models
by using historical data [33], and exploit different tech-
niques, e.g., receding horizon control [34] or combinatorial
optimization [51], to dispatch idle vehicles based on their
real-time locations and the predictions from the trained
supply/demand models.

Recently, many works tend to study the system-level
vehicle repositioning for better fleet managements [38]. In
particular, the majority of these works exploit deep rein-
forcement learning [35] to derive model-free vehicle repo-
sitioning policies [13], [14], [15], [16], [19], [22], [26], [37],
[48], [49], [50], [53], [57], [58]. For example, Lin et al. [19]
propose a contextual multi-agent reinforcement learning
framework to achieve explicit coordination among vehicles.
In addition, Liu et al. [26] present a context-aware vehicle
repositioning model by considering rich traffic contexts, e.g.,
road connectivity and external factors. Our work differs
from these works by incorporating both explicit and implicit
vehicle repositioning strategies to a sustainable supply-
demand balance over the long term.

There exist much fewer works that have considered
implicit vehicle repositioning in ridesharing [3], [11], [20],
[21], [24], [25], [43]. For example, Lin et al. [21] develop
a probabilistic demand-aware framework for order-vehicle
assignments and routing, aiming to maximize expected
number of served orders given the probability distributions
of future demand. In addition, mT-Share [24], [25] calculates

TABLE 1: Summary of key notations.
Notation Description

Gr =< Vr, Er > The directed graph of a road network
G A set of grids for the road network Gr

r A ride order
w A shared vehicle
∆sw The size of a sliding time window
V(·) A value function
v⃗ A mobility vector
C A mobility cluster
Tr A set of candidate vehicles for order r
v⃗g The grid-level mobility vector
Gf =< Vf , Ef > The flow network
U(i, j) The capacity of edge (i, j) in flow network
C(i, j) The cost of edge (i, j) in flow network

a probability map from historical order distributions and
proposes a probabilistic routing to guide shared vehicles to
meet potential riders. Similarly, Al-Abbasi et al. [3] incor-
porate historical travel demand and deep learning models
to implicitly dispatch vehicles. Different from them, we
achieve fine-grained implicit vehicle repositioning by con-
sidering the travel directions of orders.

Furthermore, Ge et al. [10] utilize elastic dummy orders
to promote or restrain ridesharing through order associa-
tion dispatching, in hope of achieving the supply-demand
equilibrium. Guo et al. [11] integrate vehicle routing and
order-vehicle assignments to optimize both operation cost
and service quality for autonomous mobility-on-demand
systems. Zhou et al. [56] present a robust optimization
based joint order dispatch and repositioning framework,
while it is applied for car-sharing rather than ridesharing.
Our work differs from these works by jointly considering
order dispatching and vehicle repositioning to improve the
efficiency and experience of dynamic ridesharing.

3 PROBLEM STATEMENT

In this section, we first present some definitions, and then
motivate our work with vivid examples. Finally, we formu-
late the joint optimization problem of order dispatching and
vehicle repositioning in the dynamic ridesharing scenario.
Table 1 presents the key notations used in this paper.

3.1 Definitions
Definition 1. (Road Network) A road network is denoted by a

directed graph Gr =< Vr, Er > with a vertex set Vr and an
edge set Er . Each edge (u, v) ∈ Er is associated with a weight,
indicating the travel time between vertex u and v.

To enhance order dispatching and vehicle reposition-
ing, the platform typically segments the road network into
distinct zones. Instead of utilizing complex clustering algo-
rithms to create these zones, we employ a simple yet effec-
tive method that organizes the road network into uniform
grids as a set G, similar as previous works [32], [43], [44].
Definition 2. (Ride Order) A ride order is represented as r =<

tr, or, dr, er, cr >, where vertex or ∈ Vr and dr ∈ Vr are
the origin and destination of the ride order, respectively. In
addition, order r is released at time tr with size cr, and ought
to be fulfilled ahead time er by delivering the cr riders of order
r from origin or to destination dr .

Definition 3. (Shared Vehicle) A shared vehicle is represented
as w =< ℓw, Sw, Cw >, where ℓw indicates the current

4

Motivation example

Route after inserting 𝒓𝟐

Route after inserting 𝒓𝟏

𝒓𝟏

𝒓𝟐

𝒘𝟏 (3/4)

𝒘𝟐 (1/4)

𝒓𝟑
𝒓𝟒

Fig. 1: A motivation example, where dashed circles repre-
sent the searching range, and the number a/c alongside each
shared vehicle w indicates the number a of riders already on
board and the capacity c of vehicle w.

location of vehicle w, while Sw and Cw are the schedule and
capacity of vehicle w, respectively.

In practice, a shared vehicle w is guided by the rideshar-
ing platform to serve suitable ride orders, following a well-
planned schedule Sw. In addition, we denote Rw the set of
ride orders currently being served by vehicle w.

Definition 4. (Schedule) The schedule of a shared vehicle w
is denoted as Sw = (ℓw, ℓ1, · · · , ℓn), which comprises an
ordered sequence of origins and destinations of orders in Rw.
A schedule is valid if (i) ∀r ∈ Rw, or should precede dr in
the schedule; (ii) ∀r ∈ Rw, vehicle w should deliver riders of
order r to destination dr no later than the deadline er ; (iii)
At any time, the total number of riders does not exceed the
capacity Cw of vehicle w, i.e.,

∑
r∈Rw

cr ≤ Cw.

In real-world, orders usually come in a streaming fash-
ion. Previous studies have demonstrated that the batch-
based order dispatching methods generally perform better
than these real-time based methods on finding the optimal
order-vehicle assignments [4], [47]. Therefore, in this study
we adopt the batch-based processing model, which collects
a batch of ride orders within a sliding time window of size
∆sw and then dispatches them to available vehicles.

3.2 Motivation

Despite the extensive research on ridesharing, the majority
of previous studies tend to focus on the separate opti-
mization of two crucial tasks: order dispatching and ve-
hicle repositioning. However, this isolated approach fails
to achieve a sustainable supply-demand equilibrium in the
long run, which is essential for optimizing ridesharing ef-
ficiency. Most previous order dispatching methods exhibit
a myopic perspective, while vehicle repositioning methods
often underutilize the capacities of all shared vehicles.

We explain above arguments using an example as shown
in Figure 1. Assume that two orders, i.e., r1 and r2, have
been sequentially received by the ridesharing platform
within the same sliding time window, and they have the
same destination, marked by a red flag in Figure 1. Within
their searching range, there are two candidate vehicles, i.e.,
w1 and w2, whose route, indicated by the solid blue line,
also terminates at the red flag. Both vehicles have the same
capacity as 4, while there are already 3 riders in vehicle w1

and 1 rider in vehicle w2. To serve order r1, a vehicle’s route

has to be rescheduled to the blue dashed line. While serving
order r2 does not alter the vehicle’s route, remaining as the
solid blue line.

For the real-time order dispatching methods, since order
r1 comes first, it is prioritized. By optimizing some metric
(e.g., minimizing the waiting time), r1 might be assigned
to vehicle w1, and r2 would be matched with vehicle w2.
While for the batch-based methods, since both orders fall
within the same time window, existing methods generally
generate some potential order groups (e.g., {r1}, {r2}, {r1,
r2} in this example), and then validate each group by trying
to insert its orders into each vehicle’s schedule. Although
batch-based methods may find the optimal order-vehicle
assignments, they usually incur extensive computations,
leading to delayed responses.

Some studies demonstrate that it is necessary to take
future travel demand into consideration when dispatching
the current orders to vehicles [20], [21], [24], [43]. Figure 1
shows that there are two newly coming orders, i.e., r3 with
1 rider and r4 with 2 riders, along the blue dashed line. As a
result, if dispatching vehicle w1 to serve order r1, as guided
by existing methods, vehicle w1 cannot serve the subsequent
orders r3 and r4 due to its full load. In this case, the best
solution turn to be that we dispatch w2 serve r1 and w1 to
serve r2. As vehicle w2 has sufficient available capacity, it
could successfully serve both orders r3 and r4 later. This
arrangement maximizes the utilization of shared vehicles.
However, it relies heavily on the availability of information
regarding vehicles and orders, including both current data
and future potential demand.

Hence, it is reasonable to expect the existence of a value
function V(·) that can predict the future demand value of
matching an order, thereby facilitating intelligent coordina-
tion between order dispatching and vehicle repositioning.
Previous approaches have implicitly approximated the func-
tion V(·) by calculating the probability of meeting future
orders [11], [20], [21], [23], [24], [25], [43], [54]. However,
such probabilistic methods tend to be inefficient. This is
because, from a vehicle’s perspective, relying solely on
the probabilities does not provide sufficient information to
determine whether future orders can be shared with the
current order and vehicle or not.

Unlike previous works, this paper takes a different
approach by considering the value of an order’s travel
direction. This choice is motivated by several factors. Firstly,
urban mobility exhibits distinct origin-destination patterns,
as highlighted in studies on human mobility [41]. These
patterns indirectly classify travel demand into different
mobility directions. Secondly, previous ridesharing research
[24], [25] has shown that incorporating mobility informa-
tion, such as travel directions, is crucial for optimizing
order-vehicle matching. Feasible and optimal matches are
more likely to occur between orders and vehicles traveling
in similar directions. Therefore, a value function V(·) that
can predict the potential mobility values of different travel
directions can provide valuable guidance for both tasks. By
following the suggestions provided by V(·), the ridesharing
platform can not only dispatch current orders to vehicles
but also implicitly adjust the distribution of vehicle supply
to better cater to future travel demand.

5

3.3 Problem Definition
To improve the long-term system efficiency, we consider the
joint optimization problem of order dispatching and vehicle
reposition (JODR for short) in dynamic ridesharing with the
assistance of potential value function V(·).
Definition 5. (JODR Problem) Given a set W of vehicles and

a set R of ride orders that dynamically arrive within a sliding
time window on a road network Gr, by leveraging a value
function V(·), the JODR problem aims to find the optimal
matching of ride orders and vehicles, such that the total future
value F(R,W) is maximized, i.e.,

F(R,W) = max
(r,w)

∑
r∈R

∑
w∈W

V((r, w)), (1)

subject to each optimal matching (r, w) meets the feasibility
condition that the schedule Sw for w serving r is valid.

The order dispatching problem in dynamic ridesharing
has been proven to be NP-hard in previous studies [6],
[43], [44]. Consequently, the JODR problem, which involves
dispatching both current and future orders, can be even
more challenging. Addressing this problem involves tack-
ling several challenges:

Firstly, the batch-based order dispatching model, while
capable of finding optimal order-vehicle assignments, often
leads to huge computation overheads. Improving computa-
tion efficiency is crucial for providing high-quality service.

Secondly, although the idea of value function V(·) is
appealing, instantiating such a function is challenging due
to dynamic nature of ridesharing. The multitude of possible
travel directions further complicates the design of V(·).

Thirdly, effectively managing available vehicles with
varying remaining capacities to fulfill a batch of orders,
each associated with distinct potential demand values, is
a complex task. Achieving the optimal solution necessitates
comprehensive modeling of both orders and vehicles.

4 DESIGN OF JODR

In this section, we first present the overview of JODR design,
and then elaborate the design of each module.

4.1 Overview
JODR operates by utilizing real-time information of shared
vehicles and ride orders to dispatch and redistribute avail-
able vehicles for serving dynamically arriving orders. The
main objective of JODR is to provide quality guaranteed
ridesharing service while balancing vehicle supply and
travel demand. Figure 2 illustrates the framework of JODR,
consisting of three major modules, namely Candidate Match-
ing, Mobility Value Function, and Value Aware Dispatcher.

• The Candidate Matching module searches a set of
candidate vehicles for each order that is received
within current sliding time window by leveraging
mobility information and geographical locations of
both vehicles and orders. A pair (r, w) of ride order
r and candidate shared vehicle w is termed as a
matching that assumes w could serve r. JODR assesses
the service quality of matching (r, w) by spuriously
inserting r into w’s schedule Sw to calculate the

Mobility Value Function

2

Framework

Orders

Candidate Matching

Historical

trip dataset

Value Aware Dispatcher

Idle vehicle

repositioning
MCMF based

order dispatching

Candidate assessment

Candidate searching

Mobility clustering

Directional

state s

order

Shared vehicles

Road network G

Vehicles

matching cost mobility value

value network 𝑉𝜃(∙)

idle vehicle

value

Fig. 2: The framework of JODR.
matching cost measured by the sum of additional
detour time and waiting time cased by ridesharing.

• To predict the long-term mobility value of a specific
travel direction, JODR leverages a deep reinforcement
learning (DRL) model’s value network in its Mobility
Value Function module. In practical usage, this mod-
ule utilizes mobility information from an order or a
shared vehicle to generate the directional state. This
state is then fed into the value network of the DRL
model to produce a value, representing the predicted
long-term mobility value associated with that par-
ticular travel direction. The value network serves as
the value function V(·) and is derived through offline
training on historical ridesharing trip data.

• Given all possible matchings and their respective
costs and mobility values, the Value Aware Dispatcher
module will dispatch each order to the most suit-
able vehicle over the long run. To this end, JODR
formulates the order dispatching as a minimum-
cost maximum-flow (MCMF) problem, and solves it
via optimization methods. Furthermore, this module
explicitly redistributes idle vehicles to neighboring
grids under the guidance of value function V(·),
anticipating to serve future orders quickly.

4.2 Candidate Matching
Compared with real-time order dispatching, the batch-based
solutions involve more orders and vehicles to be processed,
incurring much more computations. To speed up the re-
sponse on orders, JODR refines the set of candidate vehicles
for each order and evaluates each possible matching of an
order and an available vehicle. To this end, JODR divides a
batch of orders and available vehicles into multiple clusters
based on their travel directions. We refer to such a cluster
as mobility cluster, as it is formed by leveraging the mobility
information of orders and vehicles. Then, JODR determines
the set of candidate vehicles for each order within the same
mobility cluster by exploiting their geographic locations.
Lastly, JODR investigates possible vehicle schedules to cal-
culate the detour time and waiting time for each matching.

1) Mobility clustering: Intuitively, riders with similar
travel directions could share a vehicle, while riders who
have distinct travel directions should never be considered
for ridesharing as they will introduce significant detours.

6

Therefore, we think that mobility information is essential
for finding the most suitable vehicle to serve an order. Based
on this intuition, we propose the concept of mobility vector
that facilitates the division of a batch of orders and available
vehicles into mobility clusters.

Definition 6. (Mobility Vector) Mobility vector v⃗ is a vector
representation of an object’s travel direction, pointing from the
origin to the destination.

Therefore, mobility vector v⃗r of a ride order r is repre-
sented using its origin or and destination dr , i.e., v⃗r =<
or, dr >. In addition, mobility vector v⃗w of a vehicle w
with riders can be derived by using vehicle w’s current
location ℓw as the origin and the average destination ℓad,
which is the geometric center of all riders’ destinations, i.e.,
v⃗w =< ℓw, ℓad >.

To identify the ride orders that can share a vehicle
in terms of travel direction, a straightforward approach
is to applying some hierarchical agglomerative clustering
algorithms [36] to group orders based on their mobility
vectors. By initializing each order as an individual cluster,
agglomerative clustering recursively merges pair of clusters
in a bottom-up manner until a single cluster remains. This
approach, however, is computationally expensive, and in-
evitably prolongs the response time.

Instead, we devise a simple yet efficient mobility clus-
tering method. We arrange all orders according to their
release time, and classify them into mobility clusters in
a sequential manner. Specifically, the first incoming order
forms the initial mobility cluster, and each subsequent order
is either added to an existing mobility cluster or forms a
new one by itself. For each mobility cluster Ci, we calculate a
representative vector v⃗Ci , whose origin and destination are the
average values of origins and destinations of all orders be-
longing to cluster Ci, respectively. When a subsequent order
r appears, we calculate the directional similarity between
r’s mobility vector v⃗r and the representative vector v⃗Ci of
each mobility cluster Ci. To be specific, we employ cosine
similarity to calculate the directional similarity α between v⃗r
and v⃗Ci , i.e.,

α =
v⃗r · v⃗Ci

||⃗vr|| × ||⃗vCi ||
. (2)

For each order r, we calculate its directional similarity
with all existing mobility clusters, and choose the mobility
cluster C∗, which has the maximum similarity α∗ with r, for
further consideration. If α∗ > λ where λ is a predefined
parameter, order r is considered to be highly similar to the
travel direction of orders already present in cluster C∗. In
such a case, r is added to C∗; Otherwise, r will form a new
mobility cluster on its own. We repeat above operations for
all orders in the batch until each order has been assigned to
one mobility cluster.

After clustering the ride orders, we then assign the
available vehicles to existing mobility clusters based on
their own mobility vectors. For each available vehicle w,
we also compute its directional similarity with all mobility
clusters using cosine similarity, and add w to the cluster
having the largest directional similarity with w. Note that
we have no similarity constraint on adding vehicles into
existing mobility clusters.

2) Candidate searching: For each order r, we determine
a set Tr of candidate vehicles using constraints on both
travel direction and geographic location. On the aspect of
geographic location, we firstly determine order r’s locating
grid gr, and then search candidate vehicles for r from gr
and gr’s neighboring grids, denoted as set Gr . For each grid
g ∈ Gr , we retrieve a list g.Lw of available vehicles, which
are currently locating within grid g. On the aspect of travel
direction, we firstly determine the mobility cluster Cr that
contains order r, and then pick out the available vehicles in
cluster Cr , denoted as Cr.Lw. Then we establish the set Tr

of candidate vehicles for order r as follows:

Tr = {∪g∈Gr
g.Lw} ∩ Cr.Lw. (3)

Applying both directional and geographic constraints
allows for the early elimination of invalid vehicles from
the candidate set, resulting in significant computation cost
reductions for the order dispatching task.

3) Candidate assessment: Considering the quality of ser-
vice, we assess each matching (r, w) with a matching cost,
which is estimated as the sum of additional detour time and
waiting time incurred when vehicle w serves order r. To
derive this cost, we employ an insertion algorithm proposed
in [24] to calculate the detour time and waiting time for
each matching (r, w). Briefly, by spuriously inserting origin
or and destination dr of order r into candidate vehicle
w’s schedule Sw, we enumerate all feasible new schedules
that enable w to serve r, and calculate detour and waiting
time for each feasible new schedule. Finally, we choose the
minimum sum of detour and waiting time as the matching
cost for matching (r, w).

4.3 Mobility Value Function

We consider the ridesharing platform as an agent that uti-
lizes information from both orders and vehicles to achieve
a supply-demand equilibrium through efficient execution
of order dispatching and vehicle repositioning tasks. The
decision-making process of the agent can be modeled as a
Markov Decision Process (MDP), which provides a robust
framework for solving decision problems in uncertain envi-
ronments. By defining a set of states, actions, rewards, and
state transitions, we formulate the MDP problem for both
order dispatching and vehicle repositioning in the dynamic
ridesharing context.

4.3.1 Directional state

To prune the extremely large spatio-temporal space in-
volved in ridesharing, we discrete the dimensions of both
time and geographic locations. Specifically, considering the
patterns exhibiting in human mobility across time of the
day and day of the week [26], [41], [51], we divide the
time of each day into a series of time frames with size of
5 minutes. In addition, we consider the grid-level mobility
vectors for both orders and shared vehicles, so as to simplify
the computational complexity. For example, an object (e.g.,
an order or a vehicle) travels from grid 4 to gird 10, then its
grid-level mobility vector is denoted as v⃗g =< 4, 10 >.

Different from previous works that mainly capture ve-
hicle states [15], we propose directional state that encodes

7

State Transition
Diagram

𝑺𝒅𝒊𝒔𝒓

𝑺𝒕𝒓𝒂

𝑺𝒊𝒅𝒍𝒆

𝑆𝑟𝑒𝑝𝑜

𝑺𝒓𝒆𝒑𝒐𝒔

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨

①②

③

④

⑤

⑥

⑦

⑧

⑨

𝑆𝑖𝑑𝑙𝑒 𝑆𝑑𝑖𝑠𝑝 𝑆𝑠𝑒𝑟𝑣

Fig. 3: The state transitions among four types of states.

ridesharing activity information on different travel direc-
tions, which are represented by grid-level mobility vectors.
Specifically, we represent the directional state using a tuple
as s =< v⃗g, tf, dw >, where v⃗g is a grid-level mobility
vector constructed according to a given object’s mobility
information, tf is the time frame index, and dw is the day
of the week when the state occurs. There exist totally four
types of directional states as follows.

• Dispatching state indicates that along some given
direction an order has just been dispatched with a
vehicle. Given the assigned order r, we represent the
state’s grid-level mobility vector as v⃗g =< gor , gdr

>,
where gor and gdr

are the grids where order r’s origin
or and destination dr locate, respectively.

• Serving state indicates that along some given direc-
tion a vehicle w is now delivering on-board riders
by following the predefined schedule. Hence, we
represent the state’s grid-level mobility vector as
v⃗g =< gw, gad >, where gw is vehicle w’s locating
grid and gad is the grid where the average destina-
tion of all orders locates.

• Idle state indicates that along some given direction a
vehicle w is now vacant, and the grid-level mobility
vector of that travel direction is denoted as v⃗g =<
gw, gw >.

• Repositioning state indicates that along some given
direction a vehicle w is vacant and has been re-
distributed by the agent. We represent the travel
direction using w’s grid-level mobility vector as
v⃗g =< gw, gtar >, where gtar is the target grid
determined by the agent.

The four kinds of directional states are denoted as set
Sdisp, Sserv , Sidle, and Srepo, respectively.

4.3.2 Action

Given current state, the agent may accordingly apply some
action, either assigning an order to a vehicle or repositioning
an idle vehicle. To optimize vehicle redistribution effectively,
we restrict the target repositioning areas for a vehicle to
include its current grid and the neighboring grids.

4.3.3 State transition

A state transition represents the transfer of previous state
spre to current state scur after applying some action. Consid-
ering the actions that may affect vehicles’ travel directions,
there exist nine kinds of transitions among the four state
types, as illustrated in Figure 3. For a given concerned travel
direction, we describe these sate transitions as follows:

① Sidle → Sdisp: A vehicle traveling along the given
direction is dispatched with a new order when it is idle;

② Sidle → Srepo: If a vehicle has been vacant for a time
frame, i.e., 5 minutes, along the given travel direction, it will
be redistributed to another direction by setting a target grid;

③ Srepo → Sidle: A vehicle arrives at the redistributed
target grid while there are no suitable orders, then the
vehicle will become idle;

④ Srepo → Sdisp: A vehicle is traveling to the reposition-
ing target grid along the given direction, while the agent
dispatches a new order to this vehicle;

⑤ Sdisp → Sdisp: A vehicle is consecutively dispatched
with new orders within a time frame along the given direc-
tion;

⑥ Sdisp → Sserv : If no new order is dispatched within a
time frame after picking up the previously assigned order,
the vehicle will deliver on-board riders along the given
direction;

⑦ Sserv → Sserv : If no new order is dispatched to a
vehicle that serves riders within a time frame, this vehicle
will keep driving along the given travel direction;

⑧ Sserv → Sdisp: A vehicle is dispatched with a new
order when it is serving orders along the given travel
direction;

⑨ Sserv → Sidle: After the vehicle has successfully
delivered all riders to their destinations respectively, the
vehicle will become idle and still drive along the given
direction.

4.3.4 Reward
When a state is changed, it is rewarded accordingly. For
the purpose of balancing supply and demand among dif-
ferent travel directions, we only set positive rewards for
the following kinds of state transitions, i.e., Sidle → Sdisp,
Sserv → Sdisp, and Sdisp → Sdisp, which can bring valuable
changes to the ridesharing system, while giving zero reward
to the rest of state transitions. The intuition behind these
reward settings is to make the mobility value function V(·)
encourage proactive order dispatching and thus capture the
potential long-term values of all grid-level mobility vectors.

In this paper, we employ value network of a deep rein-
forcement learning model [35] to serve as the mobility value
function V(·), which computes the long-term mobility value,
i.e., expected discounted reward, in some travel direction at
any given time. By leveraging massive historical trip data
that contains rich information of ridesharing orders and
trips, we replay the ridesharing activities and collect all state
transitions, denoted as T . Later, we use these state transi-
tions to train the value network. Specifically, we denote Tp
as the set of state transitions receiving positive rewards, and
Tz = T \Tp is used to denote the set of state transitions with
zero reward. For each state transition spre → scur in set
T , we update value network using the one-step temporal-
difference (TD) method as:{

Vθ(scur) = 1 + γVθ(spre) ∀ (spre → scur) ∈ Tp,
Vθ(scur) = 0 + γVθ(spre) ∀ (spre → scur) ∈ Tz,

(4)

where γ is the discounted factor and θ represents the model
parameters. Accordingly, we obtain the TD error as:

δ =

{
1 + γVθ(spre)− Vθ(scur) ∀ (spre → scur) ∈ Tp
γVθ(spre)− Vθ(scur) ∀ (spre → scur) ∈ Tz

(5)

8

Algorithm 1: Value network training
1 Input: transition set T , discounted factor γ;
2 Initialize value network Vθ with random parameter θ;
3 Initialize target value network V̂θ with same parameter

of Vθ ;
4 for epi = 1 to max-episodes do
5 Sample a batch of samples (spre, scur , reward) from

T ;
6 Estimate mobility value Vθ(spre);
7 Estimate expected mobility value reward +

γVθ(scur);
8 Compute TD-error δ using Equation (5);
9 Update Q-network parameters using gradient

descent to minimize the loss in Equation (6);
10 if time to update the target value network then
11 Update parameters of V̂θ to match parameters of

Vθ ;

Based on above one-step TD method, we update the
value network Vθ(·) of the neural network approximation
using the bootstrapping form of existing Deep Q-learning
methods [35] by minimizing TD squared error for all state
transitions, i.e.,

min
θ

L(T ; θ) =
∑

(spre→scur)∈Tp

(1 + γVθ(spre)− Vθ(scur))

+
∑

(spre→scur)∈Tz

(γVθ(spre)− Vθ(scur))

(6)
Algorithm 1 presents the whole training process for

a value network Vθ(·). We adopt Double Q-learning [45]
to resolve the overestimation problem and obtain better
training stability. The training involves sampling transitions,
estimating mobility values, and updating network parame-
ters θ iteratively. A target network is periodically aligned to
stabilize training and thereby enhance the network’s ability
to predict mobility values.

After model training, we treat the learned Vθ(·) as the
mobility value function. By inputting a directional state s,
function Vθ(s) returns the long-term mobility value along
that travel direction, which is employed for order dispatch-
ing and vehicle repositioning in the ridesharing context.

4.4 Value Aware Dispatcher
The dispatcher intelligently matches orders with suitable
vehicles and redistributes idle vehicles to achieve a sus-
tainable supply-demand equilibrium. Both of these tasks are
facilitated by the utilization of mobility value function Vθ(·).

4.4.1 MCMF based order dispatching
Traditional ride-hailing works [39], [42] usually formulate
the order dispatching as a bipartite matching problem,
and attempt to maximize the utility by leveraging Kuhn-
Munkras (KM) algorithm [9]. However, the KM algorithm
can only match one order to one vehicle at a time, and as
a result is not suitable for the order dispatching in batch-
based ridesharing, where multiple orders within the same
batch may still be served by one vehicle.

Different from prior works, we model the order-vehicle
matching in ridesharing as a minimum-cost maximum-flow

(MCMF) problem to maximize the capacity utilization of all
shared vehicles. The MCMF problem is a classic optimiza-
tion and decision problem in the graph theory, which aims
to find the most cost-efficient way to transport flow through
a network. Typically, the flow network can be represented
as a directed graph Gf =< Vf , Ef > with a source vertex
s ∈ Vf and a sink vertex k ∈ Vf , and each edge (i, j) ∈ Ef
is associated with a capacity and a cost. Formally, we formu-
late order dispatching problem in ridesharing as an MCMF
problem as follows:

• Vertices and edges. Except the source s and sink k,
the remaining vertices in the set Vf can be classi-
fied into two categories, i.e., order vertices and vehicle
vertices, which encompass all candidate vehicles for
the orders of current batch. There exists a directed
edge from source s to each order vertex, and these
edges are denoted as source edges Es

f . Similarly,
there exists a directed edge from each candidate
vehicle vertex to the sink vertex k, and such edges
are represented as sink edges Ek

f . For each order-
vehicle matching (r, w), there exists a directed edge
from r’s corresponding vertex to w’s corresponding
vertex. The set of edges between order vertices and
vehicle vertices is denoted as Erw

f . In summary, given
a batch of orders R and their candidate vehicle set T,
the vertices and edges in the flow network Gf are
defined as:

Es
f = {(s, r)|r ∈ R},

Ek
f = {(w, k) | w ∈ T},

Erw
f = {(r, w) | r ∈ R; w ∈ T},
Ef = Es

f ∪ Ek
f ∪ Erw

f ,

Vf = R ∪ T ∪ {s} ∪ {k}.

(7)

• Edge capacity. The capacity U(i, j) of each edge
(i, j) ∈ Ef represents the maximum flow that can
pass through. In the ridesharing context, we set the
capacity values for edges in Es

f as U(i, j) = 1. This
is because each order can only be matched once.
In addition, the capacity values for edges in Ek

f are
determined based on the respective candidate vehi-
cle’s remaining seat amount, implying the number
of orders the vehicle can be matched with. Lastly, the
capacity values for edges Erw

f are set to 1, indicating
that each order can be matched with only one vehi-
cle. Therefore, the edge capacity in Gf is summarized
as:

U(i, j) =

1 ∀e = (s, r) ∈ Es

f ,
1 ∀e = (r, w) ∈ Erw

f ,

w.rc ∀e = (w, k) ∈ Ek
f ,

(8)

where w.rc represents the remaining capacity of can-
didate vehicle w for serving more orders.

• Edge cost. The cost C(i, j) of each edge (i, j) ∈ Ef
represents the cost incurred per unit flow passing
through that edge. To redistribute vehicles more effi-
ciently and provide high-quality service, we consider
four factors in calculating edge costs, including the
long-term mobility value of order r’s travel direction,
remaining capacity of candidate vehicle w, detour

9

MCMF VehicleOrder

Source Target
1 (0)

1 (-Score)

1 (0)

1 (0)

1 (0)

1 (0)

𝒘𝟏.cap (0)

𝑤1𝑟1

source s sink k

𝒘𝟐.cap (0)

𝒘𝟑.cap (0)

𝒘𝟒.cap (0)

𝒘𝟓.cap (0)

VehicleOrder

𝑟2

𝑟3

𝑟4

𝑤2

𝑤3

𝑤4

(1, 𝐶(𝑟4, 𝑤4))

Fig. 4: Modeling order-vehicle matching as the MCMF prob-
lem, where (a, b) associated with each edge represents that
the edge has capacity a and cost b, and w.rc indicates the
remaining capacity of vehicle w.

time and waiting time that are incurred when vehicle
w is dispatched to serve order r. Therefore, the edge
cost C(i, j) is given as follows:

C(i, j) = −1× Vθ(scur)× (Φc +Ψwd), (9)

where Vθ(scur) represents the long-term mobility
value along order r’s travel direction, and Φc is
vehicle w’s remaining capacity rate that is set as:

Φc =

0 if 0 ≤ ηw < 1

4 ,

0.8 if 1
4 ≤ ηw < 1

2 ,

0.9 if 1
2 ≤ ηw < 3

4 ,

1.0 if ηw ≥ 3
4 ,

(10)

where ηw = w.rc
Cw

is a rate between remaining capac-
ity and original capacity for vehicle w. The purpose
of setting Φc in this way is to effectively redistribute
vehicles that have more empty seats towards mobil-
ity directions with higher demand.

Meanwhile, we use Ψwd to measure vehicle w’s ser-
vice quality for order r. To make Ψwd fall within the
range of (0, 1) and accurately reflect the differences
on service quality among various candidate vehicles,
we propose a ranking-based method to calculate Ψwd

for each edge (r, w) ∈ Erw
f . Note that, we employ

the matching cost, i.e., the sum of waiting time and
detour time, as the measure for evaluating service
quality. With the derived waiting time and detour
time calculated in Section 4.2 for each matching
(r, w), we compute the matching costs for all candi-
date vehicles in Tr . Then, we sort candidate vehicles
into a list according to their matching costs in an
ascending order, and define a function Rank(w) that
can return vehicle w’s rank in the sorted list. Finally,
we compute Ψwd for each edge (r, w) as:

Ψwd =
1

Rank(w)×
∑|Tr|

j=1
1
j

. (11)

Figure 4 shows a sample modeling of order-vehicle
matching in ridesharing for four orders and four candidate
vehicles within a sliding time window. Based on above
definitions and modeling, we transform the order-vehicle
matching into the MCMF problem with its objective as:

min
∑

(i,j)∈Ef

C(i, j) · flow(i, j), (12)

where flow(i, j) represents the flow passing on edge (i, j) ∈
Ef . This objective is subject to the following constraints:

- Non-negativity: The flow on each edge (i, j) must be
non-negative, i.e.,

flow(i, j) ≥ 0, ∀(i, j) ∈ Ef . (13)

- Capacity constraint. The flow on each edge (i, j) ∈ Ef
must not exceed its edge capacity, i.e.,

flow(i, j) ≤ U(i, j), ∀(i, j) ∈ Ef , (14)

where vertex i and j are neither source s nor sink k.
- Flow conservation. For each vertex i (except source s

and sink k), its total inflow must equal total outflow,
i.e.,∑
(∗,i)∈Ef

flow(∗, i) =
∑

(i,∗)∈Ef

flow(i, ∗), ∀i ∈ Vf\{s, k}.

(15)
This constraint should also be applied to the source
s and sink k, such that the flow into source s must be
equal to the flow out of sink k.

To solve this MCMF problem, we make use of the net-
work simplex algorithm [7], [8], which has been specifically
designed to leverage the characteristics of flow network Gf .
By maintaining a spanning tree of edges, this algorithm
iteratively adjusts the flow within the network, ensuring
both feasibility and optimality at each step, to minimize the
total cost [8].

4.4.2 Idle vehicle repositioning
In order to address the issue of vehicles remaining vacant for
extended periods, ridesharing platforms need to proactively
redistribute these idle vehicles to areas with anticipated
high future demand. To achieve this, JODR explicitly redis-
tributes vehicles that have been vacant for a time frame,
i.e., 5 minutes. To minimize repositioning costs, the target
repositioning areas for a vehicle are limited to its current
grid and neighboring grids.

To identify the travel directions with high future de-
mand, JODR utilizes the mobility value function Vθ(·). For
an idle vehicle w located in grid gw, the possible target
grids are denoted as set Gw. For each grid gi ∈ Gw, a
dummy order ri is created, originating from grid gw and
terminating at grid gi. Considering the dummy matching
(ri, w), we define the directional state si =< v⃗g, tf, dw >,
where v⃗g =< gw, gi > is the grid-level mobility vector, tf
and dw denote the current time frame index and day of
the week. The function Vθ(si) is then employed to estimate
the value of the dummy matching. Similarly, values are
calculated for all dummy orders targeting different grids
in set Gw. The grid with the highest value may be chosen as
the repositioning destination for idle vehicle w.

However, such an approach may blindly dispatch all
idle vehicles within a grid to the same destination grid,
which potentially disrupt the supply-demand equilibrium.
To mitigate this issue, we propose a probabilistic method.
Specifically, we utilize the Softmax function to transform
the mobility values into a probability distribution, which
is defined as:

p(gi) =
eVθ(si)∑

gj∈Gw
eVθ(sj)

, (16)

10

0 2 4 6 8 10 12 14 16 18 20 2223
0

1000

2000

3000

4000

5000

6000

7000

#
 o

f
O

rd
er

s

Hour of the Day

Fig. 5: Statistic on the number of orders across the day.
where p(gi) represents the repositioning probability to can-
didate grid gi, si and sj represent the states for repositioning
to grid gi and gj , respectively. In addition, the denominator
in Equation (16) is the sum of exponential mobility values
for all grids in set Gw. Based on this distribution, we sample
destination grids for idle vehicle w. This probabilistic ap-
proach ensures that travel directions with higher mobility
values have a higher likelihood of being selected, thereby
aligning the repositioning strategies with underlying mobil-
ity dynamics.

5 EVALUATION

In this section, we evaluate the performance of JODR using
a large real-world trajectory dataset.

5.1 Experimental Setup
Dataset. We conduct data-driven experiments using a large-
scale anonymized trajectory dataset publicly released by
the Didi GAIA Initiative1. This dataset comprises a total
of 7065907 ridesharing transactions collected in November
2016 within the downtown area of Chengdu city, China.
Each transaction entry includes a transaction ID, vehicle ID,
and ride order details. The ride order information consists
of the release time, pick-up location, and drop-off location,
represented by latitude and longitude coordinates. To pro-
vide insights into the data, we analyze the average hourly
order volume, as depicted in Figure 5. The analysis reveals
a gradual increase in the number of orders between 6:30AM
and 2:30PM, highlighting the growing demand during this
period. This finding emphasizes the importance of effective
order dispatching and vehicle repositioning during these
hours. Consequently, we focus our experiments on the data
falling within this specific period.

Since the dataset only includes records of served ride
orders, unserved orders are not captured. To address this
limitation and enrich experimental data, we generate syn-
thetic ride orders using the method outlined in previous
work [28]. To simulate practical ride-hailing service trans-
actions, this method is designed to learn the distribution of
real-world orders on the road network over time of the day
and the mobility patterns of ride-hailing vehicles. For more
details on synthetic order generation, please refer to [28].
Furthermore, we keep the data of last week for testing, and
the remaining data are used for model training.

We have downloaded the road information of Chengdu
city from OpenStreetMap2, and model the road network

1. https://outreach.didichuxing.com/research/opendata/.
2. http://www.openstreetmap.org/.

as a graph Gr(Vr, Er), which consists of 21440 vertices and
466330 edges. Additionally, we divide the road network into
72 grids, with a uniform size about 1.16 km× 1.16 km.

Compared methods. We compare JODR with the follow-
ing state-of-the-art methods.

• pGreedyDP [44]. It utilizes grids to index both orders
and vehicles, and proposes a greedy insertion strat-
egy. Each order is sequentially assigned to the ve-
hicle, whose new route has the minimum increased
travel time.

• mT-Share [24]. It employs geographical information
and travel directions to index orders and vehicles,
and leverages these indexes to filter out irrelevant
candidate vehicles. It also sequentially dispatches
each order to the vehicle with the minimum in-
creased cost. Additionally, it develops a probabilistic
routing scheme to guide vehicles to meet predicted
future orders along specific routes.

• Prohpet [43]. It also constructs the grid index for
orders and vehicles, and proposes a new insertion
operator that can handle both online orders and
predicted future orders. The insertion based order
assignments is solved through a dynamic program-
ming algorithm.

• PNAS [4]. It periodically plans assignments for the
batch of orders collected within a sliding time win-
dow, and dynamically generates optimal routes for
available vehicles. It initiates with a greedy assign-
ment and iteratively refines the assignment through
constrained optimization.

pGreedyDP, mT-Share, and Prohpet are real-time solutions,
while PNAS is a batch-based solution. Since Prohpet has
already considered the future orders and PNAS has its
own idle vehicle repositioning mechanism, we thus enhance
pGreedyDP and mT-Share by incorporating an additional idle
vehicle repositioning component, which dispatches each
idle vehicle to one random neighboring grid or remains this
vehicle cruising within its current grid.

Evaluation metrics. We evaluate all the methods using
the following performance metrics.

• Number of served orders represents the number of
orders that have been successfully fulfilled.

• Number of served ridesharing orders captures the num-
ber of orders that share a vehicle with other orders,
aiming to assess vehicle utilization in ridesharing.

• Number of idle vehicle repositioning quantifies the
repositioning times vehicles have been redistributed
while being idle within a time frame, i.e., 5 minutes.

• Average detour time represents the mean additional
travel time when compared to no ridesharing for all
served orders.

• Average waiting time is calculated as the average time
difference between the pick-up time of orders and
their respective release time.

• Average response time is the average processing time
for dispatching an order to the suitable vehicle.

• Frequency of seat occupancy SOi = K indicates that
during the entire dispatching process of all vehicles,
there were totally K instances where i passengers
were grouped together in the same vehicle.

11

TABLE 2: The major parameter settings, where the default
value of each parameter is marked in bold.

Parameter Value

of vehicles 500, 1000, 1500, 2000, 2500
Vehicle capacity 3, 4, 6, 8, 10
Flexible factor ρ 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0
Threshold λ 0.867, 0.707, 0.500, 0.259,
Sliding window size ∆sw 2, 5, 10, 20
Average riders per order cr 1.0, 1.5, 2.0, 2.5, 3.0

500 1000 1500 2000 2500
1

2

3

4

5

6

7

8

×104

#
 o

f S
er

ve
d

 O
rd

e
rs

 (
×

1
00

00
)

of Vehicles

 pGreedyDP
 mT-share
 Prohpet
 PNAS
 JODR

(a) # of served orders
500 1000 1500 2000 2500

0

1

2

3

4

5

6

×104

#
 o

f
S

er
ve

d
R

id
e

sh
ar

in
g

O
rd

e
rs

 (
×

10
0

00
)

of Vehicles

 pGreedyDP
 mT-share
 Prohpet
 PNAS
 JODR

(b) # of ridesharing orders

500 1000 1500 2000 2500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

 R
e

sp
on

se
 T

im
e

(s
)

of Vehicles

 pGreedyDP
 mT-share
 Prohpet
 PNAS
 JODR

(c) Average response time
500 1000 1500 2000 2500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

 W
a

iti
ng

 T
im

e
 (
m
in
u
te
s)

of Vehicles

 pGreedyDP
 mT-share
 Prohpet
 PNAS
 JODR

(d) Average waiting time

500 1000 1500 2000 2500
0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ve

ra
ge

 D
et

o
ur

 T
im

e
(m

in
u

te
s)

of Vehicles

 pGreedyDP mT-share
 Prohpet PNAS
 JODR

(e) Average detour time

500 1000 1500 2000 2500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

×104

#
 o

f l
dl

e
 V

e
hi

cl
e

R
e

po
si

tio
n

in
g

 (
×

1
00

00
)

of Vehicles

 pGreedyDP
 mT-share
 JODR

(f) # of idle vehicle reposition-
ing

Fig. 6: Performance comparison among different methods
by varying the number of shared vehicles.

Implementation. We implement JODR and all the com-
pared methods using Python. In line with prior research,
each order r’s origin and destination are pre-mapped to
the nearest vertex in graph Gr . The delivery deadline er for
each order r is determined using a flexible factor ρ, which
quantifies the additional travel cost riders are willing to
tolerate compared to the shortest path. The shared vehicles
are initialized at random vertices within graph Gr , and
when delivering riders, they are obligated to adhere strictly
to the scheduled pick-up and drop-off sequence and the
planned routes. Similar as previous works [24], [25], [31],
[44], we assume a uniform driving speed of 30 km/h for
all vehicles. Additionally, candidate vehicles of each order r
are only searched within several grids, including the grid gr
where order r locates and gr’s neighboring grids. The major
parameter settings are listed in Table 2.

All experiments are conducted on a server equipped
with an Intel Core i9-12900K CPU@3.20GHz and 32GB of
RAM. To accelerate route planning, we pre-compute the
travel costs between any two vertices in graph Gr and cache

TABLE 3: Performance comparison on the frequency of seat
occupancy by varying the number of shared vehicles. The
best results for ridesharing cases are marked in bold.

of vehicles Method Seat occupancy
SO4 SO3 SO2 SO1

500

pGreedyDP 4 86 1958 13989
mT-Share 66 1088 9063 9228
Prohpet 80 839 5634 11117
PNAS 8 262 4392 13200
JODR 96 1394 9485 8956

1000

pGreedyDP 5 180 4246 28371
mT-Share 84 1721 16511 20251
Prohpet 148 1471 10565 23499
PNAS 11 387 7492 27261
JODR 167 2547 17985 19340

1500

pGreedyDP 9 342 7102 42003
mT-Share 81 1789 20504 33187
Prohpet 167 1855 13966 36300
PNAS 12 410 9114 40911
JODR 206 3515 24516 30789

2000

pGreedyDP 13 549 10805 52664
mT-Share 42 1304 20313 47538
Prohpet 169 1947 15672 48425
PNAS 4 331 9090 52831
JODR 158 3829 27060 40785

2500

pGreedyDP 18 696 13041 56494
mT-Share 11 525 13358 63516
Prohpet 165 1858 15677 57449
PNAS 6 224 7581 62180
JODR 110 3608 27592 46639

the results in memory for quick retrieval across all methods.
Each experimental configuration is executed 6 times, and
only the average results are reported in this section.

5.2 Performance Comparison

We compare the performance of all methods by varying the
number of vehicles from 500 to 2500, with a step as 500.

Figure 6(a) shows that all methods can serve more orders
with an increase in the number of vehicles. Across different
vehicle quantities, JODR consistently serves the most orders,
attributing to the implicit vehicle repositioning during order
dispatching. This is because JODR’s implicit repositioning
allows vehicles with sufficient capacity cater to orders as-
sociated with higher future demand in certain travel di-
rections, thereby preemptively balancing the supply and
demand across different travel directions. It is particularly
crucial when the number of vehicles is limited. Taking the
case of 1500 vehicles as an example, JODR can serve 12.89%
and 17.01% more orders compared to Prohpet and PNAS, the
two state-of-the-art works.

To validate whether our design facilitates more orders
participating in the ridesharing service, we report the num-
ber of served ridesharing orders in Figure 6(b). It shows
that JODR surpasses all the other methods across different
settings. Compared to the four methods, JODR increases
the number of served ridesharing orders by an average of
125.71%, 122.91%, 121.98%, 116.34% and 143.06%, respec-
tively, under the five vehicle quantity settings. Remarkably,
compared to PNAS, JODR serves 113.80% more ridesharing
orders with only 500 vehicles, and can be up to 275.93%
more with 2500 vehicles.

To better understand the ridesharing performances of
different methods, we conduct an in-depth exploration on
the vehicle schedules, and present detailed statistics on the
frequency of seat occupancy in Table 3. Generally, two or

12

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
4

5

6

7

8

9
×104

#
 o

f
S

e
rv

e
d

 O
rd

e
rs

 (
×

10
0

00
)

Flexible Factor ρ

 pGreedyDP mT-share
 Prohpet PNAS
 JODR

(a) # of served orders

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0

1

2

3

4

5

6

7

8
×104

#
 o

f
R

id
e

sh
a

ri
n

g
O

rd
e

rs
 (
×

1
0

00
0

)

Flexible Factor ρ

 pGreedyDP mT-share
 Prohpet PNAS
 JODR

(b) # of served ridesharing or-
ders

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0

1

2

3

4

5

A
ve

ra
g

e
D

e
to

ur
 T

im
e

 (
m
in
ut
e
s)

Flexible Factor ρ

 pGreedyDP mT-share
 Prohpet PNAS
 JODR

(c) Average detour time

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0

1

2

3

4

5

A
ve

ra
g

e
W

a
iti

ng
 T

im
e

(m
in
u
te
s)

Flexible Factor ρ

 pGreedyDP mT-share
 Prohpet PNAS
 JODR

(d) Average waiting time

Fig. 7: Impact of flexible factor ρ on the performance.
more orders sharing a vehicle can be viewed as a ridesharing
case. Table 3 shows that the case where one vehicle serves
one order is the most common scenario, while JODR demon-
strates exceptional capability for matching multiple orders
with one vehicle. Achieving full utilization of a vehicle’s
seats can be challenging. For instance, when four orders
are accommodated in one single vehicle with a capacity of
four, we observe that JODR consistently achieves the highest
success rate in such scenarios. Among the 15 potential
ridesharing cases, such as those with a seat occupancy of
at least 2, JODR has emerged as the top performer, winning
the first place in 13 instances.

Figure 6(c) reports the average response time of all
methods. As a batch-based method, PNAS has the largest
response time as it needs to iteratively optimize the arrange-
ments for a batch of orders. While our JODR, as another
batch-based solution, is on average 95.12% faster than PNAS
on dispatching orders, which confirms the effectiveness
of mobility clusters by grouping orders based on their
travel directions. As pGreedyDP and mT-Share simply assign
incoming orders to suitable vehicles, without considering
future demand, they can respond orders rapidly. Another
real-time method Prohpet, which considers the predicted
future orders, takes a bit longer response time, even on
average 66.82% slower than JODR.

We compare the waiting time of all methods in Fig-
ure 6(d). In general, more vehicles potentially allow each
method to find a nearby vehicle to serve each order, and
thus the waiting time can be reduced. PNAS shows the
shortest waiting time, while Prohpet has the largest one. The
other three methods, i.e., pGreedyDP, mT-Share, and JODR,
have close waiting time, with a difference < 0.2 minutes.

Figure 6(e) shows the performance comparison on av-
erage detour time. mT-Share matches vehicles with orders
traveling on similar directions, and thus derives the fewest
detour time. PNAS prefers to match orders with vehicles
that have short travel distances and few ridesharing orders,
thereby holding the second place. Furthermore, their detour
time is less affected by the vehicle quantity. In contrary, Proh-

3 6 8 10
6.0

6.5

7.0

7.5

8.0

8.5

×104

#
 o

f S
er

ve
d

 O
rd

e
rs

 (
×

10
0

00
)

Capacity

 pGreedyDP
 mT-share
 Prohpet
 PNAS
 JODR

(a) # of served orders

3 6 8 10
1

2

3

4

5

6

7

8

×104

#
 o

f R
id

e
sh

ar
in

g
 O

rd
e

rs
 (
×

1
00

0
0

)

Capacity

 pGreedyDP
 mT-share
 Prohpet
 PNAS
 JODR

(b) # of served ridesharing or-
ders

Fig. 8: Impact of vehicle capacity on the performance.

pet considers future orders in the route planning, resulting in
the largest detour time. As a batch-based method, JODR has
a moderate detour time among the five methods. Its detour
time slightly increases with more vehicles, as it continuously
redistributes vehicles during order dispatching. From Figure
6(e), we find that JODR reduces detour time by up to 57.92%
compared to Prohpet, having the largest gap with 500 ve-
hicles. Compared to pGreedyDP, JODR reduces detour time
by 32.95%, while serving 323.76% more ridesharing orders
with 500 vehicles.

Finally, Figure 6(f) presents the times of idle vehicle
repositioning for pGreedyDP, mT-Share, and JODR. We see
that JODR is more proactive on explicit repositioning than
the other two methods, and thus has more idle vehicle
repositioning actions, which are important for providing
high-quality service.

5.3 Detailed Evaluation

Impact of flexible factor ρ. We perform experiments to
investigate the impact of flexible factor ρ, while keeping
other settings as the default values. As shown in Figure
7(a), as factor ρ increases, the number of served orders
for each method improves accordingly. This is because all
methods have more flexibility on order-vehicle matching
when riders can tolerate more detour costs. We find that
JODR outperforms the other methods in the settings where ρ
is small, especially when ρ falls within [1.1, 1.4]. On average,
JODR can offer an improvement of 10.83% than the four
methods across this range. At the specific value ρ = 1.1, our
JODR exhibits a remarkable performance increase of 27.05%
when compared to PNAS, indicating that JODR still works
well even riders have extremely rigorous requirements on
the detour costs. Figure 7(b) shows that on the aspect of
total served ridesharing orders, JODR significantly exceeds
the quantities observed in all other compared methods
across all values of ρ. In particular, JODR exhibits average
improvement of 418.76%, 234.16%, 116.17%, and 63.04%
than the four methods when setting ρ as 1.1, 1.2, 1.3, and 1.4,
respectively. This excellent performance attributes to JODR’s
unique design that encourages vehicles to share seats among
multiple orders.

Despite JODR’s ability to accommodate a greater num-
ber of orders in ridesharing service, it does not result in
a significant increase in detour and waiting time, as the
evidences shown in Figure 7(c) and 7(d). When compared
to the four methods, JODR exhibits a relatively gradual
increase in detour time. In fact, we observe that JODR
even outperforms pGreedyDP and Prohpet, with a reduction

13

of 5.01% and 28.20% in detour time, respectively, when
ρ = 1.3. Furthermore, Figure 7(d) shows that JODR generally
outperforms the four compared methods in terms of waiting
time when ρ < 1.5. This range is considered normal for real-
world ridesharing systems.

Impact of vehicles capacity. In this experiment, we vary
vehicle capacity as 3, 6, 8, and 10, and meanwhile appropri-
ately adjust flexible factor ρ as 1.3, 1.5, 1.6, and 1.7, respec-
tively. The reason for such an adjustment is because a larger
vehicle capacity allows more orders share one vehicle, while
requiring loose requirement on the detour constraint. When
vehicle capacity is enlarged, the same number of vehicles
has much more seat supply, enabling them to serve more
orders. As shown in Figure 8(a), each method can serve
more orders with a larger vehicle capacity. The observation
also holds for the number of served ridesharing orders, as
shown in Figure 8(b). We find that JODR is still more efficient
in serving much more orders than other methods, especially
when the total seat supply is limited. Taking vehicle capacity
of 3 as an example, JODR can serve an average of 12.26%
more orders and 107.70% more ridesharing orders than the
other four methods.

Impact of average riders per order. We study the impact
of parameter cr , average riders per order, on the perfor-
mance of all methods. Similar as the experimental setting in
[47], we set the value of cr as 1.0, 1.5, 2.0, 2.5, and 3.0. Note
that, an increase in cr will result in that fewer orders can be
shared by one vehicle due to the limit of vehicle capacity. As
shown in Figure 9, all methods can serve more riders as cr
increases. Specifically, JODR can serve the most riders, while
PNAS has the smallest number of served riders. The other
three methods have similar performance in this experiment.

Impact of sliding time window size ∆sw. As the batch-
based methods, PNAS and JODR process a batch of orders
collected within a sliding time window of size ∆sw, which
will affect the ridesharing performance. We study its im-
pacts by varying size ∆sw as 3s, 6s, 8s, and 10s. Figure
10 shows that as ∆sw increases, both the number of served
orders and ridesharing orders for PNAS slightly increase.
While JODR consistently outperforms PNAS, e.g., averagely
serving 12.28% more orders and 189.32% more ridesharing
orders. In terms of response time, Figure 10 shows that the
computation time of PNAS does increase with ∆sw and
fluctuates significantly due to more orders being jointly
processed. In contrary, JODR exhibits a more stable response
time, almost unchanged, indicating that our mobility cluster
design effectively addresses the high computational cost of
batch-based methods and is robust with respect to the time
window size.

1.0 1.5 2.0 2.5 3.0

10

20

30

40

50

×104

o

f S
er

ve
d

 R
id

e
rs

 (
×

10
0

00
)

Average Riders Per Order

 pGreedyDP
 mT-share
 Prohpet
 PNAS
 JODR

Fig. 9: Impact of the average riders per order.

5.4 Ablation Experiments

We have several design elements to improve the efficiency of
JODR. Specifically, we propose mobility clustering to divide
a batch of orders into fine-grained groups based on their
travel directions. Furthermore, we consider the vehicle’s
remaining capacity, the service quality measured by detour
and waiting time, and the mobility value of an order’s travel
direction into Equation (9) for computing edge costs in the
flow network Gf . These factors together determine order
dispatching results. We thus conduct a series of ablation
experiments by individually removing each design compo-
nent to evaluate its effectiveness.

Effectiveness of mobility clustering. As shown in Fig-
ure 11(a), JODR without mobility clustering has an 8.39%
decrease in the number of served orders but a 7.12% increase
in the number of ridesharing orders. This is because, with-
out the constraint on travel directions, JODR tends to serve
shorter-distance orders regardless of their travel direction
consistency. In fact, we find that the majority of these
served ridesharing orders belong to the cases where two
orders share a vehicle. However, Figure 11(a) shows that
without fine-grained order divisions the average response
time accordingly increases by 4.90%. Furthermore, Figure
11(b) reports a 17.58% increase in average waiting time, and
a 17.81% increase in the number of idle vehicle dispatches.
These results demonstrate that it is necessary to consider the
travel directions of both orders and vehicles during order
assignments for better service quality.

Effectiveness of vehicle’s remaining capacity. During
order-vehicle matching, JODR tends to dispatch vehicles
with more remaining capacity to serve orders with higher
mobility values. The results in Figure 11(a) reveal that ignor-
ing this factor may lead to a 2.72% decrease in the number
of served orders, a 4.41% decrease in the number of served
ridesharing orders, and a slight increase in the average
response time. In Figure 11(b), despite a slight decrease in
the average waiting time, we see about 4.05% increase in
average detour time and 10.77% increase in the number of
idle vehicle dispatches. These results suggest that vehicle’s
remaining capacity indeed affects platform revenue and the
service quality.

Effectiveness of detour and waiting time. JODR treats
both detour and waiting time as important factors on mea-
suring the service quality of order dispatching. As shown
in Figure 11(a), not accounting for them results in a great
decrease in the number of served orders, e.g., 37.44% de-
crease in served ridesharing orders. Figure 11(b) shows a
53.47% decrease in the idle vehicle dispatches, yet a signif-
icant increase in average waiting time by 62.97%. Without
considering these factors, the system may assign orders with
vehicles far away, and thus impairs the service quality.

Effectiveness of mobility value. JODR heavily relies on
the mobility values for effective order dispatching and ve-
hicle repositioning. By removing mobility value from Equa-
tion (9), we observe severe performance degradation across
most of the metrics. For example, Figure 11(a) shows that
excluding this factor results in 7.21% and 32.88% decrease
in the number of served orders and ridesharing orders,
respectively, and slight delay in response time. Despite the
decrease in detour time and idle vehicle repositioning, as

14

2 5 10 20
0

2

4

6

8

10

×104

o

f S
er

ve
d

O
rd

e
rs

 (
×

10
00

0)

Sliding Time Window Size

 PNAS (Non-Ridesharing) PNAS (Ridesharing)
 JODR (Non-Ridesharing) JODR (Ridesharing)
 PNAS (Response Time) JODR (Response Time)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A
ve

ra
ge

 R
es

po
ns

e
 T

im
e

(s
ec
o
nd
s)

Fig. 10: Impact of sliding time win-
dow size ∆sw.

JODR w/o m. c. w/o cap. w/o d. w. w/o m. v.
0

1

2

3

4

5

6

7

8

9

×104

of

 S
e

rv
ed

 O
rd

er
s

(×
10

00
0

)

 # of Non-Ridersharing Orders
 # of Ridesharing Orders
 Response Time

(a)

0.11

0.12

0.13

0.14

0.15

A
ve

ra
g

e
R

es
po

ns
e

T
im

e
(s

ec
on

ds
)

JODR w/o m. c. w/o cap. w/o d. w. w/o m. v.
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

A
ve

ra
g

e
T

im
e

(m
in

ut
es

)

 Detour Time
 Waiting Time

(b)

0.0

0.5

1.0

1.5

2.0

2.5

 Repositioning Counts

of

 I
dl

e
 V

eh
ic

le
 R

e
po

si
tio

ni
ng

 (
×

10
0

00
)

Fig. 11: Ablation experiments, where “m.c.”, “cap.”, “d.w.”, and “m.v.” represent
mobility clustering, capacity, detour and waiting time, and mobility value, respectively.

shown in Figure 11(b), we see a clear increase in waiting
time by 56.16%. The results suggest that mobility value func-
tion can effectively capture the long-term mobility values,
and efficiently guide order assignments.

6 CONCLUSION

This paper presents JODR, a comprehensive framework that
jointly optimizes order dispatching and vehicle reposition-
ing for dynamic ridesharing. The key idea of our framework
lies in a novel mobility value function that effectively inte-
grates these two essential tasks. By leveraging this value
function, JODR efficiently determines the optimal order-
vehicle assignments by formulating the order dispatching
as a minimum-cost maximum-flow problem, while also sup-
porting intelligent repositioning of idle vehicles. Extensive
experiments on a large real-world dataset demonstrate the
superior performance of our JODR compared to the state-
of-the-art methods for dynamic ridesharing across a wide
range of performance metrics.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundations of China under Grants 62172284 and
U2001207, the grant of Guangdong Basic and Applied Basic
Research Foundation (No.2022A1515010155), Guangdong
Provincial Key Lab of Integrated Communication, Sens-
ing and Computation for Ubiquitous Internet of Things
(No.2023B1212010007), Guangzhou Municipal Science and
Technology Project (No.2023A03J0011), and the Project of
DEGP (No.2023KCXTD042 and No.2021ZDZX1068).

REFERENCES

[1] Didi. https://www.didiglobal.com/, Accessed in October 2024.
[2] Uber. https://www.uber.com/, Accessed in October 2024.
[3] A. O. Al-Abbasi, A. Ghosh, and V. Aggarwal. DeepPool: dis-

tributed model-free algorithm for ride-sharing using deep rein-
forcement learning. IEEE Transactions on Intelligent Transportation
Systems, 20(12):4714–4727, 2019.

[4] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and
D. Rus. On-demand high-capacity ride-sharing via dynamic trip-
vehicle assignment. Proceedings of the National Academy of Sciences,
114(3):462–467, 2017.

[5] X. Azagirre, A. Balwally, G. Candeli, N. Chamandy, B. Han,
A. King, H. Lee, M. Loncaric, S. Martin, V. Narasiman, et al. A
better match for drivers and riders: reinforcement learning at Lyft.
INFORMS Journal on Applied Analytics, 54(1):71–83, 2024.

[6] X. Bei and S. Zhang. Algorithms for trip-vehicle assignment in
ride-sharing. In AAAI, 2018.

[7] W. H. Cunningham. A network simplex method. Mathematical
Programming, 11:105–116, 1976.

[8] G. B. Dantzig. Application of the simplex method to a transporta-
tion problem. Activity Analysis and Production and Allocation, 1951.

[9] J. Edmonds and R. M. Karp. Theoretical improvements in algo-
rithmic efficiency for network flow problems. Journal of the ACM,
19(2):248–264, 1972.

[10] S. Ge, X. Zhou, T. Qiu, G. Wu, and X. Wang. Towards supply-
demand equilibrium with ridesharing: an elastic order dispatching
algorithm in MoD system. IEEE Transactions on Mobile Computing,
23(5):5229–5244, 2024.

[11] G. Guo and Y. Xu. A deep reinforcement learning approach
to ride-sharing vehicle dispatching in autonomous mobility-on-
demand systems. IEEE Intelligent Transportation Systems Magazine,
14(1):128–140, 2020.

[12] X. Guo, N. S. Caros, and J. Zhao. Robust matching-integrated
vehicle rebalancing in ride-hailing system with uncertain demand.
Transportation Research Part B: Methodological, 150:161–189, 2021.

[13] M. Haliem, G. Mani, V. Aggarwal, and B. Bhargava. A distributed
model-free ride-sharing approach for joint matching, pricing, and
dispatching using deep reinforcement learning. IEEE Transactions
on Intelligent Transportation Systems, 22(12):7931–7942, 2021.

[14] S. He and K. G. Shin. Spatio-temporal capsule-based reinforce-
ment learning for mobility-on-demand coordination. IEEE Trans-
actions on Knowledge and Data Engineering, 34(3):1446–1461, 2020.

[15] J. Holler, R. Vuorio, Z. Qin, X. Tang, Y. Jiao, T. Jin, S. Singh,
C. Wang, and J. Ye. Deep reinforcement learning for multi-driver
vehicle dispatching and repositioning problem. In IEEE ICDM,
pages 1090–1095, 2019.

[16] X. Huang, J. Ling, X. Yang, X. Zhang, and K. Yang. Multi-
agent mix hierarchical deep reinforcement learning for large-scale
fleet management. IEEE Transactions on Intelligent Transportation
Systems, 24(12):14294–14305, 2023.

[17] Y. Huang, F. Bastani, R. Jin, and X. S. Wang. Large scale real-time
ridesharing with service guarantee on road networks. Proceedings
of the VLDB Endowment, 7(14):2017–2028, 2014.

[18] A. Kumar, A. Gupta, M. Parida, and V. Chauhan. Service quality
assessment of ride-sourcing services: a distinction between ride-
hailing and ride-sharing services. Transport Policy, 127:61–79, 2022.

[19] K. Lin, R. Zhao, Z. Xu, and J. Zhou. Efficient large-scale fleet
management via multi-agent deep reinforcement learning. In
ACM SIGKDD, pages 1774–1783, 2018.

[20] Q. Lin, L. Deng, J. Sun, and M. Chen. Optimal demand-aware
ride-sharing routing. In IEEE INFOCOM, pages 2699–2707, 2018.

[21] Q. Lin, W. Xu, M. Chen, and X. Lin. A probabilistic approach
for demand-aware ride-sharing optimization. In ACM MobiHoc,
pages 141–150, 2019.

[22] C. Liu, C.-X. Chen, and C. Chen. Meta: a city-wide taxi reposition-
ing framework based on multi-agent reinforcement learning. IEEE
Transactions on Intelligent Transportation Systems, 23(8):13890–13895,
2021.

[23] L. Liu, Y. Zhou, and J. Xu. A cloud-edge-end collaboration
framework for cruising route recommendation of vacant taxis.
IEEE Transactions on Mobile Computing, 23(5):4678–4693, 2024.

[24] Z. Liu, Z. Gong, J. Li, and K. Wu. Mobility-aware dynamic taxi
ridesharing. In IEEE ICDE, pages 961–972, 2020.

[25] Z. Liu, Z. Gong, J. Li, and K. Wu. mT-Share: a mobility-aware
dynamic taxi ridesharing system. IEEE Internet of Things Journal,
9(1):182–198, 2021.

15

[26] Z. Liu, J. Li, and K. Wu. Context-aware taxi dispatching at city-
scale using deep reinforcement learning. IEEE Transactions on
Intelligent Transportation Systems, 23(3):1996–2009, 2022.

[27] Z. Liu, J. L. Lin, Z. Xia, C. Chen, and K. Wu. Towards efficient
ridesharing via order-vehicle pre-matching using attention mech-
anism. In IEEE ICDM, pages 1–10, 2024.

[28] Z. Liu, H. Zhang, G. Ouyang, J. Chen, and K. Wu. Data-driven
pick-up location recommendation for ride-hailing services. IEEE
Transactions on Mobile Computing, 23(2):1001–1015, 2024.

[29] H. Luo, Z. Bao, F. M. Choudhury, and J. S. Culpepper. Dynamic
ridesharing in peak travel periods. IEEE Transactions on Knowledge
and Data Engineering, 33(7):2888–2902, 2019.

[30] Q. Ma, Z. Cao, K. Liu, and X. Miao. QA-Share: toward an efficient
QoS-aware dispatching approach for urban taxi-sharing. ACM
Transactions on Sensor Networks, 16(2):1–21, 2020.

[31] S. Ma, Y. Zheng, and O. Wolfson. T-share: a large-scale dynamic
taxi ridesharing service. In IEEE ICDE, pages 410–421, 2013.

[32] S. Ma, Y. Zheng, and O. Wolfson. Real-time city-scale taxi
ridesharing. IEEE Transactions on Knowledge and Data Engineering,
27(7):1782–1795, 2014.

[33] F. Miao, S. Han, A. M. Hendawi, M. E. Khalefa, J. A. Stankovic, and
G. J. Pappas. Data-driven distributionally robust vehicle balancing
using dynamic region partitions. In ACM/IEEE ICCPS, pages 261–
271, 2017.

[34] F. Miao, S. Lin, S. Munir, J. A. Stankovic, H. Huang, D. Zhang,
T. He, and G. J. Pappas. Taxi dispatch with real-time sensing data
in metropolitan areas: a receding horizon control approach. In
ACM/IEEE ICCPS, pages 100–109, 2015.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning.
nature, 518(7540):529–533, 2015.

[36] F. Murtagh and P. Contreras. Algorithms for hierarchical cluster-
ing: an overview. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(1):86–97, 2012.

[37] T. Oda and C. Joe-Wong. MOVI: a model-free approach to
dynamic fleet management. In IEEE INFOCOM, pages 2708–2716,
2018.

[38] Z. T. Qin, H. Zhu, and J. Ye. Reinforcement learning for rideshar-
ing: an extended survey. Transportation Research Part C: Emerging
Technologies, 144:103852, 2022.

[39] D. Shi, Y. Tong, Z. Zhou, B. Song, W. Lv, and Q. Yang. Learning to
assign: towards fair task assignment in large-scale ride hailing. In
ACM SIGKDD, pages 3549–3557, 2021.

[40] J. Sun, H. Jin, Z. Yang, L. Su, and X. Wang. Optimizing long-term
efficiency and fairness in ride-hailing via joint order dispatching
and driver repositioning. In ACM SIGKDD, pages 3950–3960, 2022.

[41] J. Tang, F. Liu, Y. Wang, and H. Wang. Uncovering urban human
mobility from large scale taxi GPS data. Physica A: Statistical
Mechanics and its Applications, 438:140–153, 2015.

[42] X. Tang, F. Zhang, Z. Qin, Y. Wang, D. Shi, B. Song, Y. Tong,
H. Zhu, and J. Ye. Value function is all you need: a unified learning
framework for ride hailing platforms. In ACM SIGKDD, pages
3605–3615, 2021.

[43] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, and K. Xu. Unified route
planning for shared mobility: an insertion-based framework. ACM
Transactions on Database Systems, 47(1):1–48, 2022.

[44] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu. A unified
approach to route planning for shared mobility. Proceedings of the
VLDB Endowment, 11(11):1633, 2018.

[45] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement
learning with double Q-learning. In AAAI, 2016.

[46] J. Wang, P. Cheng, L. Zheng, L. Chen, and W. Zhang. Online
ridesharing with meeting points. Proceedings of the VLDB Endow-
ment, 15(13):3963–3975, 2022.

[47] T. Wang, H. Luo, Z. Bao, and L. Duan. Dynamic ridesharing with
minimal regret: towards an enhanced engagement among three
stakeholders. IEEE Transactions on Knowledge and Data Engineering,
35(4):3712–3726, 2023.

[48] H. Wei, Z. Yang, X. Liu, Z. Qin, X. Tang, and L. Ying. A reinforce-
ment learning and prediction-based lookahead policy for vehicle
repositioning in online ride-hailing systems. IEEE Transactions on
Intelligent Transportation Systems, 1(1):1–11, 2023.

[49] J. Xi, F. Zhu, Y. Chen, Y. Lv, C. Tan, and F. Wang. DDRL:
a decentralized deep reinforcement learning method for vehicle
repositioning. In IEEE ITSC, pages 3984–3989, 2021.

[50] J. Xi, F. Zhu, P. Ye, Y. Lv, H. Tang, and F.-Y. Wang. HMDRL:
hierarchical mixed deep reinforcement learning to balance vehicle
supply and demand. IEEE Transactions on Intelligent Transportation
Systems, 23(11):21861–21872, 2022.

[51] X. Xie, F. Zhang, and D. Zhang. PrivateHunt: multi-source data-
driven dispatching in for-hire vehicle systems. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
2(1):1–26, 2018.

[52] B. Yu, Y. Ma, M. Xue, B. Tang, B. Wang, J. Yan, and Y.-M. Wei.
Environmental benefits from ridesharing: a case of Beijing. Applied
Energy, 191:141–152, 2017.

[53] Z. Yu and M. Hu. Deep reinforcement learning with graph repre-
sentation for vehicle repositioning. IEEE Transactions on Intelligent
Transportation Systems, 23(8):13094–13107, 2021.

[54] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie. T-finder: a recom-
mender system for finding passengers and vacant taxis. IEEE
Transactions on Knowledge and Data Engineering, 25(10):2390–2403,
2012.

[55] D. Zhang, T. He, F. Zhang, M. Lu, Y. Liu, H. Lee, and S. H.
Son. Carpooling service for large-scale taxicab networks. ACM
Transactions on Sensor Networks, 12(3):1–35, 2016.

[56] Y. Zhao, G. Fan, H. Jin, W. Ma, B. He, and X. Wang. Joint order
dispatch and repositioning for urban vehicle sharing systems via
robust optimization. In IEEE ICDCS, pages 663–673, 2021.

[57] B. Zheng, L. Ming, Q. Hu, Z. Lü, G. Liu, and X. Zhou. Supply-
demand-aware deep reinforcement learning for dynamic fleet
management. ACM Transactions on Intelligent Systems and Tech-
nology, 13(3):1–19, 2022.

[58] B. Zheng, L. Ming, Q. Hu, Z. Lü, G. Liu, and X. Zhou. Supply-
demand-aware deep reinforcement learning for dynamic fleet
management. ACM Transactions on Intelligent Systems and Tech-
nology, 13(3):1–19, 2022.

[59] L. Zheng, L. Chen, and J. Ye. Order dispatch in price-aware
ridesharing. Proceedings of the VLDB Endowment, 11(8):853–865,
2018.

[60] L. Zheng, P. Cheng, and L. Chen. Auction-based order dispatch
and pricing in ridesharing. In IEEE ICDE, pages 1034–1045, 2019.

Zhidan Liu received the Ph.D. degree in com-
puter science and technology from Zhejiang Uni-
versity, Hangzhou, China, in 2014. After that,
he worked as a Research Fellow in Nanyang
Technological University, Singapore, and a fac-
ulty member with College of Computer Sci-
ence and Software Engineering, Shenzhen Uni-
versity, Shenzhen, China. He is currently an
Assistant Professor at Intelligent Transportation
Thrust, System Hub, The Hong Kong University
of Science and Technology (Guangzhou). His

research interests include Artificial Internet of Things, mobile computing,
urban computing, and big data analytic. He is a senior member of CCF,
a member of IEEE and ACM.

Guofeng Ouyang received the B.S. degree from
Zhaoqing University, Zhaoqing, China, in 2021,
and the master degree from Shenzhen Univer-
sity, Shenzhen, China, in 2024, under the super-
vision of Dr. Zhidan Liu. His research interests
are in the areas of ridesharing and trajectory
data analysis.

16

Bolin Zhang received the B.S. degree in Soft-
ware Engineering from Shenzhen University,
Shenzhen, China, in 2023. He is currently a
second-year master student with College of
Computer Science and Software Engineering,
Shenzhen University, Shenzhen, China, under
the supervision of Dr. Zhidan Liu. His research
interests are in the areas of trajectory data anal-
ysis and urban computing.

Bo Du received the Ph.D. degree in Transporta-
tion Engineering from Nanyang Technological
University in Singapore. He is currently a Senior
Lecturer at Griffith Business School in Australia
with research interests spanning transportation
and logistics system modeling and optimization,
optimal planning and operation of zero-emission
and emerging mobility, data analytics and data-
driven modeling. He is an Associate Editor of
IEEE Transactions on Intelligent Transportation
Systems.

Chao Chen is a Full Professor at College
of Computer Science, Chongqing University,
Chongqing, China. He obtained his Ph.D. degree
from Sorbonne University and Institut Mines-
Télécom/Télécom SudParis, France in 2014. He
received the B.Sc. and M.Sc. degrees in con-
trol science and control engineering from North-
western Polytechnical University, Xi’an, China, in
2007 and 2010, respectively. Dr. Chen got pub-
lished over 100 papers including 40 ACM/IEEE
Transactions. His work on taxi trajectory data

mining was featured by IEEE SPECTRUM in 2011, 2016, and 2020,
respectively. He was also the recipient of the Best Paper Runner-Up
Award at MobiQuitous 2011. His research interests include pervasive
computing, mobile computing, urban logistics, data mining from large-
scale GPS trajectory data, and big data analytics for smart cities. He is
a senior member of IEEE and CCF.

Kaishun Wu received his Ph.D. degree in Com-
puter Science and Engineering at The Hong
Kong University of Science and Technology
(HKUST). Before joining HKUST(GZ) as a Full
Professor at DSA Thrust and IoT Thrust in 2022,
he was a distinguished Professor and Director
of Guangdong Provincial Wireless Big Data and
Future Network Engineering Center at Shen-
zhen University. Prof. Wu is an active researcher
with more than 200 papers published on ma-
jor international academic journals and confer-

ences, as well as more than 100 invention patents, including 12 from
the USA. He received the 2012 Hong Kong Young Scientist Award, the
2014 Hong Kong ICT Awards: Best Innovation, and 2014 IEEE ComSoc
Asia-Pacific Outstanding Young Researcher Award. He is a Fellow of
IEEE, IET, and AAIA.

