
7148 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Towards Hierarchical Clustered Federated Learning
With Model Stability on Mobile Devices

Biyao Gong , Tianzhang Xing , Zhidan Liu , Member, IEEE, Wei Xi , Member, IEEE, and Xiaojiang Chen

Abstract—Clustered federated learning (CFL) has proved to
be an effective way to alleviate the non-IID (not independently
and identically distributed) data challenge, which severely restricts
the wider application of federated learning. However, existing ap-
proaches either lack adaptability, i.e., they require an additional
number of clusters as a guide when clustering, or lack effectiveness
in terms of communication. In this paper, we explore the differences
in the ability of different layers in a model to represent non-IID
data, and propose a hierarchical CFL approach, named HiCFL,
which considers both adaptivity and communication efficiency. The
improvement of communication efficiency is due to our proposed
novel concept of model stability, which characterizes the varia-
tion of model weights during training. Based on model stability,
HiCFL can find the proper time to bi-partition the clusters of
mobile devices in a hierarchical manner more quickly. We conduct
extensive experiments based on popular datasets with various non-
IID data settings. The results show that HiCFL achieves excellent
performance effectiveness and efficiency. Compared to state-of-
the-art approaches, HiCFL can improve the model accuracy by
2.0%∼9.0%, while reducing the communication overheads by
27.3%∼80.6%.

Index Terms—Federated learning, clustered federated learning,
communication efficiency, hierarchical clustering, model stability.

I. INTRODUCTION

TO LEVERAGE the massive amount of data generated on
mobile devices, e.g., smartphones, to train machine learn-

ing models while protecting data privacy, federated learning
(FL) has emerged as a promising distributed machine learning
paradigm [1]. In the FL setting, mobile devices as the clients

Manuscript received 20 January 2023; revised 17 September 2023; accepted
3 November 2023. Date of publication 14 November 2023; date of current
version 7 May 2024. This work was supported in part by China NSFC under
Grants 62172284 and 61972316, and in part by Guangdong Basic and Applied
Basic Research Foundation under Grant 2022A1515010155. Recommended for
acceptance by M. Zhang. (Corresponding authors: Tianzhang Xing; Zhidan
Liu.)

Biyao Gong is with the School of Information Science and Technology,
Northwest University, Xi’an, Shaanxi 710069, China (e-mail: gby@stumail.
nwu.edu.cn).

Tianzhang Xing and Xiaojiang Chen are with the School of Information
Science and Technology, Shaanxi International Joint Research Centre for the
Battery-Free Internet of Things, Northwest University, Xi’an, Shaanxi 710069,
China (e-mail: xtz@nwu.edu.cn; xjchen@nwu.edu.cn).

Zhidan Liu is with the College of Computer Science and Software En-
gineering, Shenzhen University, Shenzhen 518060, China (e-mail: liuzhidan
@szu.edu.cn).

Wei Xi is with the School of Computer Science and Technology, Xi’an Jiao-
tong University, Xi’an, Shaanxi 710049, China (e-mail: weixi.cs@gmail.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TMC.2023.3332637, provided by the authors.

Digital Object Identifier 10.1109/TMC.2023.3332637

only need to upload local models or just the model updates,
rather than the raw data, to a central server to train a globally
shared model. Recently, FL has been applied to a wide range of
domains that raise imperative concerns on data privacy, such as
recommender systems [2], [3], finance [4], [5], health care [6],
[7], [8], and vehicle networks [9], [10].

A typical FL approach, e.g., the most famous FedAvg [1],
aggregates model weights from all mobile clients iteratively
until converging to a stationary model. However, such a single
model learning paradigm suffers poor performance in practical
applications, e.g., image recognition [11], due to unbalanced
and non-IID (not independently and identically distributed) data
distributions among mobile clients. Heterogeneous data com-
monly exists in many application scenarios because the users,
who produce the data, may have different physical environments
and diverse usage habits [11], [12], [13]. The non-IID data
generally requires more communication overheads between the
server and mobile clients to reach the converged model, which
largely increases the burden on mobile clients [14], [15], while
the accuracy of the learned model may be severely degraded
[16], [17]. As a result, the non-IID data issue greatly hinders the
uses of FL in real-world applications.

In the literature, many efforts have been devoted to mitigating
the impact of non-IID data. Previous works primarily train one
single global model from some well selected participating clients
(e.g., [18], [19]) or even partial high-quality data of each client
(e.g., [16], [20], [21]). These approaches, however, are still inef-
fective because a single model cannot well reflect the underlying
data distributions, resulting in poor model accuracy. Recently,
a novel framework, as known as clustered federation learning
(CFL) [22], is proposed to attack the non-IID challenge. The key
idea of CFL is that mobile clients can be classified into different
clusters according to the similarity of their data distributions,
and clients belonging to the same cluster collaborate to train
a shared model. As a result, multiple global models exist and
the impact of data heterogeneity will be largely reduced. CFL
has inspired a number of follow-up works [22], [23], [24], [25],
[26], [27]. Most existing CFL approaches [23], [24], [25], [26]
require inputting the number κ of clusters in advance, while it is
difficult or even impossible to determine the optimal κ with no
prior knowledge of clients’ data distributions in the FL setting.
A few works [22] implement CFL without pre-specifying κ by
iteratively separating clients into clusters. However, they sepa-
rate a cluster only when all local models have been converged,
leading to huge communication costs, since convergence of all

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6346-2569
https://orcid.org/0000-0001-7526-7269
https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0001-9348-2982
https://orcid.org/0000-0002-1180-6806
mailto:gby@stumail.penalty -@M nwu.edu.cn
mailto:gby@stumail.penalty -@M nwu.edu.cn
mailto:xtz@nwu.edu.cn
mailto:xjchen@nwu.edu.cn
mailto:liuzhidanpenalty -@M @szu.edu.cn
mailto:liuzhidanpenalty -@M @szu.edu.cn
mailto:weixi.cs@gmail.com
https://doi.org/10.1109/TMC.2023.3332637

GONG et al.: TOWARDS HIERARCHICAL CLUSTERED FEDERATED LEARNING WITH MODEL STABILITY ON MOBILE DEVICES 7149

local models requires a large number of communication rounds
between the server and clients. In addition, when there are a
large number of clients involved in FL, these CFL approaches
will also incur non-negligible computation costs for client
clustering [28].

In this paper, we present HiCFL, a Hierarchical Clustered
Federated Learning approach, to advance the existing CFL ap-
proaches. Without pre-specifying the cluster number κ, HiCFL
can still effectively and efficiently classify all clients into a
suitable number of clusters. The key idea of HiCFL derives
from one important observation. Existing literatures have in-
vestigated the differences between the different layers in the
model [29], [30], [31], e.g., the higher level weights are more
task-related compared to the lower level weights. We further
experimentally observe that different layers of a local model
show diverse capabilities for describing the data distribution
in FL, and the cosine similarity among layer-wise model up-
dates of different clients demonstrates a clear clustering effect.
In particular, we find that some layers may possess such a
capability much earlier and meanwhile stronger than others.
Inspired by this observation, we propose the concept of model
stability to measure the convergence state for the weights of each
model layer, and exploit model stability to guide the process of
client clustering. Specifically, HiCFL continuously calculates
the model stability for each client using a sliding window. Once
a stable state is reached for an identical layer in all local models,
HiCFL bi-partitions clients of a cluster into two sub-clusters
according to the similarity values of the layers reaching sta-
bility. HiCFL separates clients into proper clusters in a hier-
archical manner, and terminates the clustering until no cluster
separation. As a result, HiCFL can intelligently group clients,
even without the input of cluster number κ. Moreover, HiCFL
incorporates a model weight selection mechanism to retain
only updates of unstable model weights for the model stability
calculations.

The main contributions of this paper are as follows:
� We observe that different layers of a client’s model have

diverse capabilities on describing the underlying data dis-
tribution, and for the first time propose a novel indicator
named model stability to measure the state of model up-
dates at the layer level.

� We present HiCFL that exploits model stability to effec-
tively guide the client clustering in FL. Specifically, we
propose a reference-based bi-partitioning strategy to sepa-
rate mobile clients into proper sub-clusters in a hierarchical
manner, and devise a model weight selection mechanism
to further optimize the calculations of model stability.

� We conduct extensive experiments with three popular
datasets under various non-IID data settings. The exper-
imental results demonstrate the effectiveness and effi-
ciency of HiCFL. Compared to state-of-the-art approaches,
HiCFL can reduce communication costs by 27.3% ∼
80.6%, while improving model accuracy by 2.0% ∼ 9.0%.

The rest of this paper is organized as follows. Section II
presents the preliminary. Section III introduces the concept
of model stability. HiCFL is elaborated and evaluated in

Sections IV and V, respectively. The related works are reviewed
in Section VI. Section VII concludes this paper.

II. PRELIMINARIES

A. Federated Learning

Mobile devices generate massive amounts of data at the edge
of the network, and centralizing this data in a single server
to train deep learning models is often impractical due to data
privacy concerns. Federated learning (FL) enables distributed
mobile devices to collaboratively train a shared model without
exposing their raw data. FedAvg [1] is so far the most commonly
used algorithm for implementing the idea of FL. Specifically,
FedAvg trains a globally shared model through a plenty of rounds
of communication between the central server and distributed
clients. At the beginning of each communication round, the
server distributes the current global model to the clients, who
will proceed to train this model with their own data. Once the
local training is completed, the model updates are synchronously
uploaded to the server for aggregating a new global model.
These operations are repeated until the global model has been
converged.

We take the multi-classification problem as a vehicle to ex-
plain FedAvg in detail. In this problem, the feature space isX and
the label space is Y . Without loss of generality, we assume that
there are C classes in total, i.e., |Y| = C. Let (x, y|x ∈ X , y ∈
Y) denotes a labeled sample, and f(·) is defined as the prediction
function. For the multi-classification task, loss function L(·) is
usually defined as the cross entropy loss. Thus, the learning
objective is

minω

{
L(ω) � −

C∑
a=1

p(y = a)Ex|y=a [log(fa(x, ω))]

}
,

(1)
where ω is the weight vector, and fa represents the probability
of predicting sample x as the class a.

In the FL setting, assume that there are m clients, denoted by
C = {c1, c2, . . . , cm}, and a central server. Each client ci locally
stores ni samples that obey a data distribution of Pci , i.e., client
ci’s local dataset Dci ∼ Pci . The objective of FedAvg is thus
defined as

min
ω

{
F (ω) �

m∑
i=1

ni

N
Fci(ω)

}
, (2)

where Fci(ω) denotes the loss of client ci, i.e., Lci(ω), and∑m
i=1 ni = N is the total number of samples from m clients.
In each communication round t of FedAvg, the clients down-

load current global model ωt−1 from the server and conduct
stochastic gradient descent (SGD) [32] locally

ω
(ci)
t = ωt−1 − η∇Lci(ωt−1)

= ωt−1 − η

C∑
a=1

p(y = a)∇ωEx|y=a [log(fa(x, ωt−1))] ,

(3)

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

7150 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

where η is the learning rate when client ci performs SGD locally.
After each client ci has obtainedω(ci)

t , the clients synchronously
upload model updates, i.e., the difference between local model
weights Δ

(ci)
t � ω

(ci)
t − ω

(ci)
t−1 , to the server. Once the server

receives all model updates, it performs aggregation to update
the global model

Δt =

m∑
i=1

niΔ
(ci)
t

N
,

ωt ← ωt−1 +Δt. (4)

FedAvg repeats above operations until the training process is
converged (e.g., Δt is sufficiently small), and the final global
model will be transmitted to all clients for use.

B. FL Challenges on Mobile Devices

In reality, the data of different users often exhibit a high level
of heterogeneity, resulting in non-IID training data for FL. As
an example, users may active in different physical environments
and own diverse biological features, thus their data for human
activity recognition will exhibit high heterogeneity, which leads
to poor model accuracy [11]. The shared model learned via Fe-
dAvg has demonstrated good performance when the training data
from different clients are IID. However, more and more studies
report that FedAvg may be unstable or even ineffective when the
data of different clients is non-IID, i.e., Pci � Pcj (i �= j), even
with severe model accuracy drops as large as 51% [16].

The objective of each client ci’s local execution of SGD
is to minimize the empirical loss on local dataset Dci , and
thus different data distributions of clients make their objectives
diverge. As a result, local objectives cannot reliably approximate
the global objective from the perspective of expectation, i.e.,

E

[
Fci

(
ω(ci)

)]
�= F (ω). (5)

If we keep on training local models on such non-IID data, the
divergences between local model weights ω(ci) accumulate and
the conflicts at model aggregation on the server will increase
accordingly, resulting in degraded training performance or even
failing to derive a converged model.

Therefore, many research efforts [16], [18], [20], [21], [33]
have been made to mitigate the negative effects of non-IID data
for FL. For example, Zhao et al. [16] propose to use a globally
shared dataset among clients to reduce the differences between
local models. FedProx [21] improves FedAvg by allowing model
aggregation based on partial information. Li et al. [20] propose
a data selection strategy at the sample level, which only utilizes
high-quality training samples for model training. Moreover,
Wang et al. [18] exploit reinforcement learning to select clients
for each round of model training, so as to balance the biases
caused by non-IID data. These works primarily train a single
global model from some well selected participating clients or
even partial high-quality data of each client. The trained single
model, however, is usually inadequate to capture the heteroge-
neous data of all clients, and thus cannot achieve high accuracy
in practical applications [11].

In addition to the challenge of non-IID data, mobile de-
vices participating in FL encounter various obstacles, including
limited computational power, communication capacity, storage
capacity, and device heterogeneity. Among these challenges,
communication resource limitations represent the primary bar-
rier preventing mobile devices from participating effectively in
FL, since communication in the network can be many orders
of magnitude slower than local computation [34]. Therefore,
reducing communication costs is a crucial aspect of realizing
FL on mobile devices.

C. Clustered Federated Learning

Recently, a promising framework named clustered federated
learning (CFL) [22] has been proposed to attack the non-IID
challenge. In general, CFL divides all clients into a number
κ of clusters, i.e., G = {G1, G2, . . . , Gκ}, according to their
data distributions, and trains a global model for clients of each
cluster, respectively. To indirectly measure the data distribu-
tion similarity among clients, existing CFL works calculate the
model similarity between clients based on their model updates
or gradients. Specifically, each client sends its model updates
or gradients to the server, and the server computes the cosine
similarity of model updates or gradients for any two clients.
Based on the model similarity results, the server divides the
clients into clusters. It is worthy to noting that CFL groups
the clients according to their model similarity, while the data
among clients of the same cluster may not be strict IID. However,
the impact of non-IID data for FL-based model training is largely
reduced.

Compared to training one single model for all clients with het-
erogeneous data, multiple models may be easily negotiated once
the clients with similar data distributions have been correctly
distinguished. Such a strategy is equivalent to decomposing
the global objective of the former FL problem into multiple
(i.e., κ) sub-objectives, such that these sub-objectives can be
well approximated by the local objectives of clients from the
perspective of expectation

E

[
F k
ci
(ω(ci))

]
= F k(ωk), k = 1, 2, . . . , κ, (6)

where F k is the global sub-objective for cluster Gk, F k
ci

is the
objective of client ci in Gk, and ωk is the model of Gk.

Next we will briefly analyze the feasibility of clustering
clients. For simplicity, assume that allm clients are grouped into
two clusters, i.e., G1 and G2, and their local data are sampled
from two different distributions PG1

and PG2
, i.e., DG1

∼PG1

and DG2
∼PG2

. Each client ci (from either G1 or G2) has an
empirical risk loss function defined as

F k
ci
(ωci) � 1∣∣Di

Gk

∣∣ ∑
(x,y)∼DGk

L(y;x, ωci), k = 1or 2. (7)

Then (2) can be rewritten as

F (ω) �
m∑
i=1

ni

N
Fci(ω)

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: TOWARDS HIERARCHICAL CLUSTERED FEDERATED LEARNING WITH MODEL STABILITY ON MOBILE DEVICES 7151

=

|G1|∑
a=1

na

NG1

F 1
ca
(ω) +

|G2|∑
b=1

nb

NG2

F 2
cb
(ω), (8)

where NG1
=

∑|G1|
i=1 ni and NG2

=
∑|G2|

i=1 ni. If the FL train-
ing converges to a stationary point ω∗ of FL’s objective, i.e.,
F (ω∗) = min(F (ω)), then we have

0 = ∇F (ω∗)

=

|G1|∑
a=1

na

NG1

∇F 1
ca
(ω∗) +

|G2|∑
b=1

nb

NG2

∇F 2
cb
(ω∗). (9)

To simplify above equation, we assume that the empirical
losses of clients in the same cluster to be the same, i.e.,FG1

(ω) =

F 1
ca∈[G1]

(ω) and FG2
(ω) = F 2

cb∈[G2]
(ω). Let ρ1 =

∑|G1|
a=1

na

NG1

and ρ2 =
∑|G2|

b=1
nb

NG2
. To satisfy (9), there exists two such cases,

one is

∇FG1
(ω∗) = ∇FG2

(ω∗) = 0, (10)

while the other is

∇FG1
(ω∗) = −ρ2

ρ1
∇FG2

(ω∗) �= 0. (11)

For the latter case, in practice, we often have no control over
ρ1 and ρ2. For the former case, it usually does not hold because
the data distributions PG1

and PG2
are different. As a result,

we cannot find one unified model ω∗ for all clients. In order to
minimize the objective of FL, clustering clients with similar data
distributions is thus a necessary and effective way to alleviate
the impact of non-IID data.

There exist several remarkable works that have practiced
the idea of CFL [22], [23], [24], [25], [26], and they have
demonstrated that CFL is effective on alleviating the impact
of non-IID data. In general, existing CFL approaches can be
classified into two categories, according to whether the number
κ of clusters needs to be specified in advance. For example,
these works in [23], [24], [25], [26] require knowing κ before
clustering clients. However, it is difficult or even impossible
to determine the optimal κ with no prior knowledge of the
clients’ data distributions. Although Sattler et al. [22] implement
CFL through multiple rounds of bipartite separation, without
inputting κ, their approach separates a cluster only when the
local models of all clients have been converged, resulting in
great latency and huge communication costs.

Therefore, we are motivated to further advance the CFL idea
by devising an approach that can effectively group all clients
into proper clusters without specifying κ in a communication-
efficient manner. However, it is non-trivial to achieve this goal
due to the following major challenges:
� Without knowledge about clients’ data: FL is initially

proposed for privacy-preserved machine learning, and thus
it is prohibited for the server to access to clients’ raw data.
As a result, we should implicitly measure the similarity of
clients’ data distributions, without compromising the data
privacy.

� Hard to determine the optimal κ: Previous studies show
that the number κ of clusters is highly relative to the

final model accuracy [24], [25], while without knowledge
about the exact data distributions of all clients, it is quite
difficult to determine the optimal κ, which can best reflect
underlying data distributions and lead to accurate models.

� Huge communication overheads: FL normally involves
many communications between the server and clients to
train a global model, while CFL may need more extra
communication costs to negotiate the clustering of clients.
In particular for mobile clients, communications will not
only prolong the whole training process, but also largely
consume precious battery energy and network traffics.
Thus, an efficient communication mechanism is desired
for the new CFL approach.

III. MODEL STABILITY

In this section, we experimentally study the characteristics of
FL-based model training over non-IID data, and introduce the
concept of model stability to motivate our design.

A. FL-Based Model Training Over Non-IID Data

To better understand the impact of non-IID data on FL, we
conduct a simple motivating experiment by training a CNN
model for m = 10 clients, i.e., C = {c1, c2, . . . , c10}, with FL
over the CIFAR10 dataset [35]. Specifically, the CNN model
consists of two convolutional layers (denoted by Conv1 and
Conv2) and a fully connected layer (denoted by FC) (Please see
details about the datasets and models in Section V-A). To simu-
late the non-IID data distributions among clients, we artificially
divide all ten clients into two clusters, where client c1∼c5 form
a cluster and the rest clients form the other cluster. We use two
different methods to generate non-IID data. The first one assigns
samples with the same feature space but different label space for
the clients, while the second one assigns samples with the same
label space but different feature space for the clients. In addition,
the local data for clients of each cluster are sampled from the
CIFAR10 dataset according to the Dirichlet distribution with its
scaling parameter α = 1. We execute FedAvg [1] to learn the
global model, and constantly observe the local model updating
on each client. For any two clients, we use the cosine similarity to
measure the similarity between their layer-wise model updates.

For the first non-IID data setting, Fig. 1 plots the layer-wise
similarity for all clients after round 1 and round 10, where the
darker is the more similar between the model updates of clients
would be. After the first round, the similarity distributions for
layer Conv1 and Conv2 are random and cannot well reflect the
cluster-relation between clients, while we see the clear gathering
phenomenon in Fig. 1(c), which implies that model updates of
layer FC are capable of distinguishing clients with similar data
distributions. After the tenth round, we find that model updates
of each layer have better capability on distinguishing whether
any two clients own the similar data distributions or not. We see
two distinct clusters from Fig. 1(e) and (f).

For the second non-IID data setting, the results as shown in
Fig. 2 are different from Fig. 1. We see that after the first round,
only layer Conv2 can show the gathering phenomenon as shown
in Fig. 2(b). After the tenth round, two convolutional layers,

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

7152 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Fig. 1. Cosine similarity between model updates of different model layers for
all clients at the 1st and 10th communication rounds in the first non-IID data
setting.

Fig. 2. Cosine similarity between model updates of different model layers for
all clients at the 1st and 10th communication rounds in the second non-IID data
setting.

i.e., Conv1 and Conv2, can show the gathering phenomenon as
shown in Fig. 2(d) and (e), while layer FC still cannot.

In summary, we have the following two key observations
based on the above experiments.
� Observation 1: different layers in a model have varied

capability on describing the underlying data distribution.
We find that the FC layer can well distinguish clients of
different clusters when the clients’ data differ in the label
space, while the convolutional layers are better at capturing
data distribution difference in the feature space. This is
because from a functional point of view, the convolutional
layer is used to extract local features of the data, and its
output is a feature map containing lots of local features.
While the FC layer aims to globally perceive and trans-
form the feature map to the label space for classifying the
samples.

� Observation 2: Each layer’s capability on describing the
underlying data distribution becomes stronger along with
more rounds. With more rounds of FL-based training, a

Fig. 3. Illustration of the model stability computation process.

client’s local model becomes more stable and the updates
of each layer fit the underlying data better. By comparing
Fig. 1(c) and (f) (or Fig. 2(a) and (d)), we see that the
model similarity among clients in the early stage e.g., the
first round, is not stable and the gathering phenomenon is
unclear, while their model similarity becomes more stable
and the clustering effect is more obvious in the tenth round.

Previous works [18], [22] demonstrate that the weights of
a local model can indirectly reflect a client’s data distribution,
while we further observe that the model updates of different
layers and at different training phases have the unequal capability
on describing a client’s data distribution. Therefore, we could
calculate the model similarity between clients by exploiting
only partial “valuable” model updates (e.g., the model updates
of the FC layer as shown in Fig. 1(f)), rather than all model
weights/updates and start client clustering at some proper time.
These insights motivate us to devise a brand-new CFL solution
to attack the non-IID challenge.

B. Model Stability

Existing works [22] mainly exploit model updates of clients’
converged models to calculate their model similarity. In FL,
it usually requires many communication rounds between the
server and clients to make the model converge due to non-IID
data. According to the experiment results in Figs. 1 and 2,
we find that after certain rounds, although the models are not
converged yet, model updates of some layers can be used to
well distinguish clients. In fact, model convergence indicates
the state in which the training process should be terminated,
while the model updates may be in a stable status much earlier
than the convergence. Therefore, we should have a better view
of the model updating trends for accurate and steady client
clustering earlier. To this end, we propose the concept of model
stability that measures how much the local model changes over
several consecutive communication rounds, so as to represent
the dynamic state of a local model updating.

We explain model stability using Fig. 3 that illustrates three
rounds of communication between client ci and the server. As
shown in the figure, there are three rounds of model training,
which generates three consecutive model updates accordingly,
i.e., Δ(ci)

t−2 ,Δ
(ci)
t−1 ,Δ

(ci)
t , t ≥ 3. For any two consecutive model

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: TOWARDS HIERARCHICAL CLUSTERED FEDERATED LEARNING WITH MODEL STABILITY ON MOBILE DEVICES 7153

Fig. 4. Comparisons of model loss and model stability during the FL-based model training.

updates, we calculate model update trend T
(ci)
t at round t as

T
(ci)
t =

〈
Δ

(ci)
t−1 ,Δ

(ci)
t

〉
∥∥∥Δ(ci)

t−1
∥∥∥ · ∥∥∥Δ(ci)

t

∥∥∥ . (12)

In addition, for the first and last model updates, we calculate
model update trend T

(ci)
t−2∼t at round t as

T
(ci)
t−2∼t =

〈
Δ

(ci)
t−2 ,Δ

(ci)
t

〉
∥∥∥Δ(ci)

t−2
∥∥∥ · ∥∥∥Δ(ci)

t

∥∥∥ . (13)

We thus define model stability for client ci at round t as

S
(ci)
t �

∣∣∣∣∣T
(ci)
t + T

(ci)
t−1

2
− T

(ci)
t−2∼t

∣∣∣∣∣ . (14)

The model update trends T
(ci)
t and T

(ci)
t−2∼t are calculated as

the cosine similarity of two model updates. In general, a smaller
S
(ci)
t indicates the higher stability of client ci’s local model,

which implies that the local model tends to be converged. It is
worthy to noting that the computations of both T

(ci)
t , T (ci)

t−2∼t
andS(ci)

t are performed at the server side, and thus no additional
computation cost will be introduced to the clients.

From (14), we see that model stability measures the changing
trend of the client’s local model during the training process. If
model stability reaches a stable state, it means the model updates
tend to be stable only with slight changes. In this case, if the
model stability values of clients to be clustered become stable,
their model updates are sufficiently stable and less influenced
by other models, which can accurately demonstrate the cluster
structure. Furthermore, compared to the converged state, model
stability can quickly reflect whether the client’s model is in a
stable state or not. When the model stability is small, it implies
that the local model becomes more stable and may be converged
later. If the model stability is large, it means the client’s model
is still dramatically varying on its model weights.

To investigate the advantage of model stability, we conduct
experiments to compare the changes of model loss and model
stability when training the clients’ local models with FL. In
practice, when the model loss does not change or is smaller than
a predefined threshold, we say the model has converged. In the
experiments, we perform the clients’ model training over the
CIFAR10 dataset in the Non-IID-1, Non-IID-2 and Non-IID-3

data settings and record the average model loss and average
model stability during the model training (Please find more de-
tails about the data settings in Section V-A.). The results in Fig. 4
show that model stability can reach a steady state much earlier
than the model loss. For example, model stability becomes stable
after 12 rounds, while model loss becomes stable (i.e., model
convergence) around 40th rounds for all data settings.

IV. DESIGN OF HICFL

In this section, we present the workflow of HiCFL, and then
introduce the key designs involved in the client clustering.

A. Workflow

Similar to existing CFL methods [22], [24], we also consider
a typical FL setting, where the clients are geographically dis-
tributed with good network connections and assume all clients
will join the FL-based model training process to achieve better
modeling results. Fig. 5 illustrates how HiCFL performs FL by
separating clients into clusters based on their model stability.
In general, HiCFL works like existing FL algorithms that use
synchronous model aggregation strategy, and has the major steps
as follows:

Step 1: All m eligible clients check in with the FL server, which
initially treats all clients as one cluster and broadcasts current
global model to all clients.

Step 2: Each client ci performs local SGD training on the
downloaded model using its own data. The training times
may vary among clients, depending on the data amount on
each client.

Step 3: Each client ci calculates the model updates that are then
transferred to the server.

Step 4: The server receives model updates from all clients,
and then updates the global model for each cluster Gk by
aggregating with model updates of clients belonging to cluster
Gk. Later, the server broadcasts the newly updated global
models to the clients of each cluster, respectively.

Step 5: For everyW consecutive rounds of communication, e.g.,
at round t, the server calculates model stability S

(ci)
t for each

client ci using received model updates.
Step 6: If possible, the server will separate the clients of a cluster

into two smaller clusters.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

7154 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Fig. 5. Workflow of HiCFL.

Similar as FedAvg, each client in HiCFL needs to download a
global model from the server, trains the model using its own data,
and then transfers the model updates to the server for aggregating
a new global model. Different from FedAvg, HiCFL will bi-
partition a cluster Gk into two clusters according to the model
stability of clients in Gk. Instead of training only one single
global model for all clients, HiCFL will train one model for
clients of each cluster respectively. HiCFL repeats Step 2–6 until
no cluster will be separated. By constantly detecting the model
stability of clients, HiCFL bi-partitions clusters and groups all
clients into proper clusters in a hierarchical manner, which gets
rid of the requirement of pre-specifying the number of clusters.
Finally, κ clusters are formed, and clients of each cluster will
collaboratively train their “private” global model.

Similar to existing FL works [1], [11], we adopt the syn-
chronous learning strategy. However, HiCFL can speedup the
whole FL training process. First, HiCFL exploits model stability
to find the right timing of client clustering, which is earlier
than previous CFL works and can reduce the number of com-
munication rounds required for model similarity calculations.
Second, compared to the conventional FL that involves many
clients to train one single model, different client clusters train
their respective shared models in an asynchronous manner that
is quicker. Although the clients in each cluster still train their
model in a synchronous manner, the number of clients in each
cluster is much smaller, and thus the total model training time
can be reduced.

Next we detail two key designs of HiCFL, namely client
clustering guided by model stability and weight selection for
model stability calculation.

B. Client Clustering Guided by Model Stability

At the beginning of FL, HiCFL treats all m clients as one
cluster, and then hierarchically separates the cluster into more
sub-clusters. Therefore, it is important to know when HiCFL
should bi-partition a cluster and how HiCFL separates the clients
of a cluster into two groups.

Timing of Bi-Partitioning a Cluster: Intuitively, when the local
model of client ci becomes converged, it means that the local
data of ci has been well exploited and the resultant model can
well represent ci’s underlying data. Thus previous works [22]
use the weights of converged local models for client clustering.
However, it may take many rounds for a local model to be
converged, and thus greatly prolong the clustering process. As
discussed in Section III-A, we observe that some layers of a
local model may become stable (or converged) much earlier
than the whole model. Therefore, HiCFL utilizes the model
stability of clients to detect whether it is an opportune time
to bi-partition a cluster. Specifically, HiCFL adopts a sliding
window with size W to measure the model stability of each
client’s local model. The sliding window size W is the number
of communication rounds between the clients and the server.
Instead of relying on one single model stability value, we will
calculate the average model stability within the sliding window,
and thus can find a more accurate time to bi-partition the clients.
In general, the larger W can reduce the randomness of model
stability calculations, and thus derive more stable and accurate
client clustering results.

Assuming the model to be trained has a total of L layers, at
round t, if the following condition expressed in (15) is satisfied
for any client ci ∈ Gk, then cluster Gk can be bi-partitioned into
two smaller clusters.

S
(ci,l)
t < ε, ∀ci ∈ Gk & ∃l ∈ {0, 1, . . . , L− 1}. (15)

In (15), we can properly set ε given the learning rate η in local
SGD, since the model stability of a client is only related with η
as well, which is proved as the following.

For the lth layer of client ci’s local model, its model stability
at tth round is expressed as

S
(ci,l)
t =

∣∣∣∣∣T
(ci)
t + T

(ci)
t−1

2
− T

(ci)
t−2∼t

∣∣∣∣∣

=

∣∣∣∣∣
〈
Δ

(ci,l)
t ,Δ

(ci,l)
t−1

〉
∥∥∥Δ(ci,l)

t

∥∥∥·
∥∥∥Δ(ci,l)

t−1
∥∥∥
+

〈
Δ

(ci,l)
t−1 ,Δ

(ci,l)
t−2

〉
∥∥∥Δ(ci,l)

t−1
∥∥∥·
∥∥∥Δ(ci,l)

t−2
∥∥∥

2

−
〈
Δ

(ci,l)
t ,Δ

(ci,l)
t−2

〉
∥∥∥Δ(ci,l)

t

∥∥∥ · ∥∥∥Δ(ci,l)
t−2

∥∥∥
∣∣∣∣∣. (16)

Interestingly, we find that the model stability of a client is only
determined by the learning rate η when the other hyperparame-
ters e.g., batchsize, and training optimization methods have been
fixed. Please see Appendix A for a detailed discussion about this
property, available online.

Separation of a Cluster: Once the time to separate a clusterGk

is determined, HiCFL needs to bi-partition the clients of Gk into

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: TOWARDS HIERARCHICAL CLUSTERED FEDERATED LEARNING WITH MODEL STABILITY ON MOBILE DEVICES 7155

two groups. Given a cluster of clients, existing CFL approaches
[22], [23], [25], [26] extensively calculate the similarity between
any two clients’ model weights, and separate them into two clus-
ters according to their model similarity values. Such a strategy
will introduce huge computations, since numerous clients may
be involved in FL.

Therefore, we propose a reference based cluster bi-
partitioning strategy. For a cluster Gk to be bi-partitioned, we
select the client cr ∈ Gk, which has the smallest model stability
in cluster Gk, as the reference.

Assume that in cluster Gk, the lth layer of all local models
reaches stable first at the tth round, i.e., satisfying the condition
in (15), then the reference cr of cluster Gk is selected as

cr = arg min
Δ

(ci,l)
t

(
S
(ci,l)
t

)
, ci ∈ Gk. (17)

Then, we calculate the cosine similarity of model updates
between any other client cj ∈ Gk and the reference client cr.
The clients with positive similarity values are classified into one
sub-cluster, while the rest are gathered into another sub-cluster.
Specifically, the cosine similarity of model updates between cj
and cr is calculated as

Sim(cj , cr) =

〈
Δ

(cr,l)
t ,Δ

(cj ,l)
t

〉
∥∥∥Δ(cr,l)

t

∥∥∥ · ∥∥∥Δ(cj ,l)
t

∥∥∥ . (18)

HiCFL will bi-partition a cluster Gk once the member clients
ofGk meet the condition expressed in (15). With such a strategy,
the server computes a 1×m similarity vector instead of an m×
m similarity matrix in bi-partitioning, i.e., reducing the compu-
tational cost of similarity between models from O(m2|ω|2) to
O(m|ω|2), which greatly reduces the computation overheads.
However, the cluster bi-partitioning process should be termi-
nated when clients with similar data distributions have been
properly grouped. Similar as [22], for all clients we calculate the
average model update norm Δave = ‖

∑m
i=1

ni

N Δ(ci)‖ and the
maximum model update norm Δmax = maxi=1,...,m ‖Δ(ci)‖.
HiCFL will terminate the cluster bi-partitioning process if both
Δave and Δmax are consistent.

C. Weight Selection for Model Stability Calculation

The server has to periodically calculate each client’s model
stability every W rounds for possibly bi-partitioning clients into
smaller clusters. Due to the large number of parameters involved
in machine learning (especially deep learning) models, however,
the model stability calculations will introduce huge computation
overheads.

In the HiCFL design, we thus adopt a simple yet effective
weight selection mechanism to reduce the number of model
updates used for model stability calculations. We observe that
local model weights affect model stability with varying degrees.
Specifically, the unstable model weights are relatively fixed
between different FL training rounds. As shown in Fig. 6, we
plot two consecutive rounds of weights’ magnitude variations
for a client’s local model, which is a CNN model trained on

Fig. 6. Unstable model weights in each layer of the local model are relatively
fixed between communication rounds.

FashionMNIST dataset under Non-IID-2 data setting, as detailed
in Section V-A. By comparing the results in Fig. 6(a) and (b),
we see that the model weights with indexes ranging from 0 to
1,200 are relatively unstable, while other weights seem to be
more stable with small changes on their magnitudes. Intuitively,
these stable model weights will have a negligible impact on
the model stability calculation. Therefore, we can only use the
model updates, whose model weights are unstable, for model
stability calculation, so as to reduce the computation costs. For
each layer l of client ci’s local model, we select model weights
as

arg
[d]

(
Δ(ci,l,d)

new −Δ
(ci,l,d)
old

)
> ξ, (19)

where d is the index of a model weight in the lth layer of ci’s
local model, and ξ is a pre-defined threshold. After obtaining the
indexes of model weights, which satisfy the above condition, for
each client ci, the server will only use model updates indicated
by indexes ds for calculating ci’s model stability using (12) and
(14). For each client ci, the weight selection process is only
performed at the FL initialization phase or after ci’s cluster is
bi-partitioned.

D. Theoretical Analysis

Computational Complexity Analysis: About the computa-
tional complexity of HiCFL, we have the following theorem.

Theorem 1: The computational complexity of HiCFL is
O(mT |ω′|2 +mT + κ|G∗||ω|2).

Proof: HiCFL mainly involves two parts of calculations,
namely model stability calculation for each client and model
similarity calculation between clients for clustering.

For the first part, we select a small number of key parameters
ω′ to calculate model stability for each client. To calculate the
model stability of a client at the given round, HiCFL needs
to calculate model update trend between any two rounds (i.e.,
(12) and (13)), which involvesO(|ω′|2) computations, and then
computes the model stability (i.e., (14)) that involves onlyO(1)
computation. Assume that the clients and the server commu-
nicate for T rounds, the computational complexity for model
stability calculations is O(mT |ω′|2 +mT), where m is the
number of clients in the FL training process.

For the second part, for each cluster Gk, we select a client
with the least model stability as the reference, and then compute
model similarity between the reference client and any other
client in the cluster. Based on their model similarity values, we

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

7156 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

bi-partition this cluster into two smaller clusters. Specifically,
we calculate the consine similarity of model updates between
two clients as their model similarity, which involves O(|ω|2)
computations, where |ω| is the number of a client’s model
parameters. The computational complexity for bi-partitioning
cluster Gk is O(|Gk||ω|2). Assume there are κ clusters, and
the total computational complexity for client clustering will be
O(κ|G∗||ω|2), where |G∗| is the average number of clients in a
cluster.

Therefore, the overall computation complexity of HiCFL is
O(mT |ω′|2 +mT + κ|Gk||ω|2). �

Convergence Analysis: Rather than training one single global
model for all clients, HiCFL divides all clients into different
clusters and individually trains a shared model for the clients
of each cluster. Therefore, we use cluster Gk as an example
to analyze the convergence of HiCFL. We assume that there
exists an optimal solution ω∗k for cluster Gk, i.e., FGk

(ω∗k) =
min(FGk

(ω)) and ∇FGk
(ω∗k) = 0.

Before analyzing the convergence bound of HiCFL, we first
state some assumptions by referring to [17].

Assumption 1: The loss function Fci of client ci is μ-strongly
convex where μ ≥ 0, for ∀x, y

Fci(y)− Fci(x) ≥ 〈∇Fci(x), y − x〉+ μ

2
‖y − x‖2.

Assumption 2: The loss function Fci of client ci is L-smooth
where L > 0, for ∀x, y

Fci(y)− Fci(x) ≤ 〈∇Fci(x), y − x〉+ L

2
‖y − x‖2.

Assumption 3: Assuming the variance of the stochastic gra-
dient of each client ci ∈ Gk is bounded, i.e.,

E‖∇Fci

(
y
(ci)
t ;x

(ci)
t , ω

(ci)
t

)
−∇Fci(ω

ci
t)‖2 ≤ σ2.

Assumption 4: Assuming the expected squared norm of
stochastic gradients of each client ci is uniformly bounded, i.e.,

E‖∇Fci

(
y
(ci)
t ;x

(ci)
t , ω

(ci)
t

)
‖2 ≤ Q2,

where (x
(ci)
t , y

(ci)
t) ∈ Dci . Then we have the convergence

bound of HiCFL as the following theorem.
Theorem 2: The convergence bound of HiCFL is

E[FGk
(ωT)− FGk

(ω∗k)]

≤ τ

γ + t

(
2B

μ
+

μγ + μ

2
E ‖ω1 − ω∗k‖2

)
,

where τ = L
μ , γ = max(8τ, E), and B =

∑|Gk |
i=1 (

ni

NDk

σ)2 +

6LΓGk
+ 8(E − 1)2Q2. In addition, E is the number of local

iterations as defined in [1], Γ is used to measure the non-IID
degree of the client’s data as defined in [17], ΓGk

denotes the
non-IID degree of the data in clusterGk, andΓGk

= FGk
(ω∗k)−∑|Gk |

i=1
ni

NDk

Fci(ω
(ci, ∗)).

According to Theorem 2, we find that the convergence for
cluster Gk’s model is bounded. We can accelerate the con-
vergence speed by reducing the non-IID degree of cluster Gk

when compared to FedAvg [1] that trains only one single model,
i.e., E[ΓGk

] ≤ Γ, k = 1, . . . , κ. Therefore, by properly dividing
clients with similar data distribution, i.e., reducing the non-IID
degree of clients’ data, into the same cluster, the model of each
cluster derived by HiCFL can be converged quickly. Please
see Appendix B for the detailed proof of Theorem 2, available
online.

E. Discussions

In this subsection, we discuss some issues about HiCFL’s
robustness and design choices.

Selection of an Improper Reference Model for Cluster Bi-
Partitioning: In HiCFL, we select a client as the reference
to separate the clients of a cluster into two sub-clusters. If a
client, whose model temporarily gets stuck in a locally optimal
solution, is selected as the reference, it will lead to incorrect
client clustering results because the reference’s model does not
reflect the data distribution correctly. Such a case happens only
when the following conditions are satisfied: (i) The model of a
client ci temporarily gets stuck in a locally optimal solution, and
is mistakenly considered to have reached a stable state, i.e., its
model stability is sufficiently small; (ii) The cluster Gk where
client ci belongs to should be bi-partitioned; and (iii) The client
ci is selected as the reference for bi-partitioning cluster Gk.

Due to the unique design of HiCFL, this case can be avoided
with a high probability, due to the following reasons. First,
we calculate the model stability of a client using the model
updates of multiple consecutive communication rounds, and we
calculate the average model stability within a large window
W to determine the right timing of client clustering. Second,
bi-partitioning one cluster requires that all local models of clients
in the same cluster have reached a stable state. Therefore, the
clustering mechanism of HiCFL can avoid the influence of a
client’s model that gets stuck in locally optimal solution as
much as possible. Even though the special case happens, the
cluster formed by the improper reference would be bi-partitioned
later since clients of that cluster essentially have different data
distribution. As a result, the influence can be further eliminated.

Re-Organizing Clusters versus Fine-Grained Clustering: Re-
organizing the clusters after certain communication rounds
seems to be an effective solution to utilize the information
from clients with similar data distribution. However, this design
choice has two major limitations. First, the model training among
different clusters is asynchronous in the CFL setting, and thus
how to re-organize the clusters that are in different training
phases is challenging, which inevitably introduces extra commu-
nication and computation overheads. Second, from the perspec-
tive of model accuracy, we find that re-organizing clusters cannot
derive higher model accuracy when compared to fine-grained
clustering, i.e., bi-partitioning clients into smaller sub-clusters
as our current design. We experimentally compare the two design
choices in Section V-C. Therefore, we find that fine-grained
clustering is a better design choice than re-organizing clusters.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: TOWARDS HIERARCHICAL CLUSTERED FEDERATED LEARNING WITH MODEL STABILITY ON MOBILE DEVICES 7157

TABLE I
STATISTICS OF THE CNN MODEL WEIGHTS FOR THREE DATASETS

V. PERFORMANCE EVALUATION

A. Experimental Setup

We compare the performance of HiCFL with four baseline
approaches by training CNN models on three popular publicly
available datasets under different non-IID data settings.

Baseline Approaches: We compare HiCFL with the following
four baselines: (1) Centralized collects raw data from all clients
to the server for centrally training a global model, which works
without FL. (2) FedAvg [1], the most commonly used approach in
FL, coordinates all clients to collaboratively train a global shared
model. (3) MTCFL (Multitask Clustered Federated Learning)
[22], a state-of-the-art CFL approach, exploits multi-task learn-
ing to group clients into clusters by exploiting the geometric
properties of clients’ FL loss surface. (4) IFCA (Iterative Fed-
erated Clustering Algorithm) [24], another state-of-the-art CFL
approach, alternatively estimates the cluster identities of clients
and optimizes the weights of each cluster’s global model in an
iterative manner.

Noting that Centralized and FedAvg only train one model,
while MTCFL and IFCA will train multiple, i.e., as the num-
ber κ of clusters, models. Besides, MTCFL groups clients
without knowing κ, but IFCA needs to know κ in advance.
Therefore, we set the optimal κ as an input for IFCA in the
experiments.

Datasets and Models: We exploit FL to train various CNN
models over different datasets for totally m = 20 clients. The
datasets and models are described as follows.
� MNIST [36] contains 10 classes of handwritten digits,

where the size of each sample is 28× 28. Models related
to MNIST consist of two 5× 5 convolutional layers and
one fully connected layer. The first convolutional layer has
20 output channels and the second has 50, with each layer
followed by a 2× 2 max pooling layer.

� FashionMNIST [37] contains 10 classes of images, where
the size of each sample is 28× 28. Models related to
FashionMNIST consist of two 5× 5 convolutional layers
and one fully connected layer. The first convolutional layer
has 16 output channels and the second has 32, with each
layer followed by a 2× 2 max pooling layer.

� CIFAR10 [35] contains 10 classes of RGB images, where
the size of each sample is 28× 28. Models related to
CIFAR10 consist of two 5× 5 convolutional layers and
one fully connected layer. The first convolutional layer has
6 output channels and the second has 16, with each layer
followed by a 2× 2 max pooling layer.

Table I shows the statistics on the three models’ weights. In
addition, we chose Resnet18 [38] and VGG11 [39] to evaluate
HiCFL in handling complex models.

To further evaluate the performance of different methods
on more realistic datasets, we conduct experiments using the
USC-HAD dataset [40]. USC-HAD is a dataset for well-defined
low-level daily activity recognition, which contains IMU data
for 12 simple activities (e.g., walking, running, jumping, and
so on) from 14 volunteers. Each volunteer repeats each action
five times, with each movement lasting about 24 seconds. The
readings of the 3-axis accelerometer and 3-axis gyroscope of a
MotionNode instrument placed around the volunteers’ waists are
collected under a sampling frequency of 100Hz. The HAR model
contains three convolutional layers and two fully connected
layers. The batch size is 16, and the learning rate is 0.001.

Non-IID Data Settings: Considering the joint distribution of
data x and label y, i.e., p(x, y) = p(y)p(x|y), which is jointly
determined by p(y) and p(x|y). We thus generate non-IID data
from two different aspects of label space and feature space. For
p(x) we set label distribution on clients to be different. For
p(x|y) we set label distribution on clients to be the same, while
changing the original samples.
� Non-IID in label space: We set up two types of non-IID

label distributions. (1) Non-IID-1: All clients are equally
divided into four clusters, and the clients of each cluster
are assigned with samples of the same labels. Specifically,
label indexes for the four clusters are 0−3, 3−6, 4−9,
and 0−9, respectively. (2) Non-IID-2: Similar to the data
setting in [18], we use parameter β to indicate the non-
IID level, e.g., β = 0.7 means that 70% of the samples in
each client belong to the same label, while the remaining
samples belong to other labels. All clients are grouped into
four clusters as well.

� Non-IID in feature space: We let each client own the
same labels, and then generate non-IID data by randomly
selecting a fraction of clients and rotating their samples. For
MNIST and FashionMNIST, we rotate half of the clients’
samples by 180◦, and for CIFAR10 we equally divide all
clients into four clusters, and rotate the samples of each
cluster with angles of 0◦, 90◦, 180◦, and 270◦, respectively.
We denote this data setting as Non-IID-3.

To make non-IID data generations more realistic, each client
samples data from a dataset following Dirichlet distribution
with α = 1.0, and the number of samples on each client is
different. For different non-IID data settings, the learning rate
η and batch size (BS) are set accordingly, i.e., 1) Non-IID-1:
η = 0.1, BS = 128; 2) Non-IID-2: η = 0.01 for MNIST and
FashionMNIST, η = 0.001 for CIFAR10, and BS = 256; 3)
Non-IID-3: η = 0.1, BS = 128. Moreover, to generate natural
data distribution, we assign samples to clients using the Latent
Dirichlet allocation method [33], [41], which is commonly used
for simulating non-IID data. Specifically, we set parameter α
of Dirichlet distribution to 0.3 and 0.5, respectively, where a
smaller value indicates a higher degree of non-IID. Besides, the
batch size for VGG11 and Resnet18 is 16 and 32, respectively,
and the learning rate is 0.01.

Implementation: We have implemented HiCFL using Py-
Torch and properly set the thresholds. Threshold ε for cluster
bi-partitioning in (14) is set as 0.5η, and threshold ξ for weight
selection in (19) is set as 0.05η. In addition, we carefully tune the
parameters for the baselines to achieve their best performances.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

7158 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

TABLE II
COMPARISONS ON THE AVERAGE MODEL ACCURACY IN DIFFERENT NON-IID

SETTINGS

We adopt the number of communication rounds and model
accuracy as the performance metrics to evaluate all approaches.
Each experiment setting is repeated five times, and the average
results are reported. In particular, the model accuracy shown
in the experimental results represents the average of model
accuracy of all clusters. All experiments are performed on a
server equipped with an RTX 3090 GPU and an AMD 3800X
CPU.

B. Performance Comparison

We run different approaches on the three datasets to train CNN
models under various non-IID data settings for 50 rounds of
communication, and then compare their average model accuracy
results at the 50th round in Table II.

Overall, HiCFL performs much better than the baselines, with
six best results out of the nine experiment settings. Even for
the cases where HiCFL does not take the first place, it still
achieves the second highest model accuracy, which is quite close
to the best one. Both Centralized and FedAvg train only one
single global model, and we see that Centralized outperforms
FedAvg by deriving higher model accuracy in most cases. This is
because Centralized gathers all clients’ data for model training,
however, it violates data privacy and may not be applicable in
practice. Even so, Centralized cannot always achieve the best
model accuracy. This is because the clients’ data do not exactly
match the FL’s IID data assumption. As a result, one single
model, even trained on the raw data in a centralized manner,
is inadequate to well model the heterogeneous data that are too
complex for a given target model structures, e.g., the CNN model
in our experiments.

On the other hand, the CFL approaches, i.e., MTCFL, IFCA,
and HiCFL, generally have higher model accuracy than FedAvg,
which implies that multiple models are better than one single
model on describing the non-IID data. Compared to the fre-
quently used FedAvg and the two state-of-the-art MTCFL and
IFCA, on average HiCFL improves the model accuracy by 9.0%,
2.3% and 2.0%, respectively.

Since Non-IID-3 data setting produces more heterogeneous
data for clients in the CIFAR10 dataset, all approaches cannot
well handle the non-IID data, and as a result obtain low accuracy,
i.e., about 40%.

TABLE III
COMPARISONS ON THE NUMBER OF COMMUNICATION ROUNDS REQUIRED TO

COMPLETE CLIENT CLUSTERING BETWEEN MTCFL AND HICFL

These results reflect the phenomenon that HiCFL improves
Non-IID data due to differences in label space Y more signif-
icantly than Non-IID data due to differences in feature space
X . This is because HiCFL bi-partitions the client clusters by
the similarity between the client’s model updates, which are
more sensitive to data with different label spaces than data with
different feature spaces.

Among all approaches, only MTCFL and HiCFL can group
clients without knowing the cluster number κ. However, they
pay different communication costs to achieve the clustering
results. For each experiment setting, we record the time when
client clustering is converged, i.e., the clustering results are the
same as the final clusters in the 50th round. Table III shows that
HiCFL requires much fewer rounds than MTCFL, i.e., reducing
the communication costs by 27.3%∼80.6%. Therefore, HiCFL
is more communication-efficient than MTCFL on clustering
clients, especially in the scenarios where mobile clients are
constrained by energy and bandwidth.

C. Detailed Evaluation

In this subsection, we conduct some benchmark experiments
to evaluate the performance of HiCFL.

Effect of Learning Rate η: In Section IV-B, we find that the
threshold ε on determining the timing of cluster separation is
only related to learning rate η. We conduct additional experi-
ments to examine whether η really affects the performance of
HiCFL. Fig. 7 shows the training curves of CNN models on
different datasets under Non-IID-2 data setting when η takes
different values. For the MNIST dataset, HiCFL works well and
the model training can converge properly in different settings
of η, as shown in Fig. 7(a). For the FashionMNIST dataset,
as shown in Fig. 7(b), HiCFL can make the training converge
only when η = 0.01, while when η = 0.1 the derived models
have poor accuracy. The reason may be that a larger η = 0.1
impacts the training process and degrades the model accuracy.
We observe similar results on the CIFAR10 dataset. As shown
in Fig. 7(c), HiCFL works well when η = 0.001, but fails on a
larger η = 0.01. However, when we increase the batch size from
256 to 512, HiCFL becomes feasible again. According to Fig. 7,
we conclude that a proper η is important for HiCFL to achieve
good clustering results, and sometimes we could increase the
batch size of SGD to help HiCFL work well.

Effect of Different Non-IID Levels: We study the performance
of HiCFL under different non-IID levels by varying parameter β
in Non-IID-2 data setting. As shown in Fig. 8, HiCFL can always

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: TOWARDS HIERARCHICAL CLUSTERED FEDERATED LEARNING WITH MODEL STABILITY ON MOBILE DEVICES 7159

Fig. 7. Training curves of CNN models under the Non-IID-2 data setting with different η and batch size (BS) on different datasets.

Fig. 8. Effect of non-IID levels on different datasets under the Non-IID-2 data setting.

properly complete client clustering within 10 communication
rounds. Across different non-IID levels, HiCFL achieves stable
clustering results with similar rounds, with the largest difference
as 4 rounds that is observed on CIFAR10. Experiment results
in Fig. 8 imply that HiCFL is robust to different non-IID data
distributions.

Effect of Threshold ξ: We introduce threshold ξ in (19) to
retain only important weight updates for computing clients’
model stability. We thus perform experiments to study the impact
of ξ on HiCFL, and plot the results in Fig. 9, where the values
of different colored bars indicate the multiplicative relationship
between ξ and learning rate η, e.g., “0.1” means ξ = 0.1η. In
addition, “W.C.” means “without compression”, since all weight
updates are retained.

Intuitively, a larger ξ leads to much fewer selected model
weight updates, and thus saves more computation costs. How-
ever, HiCFL may not well bi-partition a cluster since the model
stability of each client is only calculated based on partial model
updates. Experimental results in Fig. 9 are in accordance with our
analysis. Furthermore, Fig. 9 suggests that ξ = 0.05η can make
a good tradeoff between the number of communication rounds
and the amount of used updates. This setting requires almost the
same number of rounds as “W.C.”, while only using 36%∼55%
of model weights for the model stability calculations.

Validity of Model Stability: We experimentally compare the
average accuracy of bi-partitioning client clusters before and
after the timing when model stability becomes stable. In this
experiment, we put 20 clients that should belong to two clusters
into the same cluster. We perform HiCFL over CIFAR10 dataset

TABLE IV
AVERAGE MODEL ACCURACY OF BI-PARTITIONING CLUSTER BEFORE AND

AFTER STABLE MODEL STABILITY

under four different data settings, i.e., Non-IID-1, Non-IID-2
β = 0.5, Non-IID-2 β = 0.7 and Non-IID-3.

In each data setting, we train the model with FL for totally
T = 20 communication rounds, and for each round we calculate
the average model accuracy. We record the client clustering
timing as ts, and calculate the model accuracy results for the
“before” period (from the first round to the ts − 1th rounds)
and the “after” period (from the ts round to the T th rounds),
respectively Table IV shows the accuracy comparisons for the
two clustering scenarios. We find that we can get much higher
model accuracy for the clients that are clustered after model
stability becomes stable.

In addition, we conduct experiments to compare the average
model accuracy of client clustering guided by model stability
or the converged models. We apply the model stability to an
existing method, i.e., MTCFL [22]. Table V shows the model ac-
curacy of MTCFL and MTCFL with model stability in different
non-IID settings over the CIFAR10 dataset. The results show that

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

7160 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Fig. 9. Impact of ξ on different datasets under various non-IID settings.

TABLE V
COMPARISONS ON MODEL ACCURACY AND REQUIRED COMMUNICATION

ROUNDS OF CLIENT CLUSTERING FOR MTCFL WITH CONVERGED MODELS OR

MODEL STABILITY

the model stability-guided clients clustering achieves compared
model accuracy as MTCFL which groups clients when their
local models have been converged. Besides, Table V shows that
MTCFL with model stability achieves such a model accuracy
with much fewer communication rounds.

The experimental results in Fig. 4, Tables IV and V demon-
strate that model stability is a better indicator than model loss by
earlier reflecting the state of model training. Moreover, model
stability is an effective timing indicator to bi-partition clients
into suitable clusters and derive more accurate local models for
clients with Non-IID data.

Validity of the Reference Client: To validate the effectiveness
of our model stability based reference selection method, we
conduct an experiment using the CIFAR10 dataset in the Non-
IID-2 β = 0.7 data setting. The experiment results are shown

Fig. 10. Model accuracy comparisons with random reference and the reference
with the least model stability over CIFAR10 dataset.

Fig. 11. Auto-correction for improper clustering over CIFAR10 dataset.

in Fig. 10. Compared to client bi-partitioning with the random
reference, we see that the reference with the least model stability
can achieve higher model accuracy with improvement by 4.1%,
which implies that model stability based reference selection can
produce much better client clusters than the random reference.

Auto-Correction for Improper Clustering: We conduct an
experiment in Non-IID-2 data setting over CIFAR10 dataset to
investigate the auto-correction capability of HiCFL for improper
clustering at the initial stage. To simulate the case where some
clients are mistakenly clustered, we artificially divide different
proportions, e.g., 10% and 20%, of clients into incorrect clusters
in the early stage, e.g., at the 5th and 10th communication
round of FL training. We compare the average model accuracy
of different cases and the normal execution where clients are
clustered without intervention, and report the results in Fig. 11.

Fig. 11 shows that if a fraction of clients is improperly
clustered in the early stage, the average model accuracy will
be affected, with lower accuracy than the normal execution.
However, with continuous model training, the model accuracy
will tend to be consistent, in all cases, with the normal execu-
tion after some communication rounds. The results demonstrate
that HiCFL can correct improper client clustering and finally
achieves high model accuracy.

Re-Organizing Clusters versus Fine-Grained Clustering: We
conduct experiments to compare the performance of the two
design choices using CIFAR10 dataset. For the design of re-
organizing clusters, we re-organize the clusters using their global
models after client clustering is completed. The cosine similarity
between global model updates of any two clusters is calculated,
and whether two clusters should be merged or not is determined
based on the cosine similarity. Clusters are merged according
to the following rules: 1) a smaller cluster is merged into the

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: TOWARDS HIERARCHICAL CLUSTERED FEDERATED LEARNING WITH MODEL STABILITY ON MOBILE DEVICES 7161

Fig. 12. “Time-accuracy” training curves on CIFAR10-CNN model, Resnet18, and VGG11, respectively, with α = 0.3.

Fig. 13. “Time-accuracy” training curves on CIFAR10-CNN model, Resnet18, and VGG11, respectively, with α = 0.5.

TABLE VI
COMPARISONS ON THE AVERAGE MODEL ACCURACY OF RE-ORGANIZING

CLUSTERS, FINE-GRAINED CLUSTERING AND PERSONALIZED MODELS

larger cluster; 2) cluster G1 will be merged with the cluster that
has the highest cosine similarity with G1; 3) the two clusters
that should be merged don’t have a third cluster with a conflict.
There is a conflict if two clusters are dissimilar, i.e., with a
negative cosine similarity. For example, cluster G1 is similar
to cluster G2, and cluster G1 is similar to cluster G3, but cluster
G2 conflicts with cluster G3, then cluster G1 and G2 will not be
merged. If condition 3) is not satisfied, then we will consider to
merge cluster G1 with the next most similar cluster.

For the design choice of fine-grained clustering, after the
clustering is complete, we will divide the clients of a cluster
into two sub-clusters following the current design of HiCFL.
Besides, we continue to bi-partition the clusters until each cluster
contains one client only, i.e., generating personalized model for
each client.

Table VI shows the average model accuracy for the three de-
sign choices. In general, fine-grained clustering can derive better
model accuracy than the design of re-organizing clusters, while
the design of personalized models achieves the highest model

accuracy. Compared to re-organizing clusters, an additional
benefit of fine-grained clustering is model personalization. In the
early stage, HiCFL groups clients with similar data distribution
to train a global model, while in the later stage, HiCFL can refine
clients’ model of each cluster to learn more personal information
from their own data. Therefore, fine-grained clustering could
provide more personalized services for the users.

D. Evaluation With Complex Data and Models

Complex Models and Natural Data Distribution: In the ex-
periments, we train three models, namely CIFAR10-CNN as
described in Section V-A, Resnet18, and VGG11, by using
different FL methods on the CIFAR10 dataset. Figs. 12 and 13
show the “time-accuracy training” curves of different methods
under the Latent Dirichlet allocation with α = 0.3 and α = 0.5,
respectively. From the results, we have the following observa-
tions. First, HiCFL achieves the best model accuracy during
the training processes of the three models. It demonstrates that
HiCFL can work well with complex models. In most of the cases,
FedAvg has the lowest model accuracy than CFL-like methods.
Second, HiCFL has a more stable training curve than other
methods. This is because HiCFL can find the proper clustering
timing for bi-partitioning clusters and can accurately group the
clients with similar data distribution. As a result, model accuracy
can be stably improved by HiCFL.

The results of the experiment demonstrate the phenomenon
that the performance improvement of HiCFL with complex
data is not as significant as that with simple data. For simple

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

7162 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Fig. 14. Training curves of HAR models with different methods on the USC-
HAD dataset.

data, the features can be extracted easily, and there are sig-
nificant differences between the features of different classes.
As a result, clients with Non-IID simple data can be effec-
tively separated into distinct clusters. However, complex data
possess more intricate features, and it is not easy to discern
the features of different classes. Additionally, HiCFL assesses
the similarity between client data by calculating the cosine
similarity of model updates. In the case of complex data, the
disparities between the model updates may not be adequately
reflected in the model similarity. This can lead to improper
clustering and subsequently a less notable improvement in
accuracy.

Experiment on Realistic Dataset: In the experiment, we assign
IMU data of 14 volunteers to each of the 14 clients to simulate
the natural non-IID data setting. We use different FL methods to
train convolutional models for the clients to realize human ac-
tivity recognition (HAR). There are 200 communication rounds
between the server and the clients.

Fig. 14 shown the results of HiCFL and other methods on the
USC-HAD dataset. The results show that HiCFL outperforms
existing methods in “time-accuracy” under the natural non-IID
data setting. Compared to the existing methods, HiCFL can
achieve higher accuracy at an earlier stage. It implies that HiCFL
can work well with the natural non-IID data. Thanks to the use of
model stability for finding the proper timing of client clustering,
HiCFL can complete the client clustering process more quickly
and derive stable models much earlier.

Experiment on an FL Testbed: We first use a device con-
figured with an Intel 5300 NIC to collect WiFi Channel State
Information (CSI) data from 10 volunteers aged 21-26 years
old. Six of the ten volunteers are male and four are female. Each
volunteer was required to complete six specified gestures (e.g.,
clapping, pushing, pulling, and so on), each repeated 20 times.
To understand the performance of all methods on mobile devices,
we randomly assign the CSI data from each of the volunteers
to 6 Raspberry Pi 3B+ and 4 laptops, which forms a simple FL
testbed. We implement all methods using PySyft. Besides, we
process CSI data and build a CNN model for gesture recognition
following the operations proposed in [42]. To train the CNN
model, we set the batch size as 8 and the learning rate as 0.01.
The model training process lasts about 50 minutes.

We train the gesture recognition models using different mod-
els on our FL testbed, and their “time-accuracy” curves are
shown in Fig. 15. Compared to FedAvg, CFL-like methods can

Fig. 15. Training curves of gesture recognition models with different methods
on the CSI dataset.

achieve higher accuracy with a stable model training process.
HiCFL performs better than other CFL-like methods on the FL
testbed.

VI. RELATED WORK

Federated learning (FL) is an emerging distributed machine
learning paradigm that enables training on large amounts of
data that reside on distributed clients without compromising
data privacy. Statistical heterogeneity challenge, in particular
non-IID data, is the focus of research in FL, and has attracted
many efforts [1], [16], [18], [20], [21], [43], [44], [45], [46] in the
literature. For example, McMahan et al. [1] attempt to overcome
the non-IID issue by averaging clients’ local models. Zhao et al.
[16] assume that only a subset of data are shared among clients
for model training with FL. Li et al. [43] reduce feature shift with
batch normalization before averaging the models. Wang et al.
[18] and Li et al. [20] mitigate the impact of non-IID data from
client selections and sample selections, respectively. However,
these approaches train only one single global model for all
clients, which is usually of limited generality and insufficient to
effectively eliminate the impact of non-IID data. For example,
Ouyang et al. [11] show that one single model is not applicable
to human activity recognition.

A promising way to address the non-IID challenge is to train
multiple global models or personalized models for all clients ac-
cording to their data distributions [47], [48], [49]. For example,
Smith et al. [47] exploit multi-task learning for building multiple
models in FL. Feng et al. [49] use transfer learning to improve the
accuracy of FL trained model by personalizing it with local data.
Tu et al. [46] propose a novel federated learning system, named
FedDL, for human activity recognition based on the bottom-up
layer-wise dynamic layer sharing scheme. Our work differs from
FedDL in both design motivation and operations. We propose
model stability as a means to determine the proper clustering
time, whereas FedDL implicitly groups clients based on layer
similarity in a bottom-up fashion.

Recently, the framework of clustered federated learning
(CFL) [22] inspires some novel approaches [23], [24], [25],
[26], [50], which partition clients with similar data distributions
into clusters and train a global model for clients of each cluster.
Saputra et al. [9] propose a novel economic-efficiency frame-
work for the electric vehicle network to maximize the profits of
charging stations, which exploit FL to train an energy demand
prediction for each station. To reduce the bias in energy demand

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: TOWARDS HIERARCHICAL CLUSTERED FEDERATED LEARNING WITH MODEL STABILITY ON MOBILE DEVICES 7163

prediction, they employ a constrained K-means algorithm to
divide charging stations into a predefined number of clusters
based on their deployment locations, since nearby stations
may have similar profiles. However, existing CFL approaches
either require to input the number κ of clusters, e.g., [23],
[24], [25], [26], or are inefficient in terms of communications,
e.g., [22]. In general, we cannot determine the optimal κ with
no knowledge on the clients’ data distributions [51]. Besides,
communication efficiency is essentially important for many FL
applications scenarios, where mobile clients are usually limited
by battery energy and network traffics. Different from previous
works, HiCFL exploits the novel concept of model stability
to intelligently bi-partition clients in a hierarchical manner,
which is communication-efficient and requires no knowledge
of κ.

VII. CONCLUSION

In this paper, we present HiCFL, an efficient CFL approach to
alleviate the impact of non-IID data. Built on the novel concept
of model stability, HiCFL can intelligently determine the oppor-
tune time to separate a cluster and properly group all clients into
clusters. We evaluate HiCFL with three popular datasets under
various non-IID settings. Experimental results demonstrate that
HiCFL significantly outperforms state-of-the-art approaches,
e.g., improving model accuracy by 2.0%∼9.0% and reducing
communication costs by 27.3%∼80.6%.

In the future, we will continue to explore more designs that
facilitate the FL on mobile devices, such as effective FL over
heterogenous mobile devices with varying computational and
communication resources.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Aguera y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., 2017, pp. 1273–1282.

[2] A. Jalalirad, M. Scavuzzo, C. Capota, and M. Sprague, “A simple and
efficient federated recommender system,” in Proc. IEEE/ACM 6th Int.
Conf. Big Data Comput. Appl. Technol., 2019, pp. 53–58.

[3] K. Maeng, H. Lu, L. Melis, J. Nguyen, M. Rabbat, and C.-J. Wu,
“Towards fair federated recommendation learning: Characterizing the
inter-dependence of system and data heterogeneity,” in Proc. ACM Conf.
Recommender Syst., 2022, pp. 156–167.

[4] W. Zheng, L. Yan, C. Gou, and F.-Y. Wang, “Federated meta-learning for
fraudulent credit card detection,” in Proc. 29th Int. Joint Conf. Artif. Intell.,
2020, Art. no. 642.

[5] Y. Cheng, Y. Liu, T. Chen, and Q. Yang, “Federated learning for privacy-
preserving AI,” Commun. ACM, vol. 63, no. 12, pp. 33–36, 2020.

[6] N. Rieke et al., “The future of digital health with federated learning,” NPJ
Digit. Med., vol. 3, no. 1, pp. 1–7, 2020.

[7] D. Zhang, Z. Kou, and D. Wang, “FedSens: A federated learning ap-
proach for smart health sensing with class imbalance in resource con-
strained edge computing,” in Proc. IEEE Conf. Comput. Commun., 2021,
pp. 1–10.

[8] Q. Wu, X. Chen, Z. Zhou, and J. Zhang, “FedHome: Cloud-edge based
personalized federated learning for in-home health monitoring,” IEEE
Trans. Mobile Comput., vol. 21, no. 8, pp. 2818–2832, Aug. 2022.

[9] Y. M. Saputra et al., “Federated learning meets contract theory: Economic-
efficiency framework for electric vehicle networks,” IEEE Trans. Mobile
Comput., vol. 21, no. 8, pp. 2803–2817, Aug. 2022.

[10] Y. M. Saputra, D. T. Hoang, D. N. Nguyen, L.-N. Tran, S. Gong, and
E. Dutkiewicz, “Dynamic federated learning-based economic framework

for Internet-of-Vehicles,” IEEE Trans. Mobile Comput., vol. 22, no. 4,
pp. 2100–2115, Apr. 2023, doi: 10.1109/TMC.2021.3122436.

[11] X. Ouyang, Z. Xie, J. Zhou, J. Huang, and G. Xing, “ClusterFL: A
similarity-aware federated learning system for human activity recogni-
tion,” in Proc. 19th Annu. Int. Conf. Mobile Syst. Appl. Serv., 2021,
pp. 54–66.

[12] X. Cui, S. Lu, and B. Kingsbury, “Federated acoustic modeling for auto-
matic speech recognition,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 2021, pp. 6748–6752.

[13] K. Yue, R. Jin, R. Pilgrim, C.-W. Wong, D. Baron, and H. Dai, “Neural
tangent kernel empowered federated learning,” in Proc. Int. Conf. Mach.
Learn., K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S.
Sabato, Eds., 2022, pp. 25783–25803.

[14] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection,” in Proc. USENIX
Symp. Operating Syst. Des. Implementation, 2021, pp. 19–35.

[15] M. H. Shullar, A. A. Abdellatif, and Y. Massoud, “Energy-efficient active
federated learning on non-IID data,” in Proc. IEEE Int. Midwest Symp.
Circuits Syst., 2022, pp. 1–4.

[16] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-IID data,” 2018, arXiv:1806.00582.

[17] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-IID data,” in Proc. Int. Conf. Learn. Representations,
2020, pp. 1–26.

[18] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning on
non-IID data with reinforcement learning,” in Proc. IEEE Conf. Comput.
Commun., 2020, pp. 1698–1707.

[19] T. Huang, W. Lin, W. Wu, L. He, K. Li, and A. Y. Zomaya, “An
efficiency-boosting client selection scheme for federated learning with
fairness guarantee,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7,
pp. 1552–1564, Jul. 2021.

[20] L. Anran, Z. Lan, T. Juntao, Q. Yaxuan, W. Junhao, and L. Xiang-Yang,
“Sample-level data selection for federated learning,” in Proc. IEEE Conf.
Comput. Commun., 2021, pp. 1–10.

[21] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst., 2020, pp. 429–450.

[22] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learn-
ing: Model-agnostic distributed multitask optimization under privacy
constraints,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 8,
pp. 3710–3722, Aug. 2021.

[23] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical
clustering of local updates to improve training on non-IID data,” in Proc.
IEEE Int. Joint Conf. Neural Netw., 2020, pp. 1–9.

[24] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient framework
for clustered federated learning,” in Proc. Annu. Conf. Neural Inf. Process.
Syst., 2020, Art. no. 1643.

[25] G. Long, M. Xie, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-center
federated learning: Clients clustering for better personalization,” World
Wide Web, vol. 26, pp. 481–500, 2023.

[26] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust federated
learning in a heterogeneous environment,” 2019, arXiv:1906.06629.

[27] N. Wang, R. Zhou, L. Su, G. Fang, and Z. Li, “Adaptive clustered federated
learning for clients with time-varying interests,” in Proc. IEEE/ACM 30th
Int. Symp. Qual. Service, 2022, pp. 1–10.

[28] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated
learning,” IEEE Trans. Neural Netw. Learn. Syst., early access, Mar.
28, 2022, doi: 10.1109/TNNLS.2022.3160699.

[29] M. Long, Y. Cao, Z. Cao, J. Wang, and M. I. Jordan, “Transfer-
able representation learning with deep adaptation networks,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 12, pp. 3071–3085,
Dec. 2019.

[30] L. Mou et al., “How transferable are neural networks in NLP applica-
tions?,” in Proc. Conf. Empir. Methods Natural Lang. Process., 2016,
pp. 479–489.

[31] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?,” in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 3320–3328.

[32] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed
online prediction using mini-batches,” J. Mach. Learn. Res., vol. 13, no. 1,
pp. 165–202, 2012.

[33] H. Wang, M. Yurochkin, Y. Sun, D. S. Papailiopoulos, and Y. Khazaeni,
“Federated learning with matched averaging,” in Proc. Int. Conf. Learn.
Representations, 2020, pp. 1–16.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TMC.2021.3122436
https://dx.doi.org/10.1109/TNNLS.2022.3160699

7164 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

[34] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[35] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[37] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,”
2017, arXiv:1708.07747.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Representations,
2015, pp. 1–14.

[40] M. Zhang and A. A. Sawchuk, “USC-HAD: A daily activity dataset for
ubiquitous activity recognition using wearable sensors,” in Proc. ACM
Conf. Ubiquitous Comput., 2012, pp. 1036–1043.

[41] J. Zhang et al., “DENSE: Data-free one-shot federated learning,” in Proc.
Adv. Neural Inf. Process. Syst., 2022, pp. 21414–21428.

[42] T. Xing et al., “WiFine: Real-time gesture recognition using Wi-Fi with
edge intelligence,” ACM Trans. Sensor Netw., vol. 19, no. 1, pp. 1–24,
2022.

[43] X. Li, J. Meirui, X. Zhang, M. Kamp, and Q. Dou, “FedBN: Federated
learning on non-IID features via local batch normalization,” in Proc. Int.
Conf. Learn. Representations, 2021, pp. 1–27.

[44] D. Yongheng et al., “FAIR: Quality-aware federated learning with precise
user incentive and model aggregation,” in Proc. IEEE Conf. Comput.
Commun., 2021, pp. 1–10.

[45] Z. Zhou, Y. Li, X. Ren, and S. Yang, “Towards efficient and stable
k-asynchronous federated learning with unbounded stale gradients on
non-IID data,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12,
pp. 3291–3305, Dec. 2022.

[46] L. Tu, X. Ouyang, J. Zhou, Y. He, and G. Xing, “FedDL: Federated learning
via dynamic layer sharing for human activity recognition,” in Proc. 19th
ACM Conf. Embedded Netw. Sensor Syst., 2021, pp. 15–28.

[47] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4427–4437.

[48] O. Marfoq, G. Neglia, A. Bellet, L. Kameni, and R. Vidal, “Federated
multi-task learning under a mixture of distributions,” in Proc. Int. Conf.
Neural Inf. Process. Syst., M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P.
Liang, and J. W. Vaughan, Eds., 2021, pp. 15434–15447.

[49] J. Feng, C. Rong, F. Sun, D. Guo, and Y. Li, “PMF: A privacy-preserving
human mobility prediction framework via federated learning,” in Proc.
ACM Interactive Mobile Wearable Ubiquitous Technol., vol. 4, no. 1,
pp. 1–21, 2020.

[50] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Univ. Toronto, Tech. Rep., pp. 1–60, 2009.

[51] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-
efficient federated learning with hierarchical aggregation in edge comput-
ing,” in Proc. IEEE Conf. Comput. Commun., 2021, pp. 1–10.

Biyao Gong received the BE degree in computer
science and technology from Northwest University,
Xi’an, China, in 2020. He is currently working toward
the master’s degree in computer science and technol-
ogy with Northwest University. His research interests
include machine learning and federated learning.

Tianzhang Xing received the BE degree in telecom-
munications engineering from Xidian University,
Xi’an, China, in 2004, the MPhil and PhD degrees in
computer science and technology from the Northwest
University, Xi’an, in 2009 and 2014. He is currently
an associate professor with the School of Information
and Technology, Northwest University. His research
interests include mobile computing, pervasive com-
puting and wireless networks.

Zhidan Liu (Member, IEEE) received the PhD de-
gree in computer science and technology from Zhe-
jiang University, Hangzhou, China, in 2014. After
that, he worked as a research fellow with Nanyang
Technological University, Singapore. He is currently
an associate professor with the College of Computer
Science and Software Engineering, Shenzhen Univer-
sity, Shenzhen, China. His research interests include
mobile computing, Big Data analytics, Internet of
Things, and urban computing. He is a member of
ACM and CCF.

Wei Xi (Member, IEEE) received the PhD degree
in computer science from Xi’an Jiaotong University,
in 2014. He is currently an associate professor with
Xi’an Jiaotong University. His main research interests
include wireless networks, mobile computing, and
artificial intelligence. He is a member of CCF, ACM.

Xiaojiang Chen received the PhD degree in com-
puter software and theory from Northwest University,
Xi’an, China, in 2010. He is currently a professor with
the School of Information Science and Technology,
Northwest University. His current research interests
include localization and performance issues in wire-
less ad hoc, mesh, and sensor networks and named
data networks.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on June 24,2024 at 02:39:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

