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Abstract—As an essential component, roadside units (RSUs) play
an indispensable role in realizing Vehicle-to-Everything (V2X) by
seamlessly connecting various intelligent devices and vehicles. To
facilitate the construction of V2X, much research has been done in
designing effective RSU deployment strategies. However, most of
these efforts are largely limited by design utility and deployment
scalability. To address the limitations of previous works, this paper
proposes a general RSU deployment framework, Greta, which can
evaluate candidate deployment sites from different perspectives
with rich input data, and satisfy different requirements on op-
timization metrics. To this end, we model the general RSU de-
ployment problem as a customized reinforcement learning (RL)
problem that intelligently explores the deployment environment to
find a good deployment strategy. Specifically, we design an effective
data profiling network to extract features from multi-modality
input data. These extracted features are gradually weighted, fused,
and encoded as part of the state representation of the RL model.
We further design new reward functions considering various de-
ployment metrics and propose an action space pruning scheme to
speed up model training. We implement a prototype system of Greta
and extensively evaluate its performance using real-world data.
The results show Greta achieves remarkable performance gains
compared to recent RSU deployment methods.
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I. INTRODUCTION

EHICLE-TO-EVERYTHING (V2X) is a promising com-

munication technology that can enable a variety of emerg-
ing smart transportation applications (e.g., automatic driving [1],
traffic optimization [2] and in-car entertainment [3]) and an
important way to reduce traffic accidents and fleet operating
costs in future transportation systems [4]. As communication
gateways, roadside units (RSUs) play an indispensable role in
realizing the V2X concept by seamlessly connecting various
devices and vehicles [5]. Specifically, RSUs can collect informa-
tion from sensing devices, traffic infrastructure, and surrounding
intelligent connected vehicles, upload this information to the
V2X platform through wired or wireless channels, and distribute
traffic information to relevant vehicles [6]. With a wide and
effective deployment of RSUs on the road network, the effi-
ciency and coverage of information exchange in V2X can be
greatly improved, leading to better traffic control, road safety,
and informative roadway services [7].

Given the huge potential of V2X, many countries, such as
China, the United States, and Japan, have developed visionary
plans to actively install RSUs to promote the construction of
future V2X-enabled intelligent transportation systems [8], [9].
However, RSUs are often characterized by high deployment
costs [10]. Therefore, given a limited budget (e.g., the total
number of RSUs or deployment costs), how to effectively and
efficiently deploy the RSUs to maximize their utility is a crucial
and practical problem [11]. In the literature, many research
efforts have been made for the deployment of RSUs, but they
have two main limitations:

i) Design utility. Previous studies have mainly focused on
optimizing some specific deployment objectives, which
require predefined optimization metrics (e.g., vehicle con-
nectivity [12], road coverage [ 13], or communication qual-
ity [14]), tailored formulations and specialized solutions.
They make meaningful pioneer contributions to advancing
RSU deployments, but a major limitation is that their
solution is highly constrained by the targeted metric and/or
formulation. Such an end-to-end solution limits its utility
and often requires new designs to decide on deployment
strategies when the deployment scenarios are different.

ii) Deployment scalability. On the other hand, deploying
RSUs in practice is not a one-time process, and often
requires the gradual addition of RSUs on the road network.
During long-term deployments, optimization metrics may
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be adjusted. In addition, as more and more sensors are
installed on RSUs [15], [16], [17], joint use of multiple
metrics may also be required in the future. Holistic con-
sideration of various optimization metrics, together with
deployed RSUs to well plan future RSU positions, has
been rarely studied in previous works, which however is
an inevitable problem in practice.

Therefore, we propose a general RSU deployment framework,
called Greta, in this paper to address the aforementioned limi-
tations. Rather than relying on hand-crafted input features and
specific optimization metrics, our framework incorporates an
input information library consisting of various input data, e.g.,
geometric map data and mobility data, and an output metric
library, including a set of widely used performance metrics,
e.g., road/traffic coverage or communication quality indicators.
The framework can automatically learn to decide which set of
input data to use and how to apply them to fulfill the output
requirements to guide RSU deployment (potentially involving
multiple deployment metrics). A significant advantage of Greta
is that both the input and output libraries are adjustable and
extensible, making it possible to efficiently decide or update
deployment requirements. In addition to deploying RSU from
scratch, Greta also supports incremental deployments. Given
a set of deployed RSUs, it can evaluate the utility for any
new output metric requirements and guide the deployment of
additional RSUs on top of the existing ones. To harvest these
benefits, we address the following challenges.

First, the input data source candidates in the input information
library usually have diverse modalities and different impacts
on various optimization metrics. How to properly characterize
and fuse multi-modality data to obtain effective input for RSU
deployment needs to be carefully studied. To address this issue,
we propose an effective data profiling network to extract features
from each candidate input data source. The extracted features are
then gradually weighted, fused, and encoded as a comprehensive
representation of the deployment environment conditioned by
the desired optimization metric(s) in a latent state space, which
is further used by Greta to derive the deployment strategy.

Second, there are enormous locations in a road network where
RSUs can be possibly deployed. The search space for suitable
deployment sites is huge, which requires extensive computations
to determine the optimal solution. On the other hand, when
solving the deployment problem, we lack ground-truth labels to
quantify the quality of this deployment. To address this problem,
we employ deep reinforcement learning (DRL) to gradually
explore the search space to find a good deployment strategy [18].
However, DRL is just a framework, and we thus customize it
for the general RSU deployment in this paper. In particular, we
leverage our extracted features to construct DRL states, design
a series of reward functions for various deployment metrics, and
propose an action space pruning scheme to avoid unnecessary
explorations to speed up the model training.

We develop a prototype system of Greta and examine its
performance based on a large GPS trajectory dataset in the
downtown area of Chengdu City, China. As the initial implemen-
tation, we realize the input information library with the road map
and one-month GPS trajectory data collected from thousands
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of contract vehicles of Didi Chuxing [19] and instantiate the
output metric library with various deployment metrics, including
road coverage, traffic coverage, and a combination of these
two metrics. Extensive results show that, based on the road
coverage metric, Greta achieves 18.5-40.0% performance gains
compared to recent RSU deployment methods and up to 7.2%
performance gains compared with the Simulated Annealing
search method. In summary, this paper makes the following
contributions:

e We propose a general RSU deployment framework named
Greta. It can be extensible to various input data sources and
deployment metrics, which are inevitable in future RSU
deployments to realize different V2X services.

® We identify two key challenges in designing Greta, and
propose an effective data profiling network to adaptively
fuse multiple input data sources in the latent state space
and customize a DRL model to intelligently explore the
best deployment strategy.

e We develop a prototype system and evaluate it using
real-world data. Extensive experiments demonstrate the
effectiveness of our system. Compared to existing RSU
deployment methods, our system can achieve promising
performance gains on various deployment metrics.

The rest of the paper is organized as follows: Section II
reviews the related works. Section III introduces the RSU de-
ployment background and motivates our study on the general
deployment framework. Section IV presents the design details
of Greta. We implement Greta and evaluate its performance in
Section V, following with the discussion of Grefa in Section VI.
Finally, Section VII concludes this paper.

II. RELATED WORK

As a core infrastructure of V2X, RSU deployment has at-
tracted significant attention in recent years. Initially, V2X was
used in pilot projects on highways, resulting in early RSU
deployment works focusing on one-dimensional modeling [20],
[21], [22], [23], [24], which fit the highway condition. However,
as urbanization has developed, there is a need to deploy V2X
services in complex urban areas. As a result, recent works
have focused on practical two-dimensional modeling of RSU
deployment problems [25], [26]. We classify these works from
the following two perspectives, i.e., optimization objective and
modeling, and discuss the most related works as follows.

Optimization objective: Previous works have targeted differ-
ent deployment objectives or requirements, which can be divided
into three categories. 1) Coverage: Coverage includes spatial
and temporal coverage. For example, Zhang et al. consider
the coverage area as one important objective for their RSU
deployment optimization [25], while Mokhtari et al. consider the
V2I connection duration of the vehicles within the RSU covered
area as the objective [12]. Kim et al. consider both temporal and
spatial coverage [27]. 2) Service: Many works aim to develop
deployment strategies by optimizing the services provided by
RSUs, including resource allocation such as communication,
computing, and caching. Some of them use communication in-
dicators as the optimization objective for RSU deployment [28],
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[29]. For example, Wu et al. find the optimal deployment scheme
by maximizing the aggregate throughput in the network under
RSU coverage [21], while Mehar et al. optimize deployment to
reduce delay [30]. Although computing and caching modules are
not yet standard on RSUs, some studies have considered them in
the optimization of RSU deployment [31], [32], [33]. 3) Others:
A few works have different concerns on the RSU deployments.
Specifically, Salari et al. investigate the optimal deployment of
RSUs for path-level traffic flow reconstruction. Jiang et al. [34]
and Sreya et al. [35] study the RSU deployment problem under
the V2I-based traffic prediction application.

These research works, however, usually focus on optimiz-
ing some specific deployment objectives, and thus are highly
constrained by the targeted metrics. The end-to-end designs
limit their utility for these emerging V2X services that may
have varying deployment requirements. Different from them,
the flexible design of Greta allows RSU deployments to adapt
to various requirements of V2X services.

Modeling: Previous works vary in problem modeling, along
with different solutions relying on various optimization tech-
niques, including linear programming [36], nonlinear program-
ming [37], integer programming [21], binary programming [38],
mixed integer programming [39], nonconvex optimization [40],
dynamic programming [41], among others. Due to the large
search space, RSU deployment problem is extremely complex
due to its high computational complexity, and thus existing
works solve the problem by designing approximation tech-
niques or heuristics. 1) Approximation solutions: Considering
the complexity of RSU deployment problem, an approximate
solution can be derived by employing some mathematical tricks.
For example, Zhang et al. transform the non-convex RSU de-
ployment problem into a standard convex optimization problem
by using tricks such as semidefinite relaxation to generate the
solution [40]. However, when the problem scale becomes large,
this approach is likely to be ineffective. 2) Heuristic solutions:
Many of existing works rely on heuristic algorithms, includ-
ing genetic algorithms [42], greedy algorithms [43], memetic
algorithms [44], particle swarm algorithms [45], and more, to
form the final solutions. These methods can obtain optimal or
suboptimal solutions, but they also suffer from disadvantages
such as the lack of effective iteration stop conditions, unstable
performance, and poor scalability.

In contrast to above works, we model the general RSU deploy-
ment problem as a learning problem and use the reinforcement
learning model [46], [47] to intelligently search the RSU deploy-
ment plan by leveraging rich features extracted from various
input data. Moreover, previous works usually output a com-
plete deployment plan, while Greta determines deployment sites
sequentially, facilitating gradual RSU deployments to support
emerging V2X services.

III. BACKGROUND AND MOTIVATION
A. Trend of Large-Scale RSU Deployment

Many automakers and governments are investing heavily in
building vehicle infrastructure systems and developing V2X
technologies to enable future fully autonomous driving [9]. For
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Fig. 1. (a) Typical RSU deployment at road intersections. (b) Mobility hints
to RSU deployment by analyzing traffic data.

example, Audi completed the world’s first open road test of L4
autonomous driving using V2X signals at the 2021 Wuxi Internet
of Things (WIoT) Exposition [48]. Similarly, car companies
such as Ford, Volkswagen, and more are gradually adopting
V2X as a standard configuration for their new car products.
In addition, many governments, such as China and the United
States, have launched a series of initiatives to promote the wide
adoption of V2X [9]. According to the latest market report, the
global V2X market size is expected to grow from $2.6 billion in
2022 to $19.5 billion in 2028 [49].

As communication gateways, RSUs are core building blocks
in the V2X infrastructure, and many pilot projects for RSU
deployment have been initiated globally. For example, many
cities in China have already deployed a considerable number
of RSUs [50]. For example, Wuxi city has deployed over 400
RSUs, covering about 700 km of roads. Other cities including
Chongqing, Guangzhou, Changsha, and Wuhan have also de-
ployed 120, 130, 200, and 200 RSUs, respectively.

B. Inefficiency of Existing Deployment Methods

In addition to industry and government efforts, there is also
active research on designing effective RSU deployment strate-
gies. Many of them take a static road map as input and output
a set of road segments as the deployment sites to maximize the
service coverage of available RSUs. To this end, they usually
choose places with dense roads, such as road intersections, to
deploy RSUs. Fig. 1(a) shows typical RSU deployments at road
intersections.

In addition to road maps, a wealth of sensing data about
urban traffics now can be collected. They can capture people’s
mobility and traffic demands from different dimensions, which
also provides useful hints for RSU deployments and should be
adopted. For example, we analyze real traffic data collected from
vehicles driving on the road segment, as shown in Fig. 1(a),
and visualize the average driving speed of vehicles in Fig. 1(b).
The vehicles pass the road intersections at high speed, while
they instead have a long sojourn time in the middle of the road
segment, which is a blind area in existing RSU deployments. By
checking the road map, we find that there is a university gate,
and thus drivers slow down to avoid accidents or temporarily
stop to pick up or drop off passengers. Therefore, it is necessary
to deploy RSUs in the middle of the road segment in Fig. 1(b),
so that RSUs can serve more vehicles and benefit traffic control.
However, such deployment sites are difficult to infer from the
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static road network. Therefore, it is important to incorporate
more data to extend the input dimensions for searching the best
deployment sites.

On the other hand, rich V2X services will emerge, and they
inevitably pose different requirements on RSU deployments.
Existing methods, however, mainly take road coverage as the
optimization target [13], [51], which may not be suitable for
future V2X services. In fact, there exist many metrics that could
be used to evaluate RSU deployments:

® Road coverage measures the number of road segments
covered by the deployed RSUs.

o Traffic coverage reports the volume of vehicles that can be
served by the deployed RSUs.

e Communication quality indicators investigate the quality-
of-service (QoS) of communication provided by the de-
ployed RSUs. The indicators include data rate, latency,
throughput, connection time, and so on.

Given the enormous potential of V2X, more new metrics can
be added to evaluate RSU deployments, e.g., vehicular mobility
prediction accuracy, trajectory reconstruction accuracy, V2V-
based vehicle coverage, and so on. In addition, RSUs will play
multifaceted roles in the future to support various V2X services,
e.g., serving as an edge computing server and communication
gateway at the same time. Therefore, the consideration of RSU
deployment is likely to be not limited to a single metric, but a
weighted combination of multiple metrics, and the requirements
for RSU deployment will therefore become more complex,
diverse, and variable.

In summary, we find that existing RSU deployment methods
mainly rely on the static road map to optimize individual metrics,
and thus are inefficient to meet the requirements of emerging
V2X services. To close the gap, we expect an RSU deployment
framework that can analyze candidate deployment sites from
different perspectives with rich input data and adapt to different
optimization metrics.

C. Overview of the Greta Design

In this paper, we present a general RSU deployment frame-
work Greta to effectively deploy available RSUs. Fig. 2 il-
lustrates the architecture of Greta, which consists of three
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main modules: input information library, reinforcement learn-
ing (RL)-based deployment model and output metric library.

The input information library contains rich data related to
RSU deployments, such as road maps, traffic data, POI infor-
mation, and more. This library can be extended with new input
data sources. Instead of using raw data directly, we devise a
data profiling network to extract high-level features from raw
data. These features are then adaptively fused and encoded as a
comprehensive input representation.

Taking the fused features as the input state, the RL-based
deployment model treats the RSU deployment problem as a
learning problem and automatically explores the deployment
environment to search for valuable deployment sites. Site search
is guided implicitly by some reward functions that take into
account the combination of multiple metrics in the output metric
library. According to different requirements of RSU deploy-
ments, the RL model can intelligently adjust the weights between
different input features and output metrics to produce the best
deployment actions.

After an efficient exploration of the search space, Greta can
generate a deployment strategy to maximize the total reward.

IV. DESIGN

A. Formulation of General RSU Deployment Problem

Different from previous works [12], [51], [52], [53], [54] that
merely consider limited data input and a specific optimization
target, in this paper, we consider a general RSU deployment
problem, which can be expressed as follows: given a set of
candidate deployment sites L = {{;|i = 1,..., M}, where M
is the number of candidate sites, we aim to make full utilization
of various available sensing data that are relevant with RSU de-
ployments to determine a subset X = {z;|j =1,...,.N} CL,
where N is the number of available RSUs subject to the budget,
such that X can maximize a combination of weighted deployment
targets. Before formulating the problem, we first present the
concepts of input information library and output metric library.

e [nput information library Z: includes a variety of data

sources, e.g., road map, traffic information, POI distribu-
tion, etc. , which may influence the RSU deployments.
Each data source i; € Z captures the demands on RSUs
from different perspectives, and all of them together reflect
the comprehensive RSU demands. Previous works usually
consider the static road map only, while the input infor-
mation library Z contains diverse data sources and is also
extensible for embracing new data to provide more accurate
and effective guidance on the RSU deployments.

® Qutput metric library O: incorporates various deployment

metrics, each of which 0; € O can be used to evaluate the
effectiveness of an RSU deployment plan X. Different V2X
services potentially have distinct requirements on RSU de-
ployments, which thus call for varied deployment metrics,
such as road/traffic coverage or communication quality
indicators. To meet the requirements of co-existing and
emerging V2X services, a combination of multiple metrics
are more preferred, and the weights among these metrics
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can be adaptively adjusted according to the RSU-supported
V2X services.

Denote the weight for each output metric o; as w;, where
Zfi 1w; =1 and K is the total number of metrics in O. If a
metric is not required to be considered in the deployment, its
weight is zero. Therefore, we can define the RSU deployment
problem as follows:

K
m§,x ij X 05, (1)
J=1
st. f(Z,X) ={o;}, whereo; € O, 2)
IX| < N, whereX C L, 3)

where (1) aims to maximize the overall RSU deployment utility
measured from various deployment metrics o;, f(Z,X) in (2)
represents the impact on each output metric o; given input
sensing data Z and deployment sites X, and (3) ensures the
number of RSUs does not exceed the budget N.

B. RSU Deployments as a Learning Problem

However, it is non-trivial to directly solve the formulation
in (1)—(3) because function f(:) in (2) is difficult to obtain
explicitly. In this paper, we propose to convert optimization to a
learning problem to derive a practical solution. In particular, we
exploit a multi-step decision learning to derive the deployment
solution, where the best deployment sites in X are generated
sequentially according to the available information in Z and
these already selected deployment sites. Moreover, multi-step
decision learning can be well modeled by the Markov Decision
Process (MDP) [55], which is a practical framework to solve
decision-making problems in uncertain environments by defin-
ing a set of states, actions, and rewards. Therefore, we define
these key elements for the RSU deployment problem as follows:

® State: s encodes information about the deployment envi-
ronment that can be described with the features extracted
from various input data Z. In addition, these already de-
ployed RSUs can be encoded to guide the deployment of
additional RSUs.

e Action: a selects one candidate site ¢; from IL as the next
RSU deployment site. In principle, all locations on the road
network can be viewed as potential deployment sites, and
the deployment granularity could be adjusted according to
the requirements of V2X services.

® Reward: r is the feedback of each applied action. In our
problem, reward r can be the quantified influence of ac-
tions on the combined deployment metrics. In practice, we
can either assign intermediate rewards to each action to
generate dense rewards, or set rewards for each action to
zero and only give the ultimate reward.

® Police: m is the core of the MDP framework and defines
the transition probability distribution among states. In our
case, function f(-) is the expected policy 7 to guide the
sequential RSU deployments.

Therefore, we model the RSU deployment problem as a

sequential decision-making process, which caters to the trend

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 7, JULY 2024

Action

T—RSU

Reward

data el ~
8
- =

MDP-based RSU deployment process.

Observations

Fig. 3.

of large-scale and gradual RSU deployments in practice. More-
over, the RL modeling can effectively reduce the computational
complexity while incorporating rich urban data to derive better
deployment solutions. The key to addressing such a problem is to
find the suitable policy f(-) that can produce a reasonable action
a given the input state s. An action will deploy one RSU on the
road network and thus changes the deployment environment,
which generates a new state that can be used to determine the
next RSU deployment site, just as illustrated in Fig. 3. Since
candidate deployment sites I are known in advance, policy
f () works like a classifier that categorizes different states and
assigns a label, e.g., selected or unselected, to each candidate
deployment site based on current input state. A large number of
samples are required to train such a classifier, while collecting
such data is difficult or even impossible due to the expensive
cost of deploying RSUs.

Recognizing the above challenge, we exploit reinforcement
learning (RL) [47], which is well suited to the MDP modeling,
to solve the learning problem. More specifically, we employ
the deep reinforcement learning (DRL) technique [46] to solve
the general RSU deployment problem by directly learning the
best deployment policy f(-). There are several advantages to
adopting DRL to address the RSU deployment problem. First,
DRL can accomplish challenging tasks by exploring and ex-
ploiting during the process of interacting with the deployment
environment. As aresult, it can get rid of the expensive collection
of labeled samples.

Second, DRL is scalable and provides us adequate design
space on the state representation, actions, and reward function.
Specifically, we can incorporate diverse data sources in Z into the
states for comprehensively describing the deployment environ-
ment, and consider flexible combinations of various deployment
metrics in O to define reward functions. Moreover, we only
need to make appropriate modifications to the states, actions,
and rewards to make the DRL solution adapt to other similar
RSU deployment problems.

Third, DRL supports delayed rewards, which can help ad-
dress the challenge of evaluating RSU deployment metrics in
multi-step decision-making problems. When the complete de-
ployment plan is not yet determined, it can be difficult to evaluate
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layer and feature fusion layer to derive the environment representation.

the effectiveness of intermediate deployment decisions. While
delayed rewards allow the agent to focus on the overall objective
and find a better solution, rather than being limited to short-term
optimizations. Specifically, the reward for each action is set to
zero, and the model is trained only on the final reward, which
enables the agent to consider the long-term effects of its actions
and make decisions that optimize the ultimate goal.

C. Collective Features as Environment Representation

To comprehensively represent the deployment environment,
Greta uses a data profiling network to automatically extract
useful features from various input data available in Z to form
part of the state representation. As shown in Fig. 4, the data
profiling network consists of two layers, i.e., feature extraction
layer and feature fusion layer.

Feature extraction: Although we have various data sources in
the information library Z to guide RSU deployments, these data
are in different modalities with varied dimensions. To exploit
such heterogeneous data, we partition the road network into
n X n grids, and then extract grid-level features from each data
source. As a result, the features derived from all data sources are
in the uniform size of feature matrices, which facilitates feature
fusion.

For each data source ¢; € Z, we first classify the data sam-
ples into different grids according to the samples’ associated
locations. For each grid, we extract some statistical feature
that describes the local deployment environment for the RSU
deployments. All grid-level features then form an n x n feature
matrix. Noting that we may compute several feature matrices
from one single data source. Different data sources indeed
have distinct properties, while we pre-process them following a
similar way, and thus the multi-modal input data sources can be
well utilized by Greta. As concrete examples, we illustrate the
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common features extracted from some typical data sources as
follows.

® Road map is the most important data source since we de-
ploy RSUs at the roadside to serve the passing-by vehicles.
For a given road map, we can derive the road density
feature, which summarizes the road distribution, and the
intersection density feature, which contains the statistic of
road intersections for all grids.

o Vehicular trajectory data record the driving details, e.g.,
time-stamped location and speed, of vehicles. Such data
directly reflect traffic flows and traffic conditions over the
road network. Therefore, we can extract rich features from
vehicular trajectory data, including traffic density feature,
mobility entropy feature, average speed feature, and speed
variations feature. In particular, to compute the mobility
entropy feature, we count the vehicle turns at each inter-
section and calculate the probability of a vehicle turning
to a certain road at a certain intersection accordingly. The
derived mobility entropy can reflect the traffic complexity
of each intersection.

Input information library Z can accept new data sources,
e.g., POI data. Since POIs are usually the destinations of many
citizens’ trips, POI data thus can implicitly reflect the nearby
traffic flows. Greta will extract feature matrices from the new
data source with the grid-based feature extraction process to
enrich the state representation in the future.

Feature fusion: Different feature matrices will have unequal
contributions to the RSU deployment decisions, we thus use a
neural network to adaptively adjust the weights among all feature
matrices. Specifically, we adopt an 1 x 1 convolutional kernel
to perform the feature fusion from the derived feature matrices.
The fused feature matrix is treated as the representation of the
deployment environment, which is part of the DRL model’s input
state. Thus, the weights of different feature matrices (i.e., the
kernel’s parameters) can be continuously adjusted by training
the DRL model.

D. DRL-Based RSU Deployment Framework

We reformulate the general RSU deployment problem as a
learning problem, and propose a DRL model to accomplish the
deployments of N RSUs over the road network by following the
learned policy function f(-).

Architecture: Fig. 5 illustrates the architecture of Greta’s
DRL-based RSU deployment framework, which comprises a
policy network and a value network. The input to both net-
works is the state representation, which is a concatenation of
embeddings computed from various input data sources. The
feature embeddings are weighted and fused to form a state
representation through multiple fully-connected (FC) layers.

The policy network is a multi-layer deconvolution network
that produces a 2-D probability distribution over the action
space. The value network, on the other hand, is a simple multi-
layer perception (MLP) network with two hidden layers, which
is used to predict the estimated value of the expected reward for
the current placement. The policy network is then optimized
to maximize the expected reward as estimated by the value
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Fig.5. Architecture of the DRL-based RSU deployment framework. Different input data sources are used to generate the state representation, which serves as the

input of the policy network and the value network. The policy network outputs a probability distribution over the masked grids through a multi-layer deconvolution
network, and the value network generates the expected reward for the current deployment through a simple MLP network.

network. The interaction between the policy and value network
forms the basis for many RL algorithms, such as actor-critic
methods [56]. To enhance the learning efficiency, we also design
amask that filters out unnecessary or infeasible deployment sites
before each action is sampled.

Next, we will materialize each key element of DRL modeling
to address the general RSU deployment problem.

1) Contextual State: In addition to the fused features that are
derived from the input information library, Greta also considers
the already deployed RSUs and domain knowledge to generate
the contextual states. As illustrated in the left part of Fig. 5,
Greta constructs the contextual state using the embeddings of
the following information:

® Collective features are the most important guidance infor-

mation for RSU deployments. In practice, Greta will reset
the feature values as zeros for the grids that are covered by
deployed RSUs after each action.

® Deployed RSU map specifies the action coordinate infor-

mation of the already deployed RSUs.

® Influence map indicates the coverage information of the

current RSU deployments. Specifically, we keep the grid
value if the grid is covered by some RSUs and exclude the
value if it is not covered by any RSU.

® Mask contains information about the prohibited grids,

which are not suitable for deploying RSUs, based on
current deployment status and domain knowledge. For
example, in order to improve the convergence speed and
reduce the overlap among RSUs, we prohibit further de-
ployments within a certain range of the already deployed
RSUs. In addition, the grids without roads are considered
to be unnecessary to deploy RSUs.

In our implementation, we normalize each dimension of the
fused features to optimize the training efficiency. Instead of
directly combining this information, we compute the embedding
for each kind of contextual information through a simple fully
connected neural network with two hidden layers (128 x 128),
which finally output a 32-dimensional embedding. The derived
embeddings are then concatenated to form the contextual state.

2) Deployment Action: Each candidate deployment site in IL
potentially becomes a possible action that indicates the location
to deploy an RSU. Since we partition the road network into
n X n grids, we generate the action space, i.e., IL, using these
grids. Thus, the size of the action space is n?. For any input
contextual state s, the policy of Greta’s DRL model will output
a probability distribution of the current deployment action over
the grids. The action « for state s is subsequently sampled from
this probability distribution.

The action space size will greatly affect the model training and
performance. Too large action space will prolong the training
process and reduce the efficiency, while too small action space
seems to be meaningless, since a large grid may contain many
road segments to deploy RSUs. The best grid setting should
be comprehensively evaluated according to the road network
and application requirements. Given the action space with size
n X n, we still propose a heuristic pruning method to accelerate
the model training.

Since RSUs are typically deployed along with road facilities,
such as traffic lights and cameras, we initialize a filter mask by
leveraging the road network to exclude infeasible deployment
sites. To that end, we perform a dot-wise product between the
map matrix and the n X n action matrix, so as to exclude grids
without roads from the action space. However, the roads in the
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Fig. 6.
action matrix by applying the filter mask.

(a) An example road map matrix after QGIS processing; (b) the pruned

graph are too fine and when multiplying the road map matrix
with the action matrix, it is likely to miss those sites that are
very close to the roads. To enhance the system’s fault tolerance,
we thus create buffers for the roads in the map using Quantum
GIS (QGIS), which thickens and simplifies the road network.
Fig. 6(a) demonstrates a road network processed by QGIS, and
the resulting pruned action space is shown in Fig. 6(b).

The above operation initializes the filter mask of Greta by
pruning infeasible actions based on the road network informa-
tion. Later, the filter mask needs to be continuously updated
according to the latest RSU deployment actions. To avoid re-
dundantly deploying RSUs, we hope that the newly deployed
RSUskeep a certain distance from these already deployed RSUs.
Assume that the service coverage radius of an RSU as r, we
thus prohibit further deployments within the distance 7 x r of
the already deployed RSUs, where 7 is a scaling parameter.
We set 7 € [0, 2], and in particular = 2 indicates no service
coverage overlap between any two RSUs. Once a new RSU is
deployed, we update the filter mask by setting the grids within
n x r of the newly deployed RSU as infeasible deployment sites.
Therefore, the domain knowledge enhanced filter mask can help
Greta greatly reduce the action space, and thus improve the
computation efficiency.

D3) Reward: The objective of our DRL modeling is to max-
imize the long-term rewards that are used to approximate the
requirements of V2X services. Specifically, Greta links the
DRL’s rewards with the output metric library O. Before defining
the reward function, we introduce the evaluation mechanisms for
some fundamental metrigs as follows:

® Road coverage: w, where [(x;) represents the road

length covered by RSU z; deployed by an action, and L is
the total length of all roads in the road network.

e Traffic coverage: M, where ¢(z;) is the number
of unique vehicles covered by RSU z;, and T is the total
number of vehicles observed within the road network.

® RSU overlap: N]’(,C;cc, where C' is the actual area covered
by all deployed RSUs, and c is the theoretical coverage
area of each RSU, which can be set as the area of a circle,
centered at the deployment site with coverage radius r.

In Greta, the reward function can be calculated using one or
more metrics, with different weights assigned to each metric.
Dense rewards can be generated by calculating an intermediate
reward for each action based on the chosen metrics. However,
some application requirements are highly dependent on the
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whole deployment plan, resulting in that intermediate rewards
cannot be easily calculated for the required metrics. For example,
if the deployment objective is to maximize communication
quality, it is likely that the relative positions of all RSUs need to
be considered in the formulation of the reward. In this case, it is
not possible to give an intermediate reward for the deployment
of each individual RSU. Instead, an ultimate reward needs to be
given after all RSUs have been deployed.

When the deployment requirements are complex to evaluate,
it becomes difficult or time-consuming to directly evaluate the
ultimate reward. In such a case, it becomes necessary to approx-
imate the reward. Since DRL training often requires numerous
episodes to converge, the evaluation of approximated reward
function should be fast.

We give an example of approximated reward design for the
RSU-based mobility prediction application, which has been
introduced in Section VI-B. The direct reward can be set as the
prediction accuracy, while it requires both training of the pre-
diction model given an RSU deployment scheme and testing to
get the exact prediction accuracy. It is operationally difficult, and
thus we can approximate the prediction accuracy by considering
the prediction difficulty within the coverage of the deployed
RSUs. This approximation is based on the intuition that a higher
prediction difficulty leads to a lower prediction accuracy. As a
result, measuring the prediction difficulty allows us to obtain a
rough estimate of the prediction accuracy. Specifically, we define
the prediction difficulty of each location y as O(y), which can
be customized. The sum of prediction difficulty within the area
covered by RSUs is then used as a reward to measure prediction
accuracy, that is:

Rpredict = Z O(y)
yearea

Model training: Through the repetition of episodes (consist-
ing of sequences of states, actions, and rewards), we train a
policy mp modeled by a neural network that learns to take the best
action for a particular state. The objective for the general RSU
deployment problem is to maximize the expected reward over
deployment strategies that are generated by the policy network.
Parameters 6 of the policy are trained using Proximal Policy
Optimization (PPO) [57], which employs a clipped objective
function. The core idea behind PPO is to restrict the policy
update within a small range using a clip, and the objective
function, referred as the clipped surrogate objective function,
is given as:

LEFIP(9) = By min(re(0) Ay, clip(r4(0),1 — €, 1 4 €) A,)],

where E is the expected reward of parameters 6 at timestep ¢,
r; represents the ratio between the new policy and the old one,
and A, is the estimated advantage.

Algorithm 1: presents the pseudocode of the model training.
The algorithm first initializes the parameters of the policy and
value networks. Then for each epoch, several RSU deploy-
ment strategies are generated by sampling from the probability
distribution of the actions returned by the current policy. The
generation of every RSU deployment strategy is termed as a
trajectory. For each trajectory, Greta starts with an undeployed
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Algorithm 1: PPO-clip for Greta.

1: Input: Features extracted from Z

2: Initialize : Policy network 6, value network 6,,;

3: for epoch = 1,2,- - -, max_epochs do

4: // Generate several RSU deployment strategies
with current policy 7.

5:  buffer.clear(),

6: fori=1,2,---,steps_per_epoch do

7: logp + 7(al0);

8:  logp = mask(logp)

9:  a < logp.sample();

10: v+ V(b,);

11:  s,r + env.step(a);

12: buffer.append(a,logp, v, s, r);

13: if TrajEnd() then

14: Save the best deployment X currently found;
15: env.reset(),

16: end if

17:  end for

18: Compute advantage estimates Ay « buf fer based
on current V' (6,);

19: // Update the policy by maximizing the PPO-Clip
objective as shown in (1) with Adam.

20:  df <+ compute_loss_pi(buf fer);

21: Update 6;

22: df, < compute_loss_v(buf fer);

23: Update 6,;

24: end for

25: * Action: a, Value: v, State: s, Reward: r.

26: * env: RL environment

27: * TrajEnd(): All RSUs have been deployed.

blank map canvas. It then generates the deployment plan by
iteratively performing an action computed by the policy to the
current map environment until the trajectory ends (line 6-16).
The trajectory is terminated when the required number of RSUs
is already deployed. At the end of each epoch, we compute
the loss of policy gradient and critic gradient to update the
parameters (line 19-22).

V. PERFORMANCE EVALUATION
A. Experiment Setup

1) Implementation: We implement Greta in Chengdu city,
China, using one month of GPS trajectory data that were col-
lected from the contract vehicles of Didi Chuxing [19], a Chinese
ride-hailing platform, in October 2016. The contract vehicles are
required to upload their real-time status information every 3 sec-
onds, which includes GPS location, travel speed, and direction.
During the data collection phase, these vehicles totally generated
more than 20 million GPS records per day. We download the road
network of Chengdu city from OpenStreetMap [58]. Besides, we
set the service coverage radius of each RSU as r = 500 meters.

The raw GPS trajectory data are pre-processed before in use
as follows. First, the GPS records are grouped by vehicle ID
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TABLE I
HYPERPARAMETER SETTINGS FOR THE RL MODELING (THE DEFAULT SETTING
OF EACH HYPERPARAMETER IS MARKED IN BOLD)

Hyperparameters Value

Max length per trajectory | {8, 16, 32, 64, 128}

Max epochs 512

Max length per epoch {512, 1024, 2048, 4096, 8192}
Activation function ReLU

MLP hidden size 512x512

Actor Learning rate 1.00E-04

Critic Learning rate 1.00E-3

Optimizer Adam

PPO loss

clipping ratio e 0.2

Entropy coetf 0.01

GAE lambda A\ 0.97

Discount factor ~ {0.75, 0.8, 0.93, 0.965, 0.98}

and sorted by time to form logical and coherent trips. Next, we
remove any trip that is too short because it may be incomplete
or travel out of the testing area. In addition, we remove any stay
points where a vehicle remains stationary for an extended period
of time. Finally, we employ the fast map matching algorithm [59]
to map the trajectories onto the road network, which can correct
erroneous GPS locations and recover the vehicles’ actual travel
routes.

After data pre-processing, we divide the road network into
n x n grids, and then extract features from the data. The visual
representation of each feature is shown in Fig. 4, similar to a
heatmap. The resolution of the grids determines the amount of
feature information and will affect the system performance. By
default, we set n = 84 for the experiments.

We implement the PPO algorithm to train the DRL model
using the SpinningUp framework [60], which is developed by
OpenAl and can make use of GPUs to accelerate the training.
The RL environment is implemented in Python to facilitate
the use of SpinningUp. Table I presents the hyperparameters
involved in the RL modeling.

A2) Baselines: Because existing research works primarily
focus on optimizing road/traffic coverage, we thus compare
Greta with other baselines on these optimization objectives.
Based on the literature review (see more in Section II), we
broadly categorize existing RSU deployment methods into three
groups: /) Naive methods; 2) Road information-based methods;
3) Traffic data driven methods. Based on this categorization,
we select four representative RSU deployment methods from
among them as the baseline methods for performance compar-
isons. These baseline methods are described as follows:

e Uniform [53], [61]: This naive method will deploy RSUs
uniformly on the road map without considering informa-
tion of traffic flows or road network topology. Despite
its simplicity, this method can provide uniform service
coverage across the city.

e [-RSU [51], [62]: This is an intersection-based heuristic
RSU deployment method with the goal of maximizing
road coverage. I-RSU prefers to deploy RSUs at road
intersections according to their density distribution. As a
result, it can derive large road coverage.
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e CDA-DC [52]: This is another representative intersection-
based RSU deployment method that maximizes the traffic
coverage by evaluating the centrality of each road inter-
section to determine its importance as a potential RSU
deployment site. It deploys RSUs at intersections with
higher importances.

e Traffic-RSU [29], [63], [64]: This method makes use of
vehicular mobility data to guide the RSU deployments.
Specifically, it divides a road map into grids and assigns
traffic data into these grids, then deploys RSUs to certain
grids with the goal of maximizing traffic coverage.

In addition, to verify the search performance of DRL in the
RSU deployments, we also choose the Greedy Search (GS)
algorithm and the Simulated Annealing (SA) algorithm as the
baseline.

® GS-RSU [65]: GS-RSU also selects the RSU deployment
site in a sequential process, while it selects the optimal
deployment site, e.g., owning the largest value on the
considered metric, at each time in a greedy manner, without
considering the overall situation.

e SA-RSU [18]: SA is a powerful, yet slow, optimization
method that can approximate global optimization in a
large search space. Similar to RL, SA can optimize any
non-differentiable cost function. In the implementation,
we first select N random candidate deployment sites as
the initial deployment plan. After that, we select any one
of the initial N sites, and switch it with any one of the
remaining unselected sites. By comparing the change on
some performance metrics, the algorithm then completes
the update of one deployment site in the plan. The execution
goes on iteratively, and whenever a better deployment
solution emerges, the algorithm records it.

B. Evaluation Results

In this section, we first comprehensively compare Greta with
all other deployment methods (Section V-Bl), and later we
evaluate Greta from different aspects, including searching capa-
bility (Section V-B2), effectiveness of sequential deployments
(Section V-B3), and computational complexity (Section V-B4).
Lastly, we conduct sensitivity analysis by studying the impacts
of different parameter settings on Greta (Section V-BY).

1) Comparisons With Different Deployment Methods: To
demonstrate the superiority of Greta’s adaptivity on different
optimization targets, we modify the objective of Greta to pro-
duce three variant methods, i.e., Greta -road, Greta -traffic, and
Greta -weighted, which aim to optimize the deployment target
of road coverage, traffic coverage, and combined metrics of road
and traffic coverage, respectively. These variant methods use the
corresponding rewards as described in Section IV-D.

We visualize and compare the deployment results of
different methods under various RSU budgets (i.e., N =
8,16,32,64,128) in Fig. 7. From the figure, we see that these
methods have distinct strategies to deploy RSUs, leading to
different distributions of deployed RSUs. When the deployment
problem is small-scale (i.e., small V), the deployments made by
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baseline methods may be reasonable under their respective de-
ployment logic. However, once more RSUs need to be deployed,
their deployment results become unreasonable and less effective.
For example, the CDA-DC and Traffic-RSU have relatively high
overlap rates when the number of RSUs is large (e.g., N > 64).
In contrast, the proposed Greta performs well in different target
settings, and can produce even distributed deployment plans as
shown in Fig. 7.

We summarize the performance of different methods under
various performance metrics, and show the statistical results in
Fig. 8. With more RSUs to deploy, all methods can provide
larger road coverage (see Fig. 8(a)) or traffic coverage (see
Fig. 8(b)). Greta brings relatively more improvement with 32
deployments. For the given road map with too small or too
large number /N of RSUs to deploy, the performance difference
among different methods is not significant. Specifically, in the
32-RSU case, Greta -road (Greta -traffic) improves Uniform,
CDA-DC, I-RSU, and Traffic-RSU on the road coverage (traffic
coverage) by 24.8%, 38.6%, 18.5%, and 40.0% (64.6%, 49.0%,
41.4% and 10.4%), respectively. We also find that the variant
Greta -weighted, which aims to optimize a combined metric of
road and traffic coverage, can achieve similar performance as
the variant that is particularly designed for a specific metric. For
example, Greta -weighted almost derives the same road coverage
as Greta -road as shown in Fig. 8(a). It implies that Greta can
automatically adjust the weights among multiple features to
maximize the targeted requirement. In addition, Fig. 8(c) shows
the overlap rate of all deployed RSUs. In practice, we hope RSUs
are evenly distributed, and thus smaller overlap rate is preferred.
From Fig. 8(c), we find that the three variants of Greta perform
well and output reasonable deployment plans.

To intuitively understand the advantage of Greta , we visualize
the deployment results of 32 RSUs on the corresponding feature
maps (i.e., road density and traffic density) for different methods
in Fig. 9. For the road density (traffic density) feature, we see
that Greta -road (Greta -traffic) can deploy RSUs to cover more
feature-rich areas when compared to I-RSU (Traffic-RSU). In
addition, we also visualize the deployment results of Greta -
weighted and find it provides a satisfactory deployment plan
that effectively balances the feature effects of road density and
traffic density.

In summary, the results in Figs. 7-9 show that Greta outper-
forms the heuristic methods in large-scale deployments, thanks
to the efficient exploitation of real-world data. Meanwhile,
RL-based problem modeling makes Greta to be generalized for
different deployment requirements.

2) Comparison With Search-Based Method: To examine the
solution space exploration ability of RL, we compare Greta -
road with SA-RSU under the same problem setting that aims
to maximize the road coverage for a given number N of RSUs.
The greedy algorithm (GS-RSU), by its nature, simply selects the
current optimums at each step and combines them to form the
final solution, lacking the ability to explore the solution space.
Therefore, we exclude GS-RSU from this experiment.

Fig. 10(a) and (b) show the training processes of SA-RSU
and Greta -road, respectively, where the corresponding optimal
values are given. By varying IV from 8 to 128, Greta -road shows
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Fig. 7.

Comparisons on the RSU deployment plans of different methods with different available numbers of RSUs, i.e., N = 8, 16, 32, 64, 128. The upper three

rows visualize the deployment results of three baselines, respectively, and the lower three rows show the results of Greta’s variants that aim to optimize road
coverage, traffic coverage, and the weighted combination of road and traffic coverage, respectively.

6.5%, 4.0%, 7.2%, 7.0%, and 2.1% improvement than SA-RSU
on road coverage, respectively.

Furthermore, Greta offers potential advantages in problem
modeling compared to the SA algorithm. It allows for the
flexibility of modifying the optimization objective, such as
minimizing the required number of RSUs to achieve a targeted
road coverage. For instance, if a road coverage requirement of
75% 1is specified, Greta -road can learn a deployment plan that

utilizes the minimum number of RSUs. However, such a task
cannot be accomplished by the SA-RSU method.

3) Effectiveness of Sequential Deployments: In this experi-
ment, we consider a sequential incremental RSU deployment
scenario. We firstly employ a uniform deployment strategy [53]
to deploy 16 RSUs on the road network, and then separately use
GS-RSU, SA-RSU, and Greta to deploy another 16 RSUs atop
these deployed RSUs.
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Fig. 10.  Performance comparison between (a) SA-RSU and (b) Greta.

Fig. 11 presents the performance comparison results on road
coverage and execution time. We find that although both GS-RSU
and Greta are sequential deployments, Greta can go beyond the

local optimum because it chooses deployment sites from a global
view and thus obtains more globally favorable deployment ac-
tions at each time. Furthermore, since Greta and GS-RSU can
quickly generate the next deployment action based on the current
deployment situation without re-training or re-searching, we
thus provide a detailed comparison of each deployment action
of these two methods in Fig. 12. Although GS-RSU can compute
the optimal deployment sites as Greta for the initial three RSUs,
it cannot always get the best sites in the latter process, as the
road coverage of GS-RSU’s selected sites is much smaller than
the ones provided by Greta.

Unlike Greta and GS-RSU, SA-RSU can only generate the
complete deployment plan by re-searching the locations of the
remaining 16 deployment actions from scratch, within the con-
straints of having 16 deployment actions already in place, so it
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takes a much longer execution time as shown in Fig. 11. Because
SA-RSU does not produce intermediate deployment actions, it
is excluded from the detailed comparisons in Fig. 12.

4) Evaluation of Computational Complexity: As Greta is
built on reinforcement learning, its computational efficiency
is related to various factors, including the size of state space
and action space, the adopted RL algorithm, and among others.
It is difficult to mathematically analyze Greta’s computational
complexity, and thus we conduct experiments to compare Greta
with two baseline methods, i.e., GS-RSU and SA-RSU, on the
time complexity of training and inference.

Fig. 13 shows the experimental results. GS-RSU takes 268.7
seconds for each deployment plan search, while SA-RSU needs
a total of 26312.6 seconds to generate the complete deployment
plan. Although Greta takes a relatively long time for training,
its online inference is extremely fast, i.e., 4.5 seconds, once the
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model has been well trained. Moreover, the trained model can
be used for additional deployments in the future, while SA-RSU
still takes a long time to generate a new complete plan.

B5) Sensitivity Analysis: To gain further insights into the
effects of different factors on Greta , we conduct a series
of sensitivity analyses on Greta by running Greta -road with
N = 32 RSUs.

e [mpact of action resolution: The action resolution is de-

termined by the grid sizes. We compare the performance
of Greta -road with varied grid sizes, i.e., 25, 50, and 100
meters. From the results shown in Fig. 14(a), we observe
that higher action resolution (i.e., smaller grid size) leads
to faster convergence, while the derived road coverage
becomes worse. In particular, when the action resolution is
25 meters, the training fails to converge with drastic fluc-
tuation until the end. Therefore, it is important to carefully
select the action resolution to balance convergence speed
and final performance when applying Greta in practical
applications.

® [mpact of hidden layer size: We investigate the impact
of the hidden layer size in the MLP network, which is
used by the value network, by varying it from 64 x 64 to
512 x 512. The results shown in Fig. 14(b) reveal that the
MLP networks with different hidden layer sizes converge to
similar results, except for the network setting with 128, and
the difference among these settings lies in the convergence
speed. This is because a more complex network structure
can model intricate relationships better.

o Effect of feature fusion: Greta can fuse features and adap-
tively adjust their weights according to the application’s
requirement. To verify its effectiveness, we only take the
two features with larger weights after feature fusion as the
input for Greta -road. Compared with the variant using
all six available features as shown in Fig. 4, the results
in Fig. 14(c) show that both variants achieve the same
performance. It proves that Greta indeed can identify the
useful features and assign them with larger weights.

VI. DISCUSSION

In this section, we will discuss the limitations and potential
applications of Greta.

A. Limitations and Open Issues

Despite the huge advantages, we also realize some limita-
tions of Greta in its current implementation. We discuss these
limitations and hope to inspire future research efforts.

® Privacy protection: Due to the advantages of adapting to

different RSU deployment requirements, Greta can well
support various V2X applications, e.g., mobility prediction
and trajectory reconstruction. These applications involve
the vehicles’ location information and thus may arise con-
cerns about user privacy. To enable such smart mobility ap-
plications while protecting users’ privacy, we may adopt an
anonymous data-sharing mechanism by allowing vehicles
to upload anonymous data to RSUs, as these applications
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only require vehicular trajectory data rather than personal
information.

e Extension to mobile RSUs: In the current Greta design,
we only consider deploying stationary RSUs on the road
network, while some recent works [66], [67] propose to
deploy RSUs on moving vehicles as mobile RSUs. By
providing occasional service for vehicles out of the cov-
erage of stationary RSUs, mobile RSUs can effectively
enlarge the service coverage of all RSUs. However, how to
jointly optimize the deployments of stationary and mobile
RSUs, while still considering different requirements of
V2X services, is an interesting yet challenging research
problem that we plan to address in our future work.

® Better RSU communication model: The majority of RSU
deployment works model the RSU communication range
as either 2D circular or 1D linear, which facilitates the
problem formulation but may not fully capture the urban
environments. Obstacles such as buildings can significantly
attenuate communication signals and affect the accuracy of
prediction models. We thus believe that if we can construct
a more comprehensive RSU communication model, either
theoretically or through some data-driven approaches, by
considering the influence of the urban environments, the
derived RSU deployments would be more effective and
efficient.

B. Potential Applications of Greta

Due to its superiority in adapting to dynamical RSU de-
ployment requirements, Greta can well support various V2X
applications. Here we list some potential applications.

® Mobility prediction: Mobility modeling is essential for

understanding people’s travel habits [68] and enabling
various mobility services [69], [70]. RSUs can serve as
sensors to observe vehicles’ movements within a city, and
thus a potential application is to predict the location of a
specific vehicle, even if itis out of RSUs’ sensing coverage.
Greta can optimize RSU deployment to reduce mobility
uncertainty by exploiting features extracted from various
input data, such as mobility entropy and traffic volume. By
covering intersections with higher mobility entropy and
more traffics, where vehicle turning operations are hard to

# of Epochs
(b) Hidden sizes

4‘0 6‘0 Eh 160
# of Epochs
(c) Feature numbers

300 400 500 0 20

predict, the uncertainty on a vehicle’s location is reduced,
and the mobility prediction accuracy can be improved.

® Trajectory reconstruction: Complete trajectory data are
useful for many trajectory mining applications, e.g., tran-
sit system optimization, infrastructure planning, POI rec-
ommendations, traffic sensing and monitoring, etc [71].
From sparse RSU observations, trajectory reconstruction
application aims to recover the route a vehicle actu-
ally traveled on. As an offline task, this application can
take advantage of global RSUs’ information for recov-
ering a vehicle’s actual travel route. Therefore, by de-
ploying RSUs to maximize both road and traffic cov-
erage, Greta can potentially improve the reconstruction
accuracy.

o V2V communication optimization: As one of the key func-
tionalities, RSUs provide communication service for vehi-
cles and can also serve as the relay nodes between vehicles
for information exchange. In such a case, RSUs supplement
the communication gap to improve V2V communication
quality [53]. To well support such an application, Greta can
be employed to deploy RSUs that meet the communication
requirements, such as vehicle connectivity, communication
delay, etc.

VII. CONCLUSION

In this paper, we present Greta, a general RSU deployment
framework that aims to improve existing methods with better
design utility and deployment scalability. To achieve this goal,
Greta incorporates an input information library and an output
metric library, both of which are adjustable and extensible to
consider rich sensing data or new/updated deployment require-
ments related to RSU deployments. In addition, Greta exploits
reinforcement learning (RL) to model the general RSU deploy-
ment problem as a learning process, and customize the RL model
to automatically explore the deployment environment to find
good deployment strategies. A prototype system of Greta is im-
plemented and experimentally evaluated using real-world data.
The results demonstrate the effectiveness of Greta. Compared
to existing RSU deployment methods, Greta can achieve great
performance gains on various metrics.
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