
DeepGPS: Deep Learning Enhanced
GPS Positioning in Urban Canyons

Zhidan Liu ,Member, IEEE, Jiancong Liu , Xiaowen Xu , and Kaishun Wu ,Member, IEEE

Abstract—Global Positioning System (GPS) has benefited many novel applications, e.g., navigation, ride-sharing, and location-based

services, in our daily life. Although GPS works well in most places, its performance in urban canyons is well-known poor, due to the

signal reflections of non-line-of-sight (NLOS) satellites. Tremendous efforts have been made to mitigate the impacts of NLOS signals,

while previous works heavily rely on precise proprietary 3D city models or other third-party resources, which are not easily accessible.

In this paper, we present DeepGPS, a deep learning enhanced GPS positioning system that can correct GPS estimations by only

considering some simple contextual information. DeepGPSfuses environmental factors, including building heights and road distribution

around GPS’s initial position, and satellite statuses to describe the positioning context, and exploits an encoder-decoder network model

to implicitly learn the complex relationships between positioning contexts and GPS estimations from massive labeled GPS samples. As

a result, the well-trained model can accurately predict the correct position for each erroneous GPS estimation given its positioning

context. We further improve the model with a novel constraint mask to filter out invalid candidate locations, and enable continuous

localization with a simple mobility model. A prototype system is implemented and experimentally evaluated using a large-scale bus

trajectory dataset and real-field GPS measurements. Experimental results demonstrate that DeepGPSsignificantly enhances GPS

performance in urban canyons, e.g., on average effectively correcting 90.1% GPS estimations with accuracy improvement by 64.6%.

Index Terms—GPS, positioning, deep learning, urban canyons, NLOS satellite

Ç

1 INTRODUCTION

GLOBAL Navigation Satellite Systems (GNSSs), such as the
well-known Global Positioning System (GPS), have

benefited many intelligent applications, including naviga-
tion [65], instant delivery [69], ride-sharing [40], autonomous
driving [12], and location-based services [34]. Accurate posi-
tioning is of great importance for those applications to pro-
vide effective and efficient services. While GPS generally
works well in most places, it is still extremely unreliable in
urban canyons, e.g., GPS errors in such challenging environ-
ments can be larger than 50meters [28].

GPS error in urban canyons primarily comes from the
effects of notorious multipath interference or non-line-of-
sight (NLOS) receptions, due to satellite signal reflections by

high-rising buildings [33]. Although multipath interference
can bewell addressed by some hardware or software designs
[18], [27], [44], the NLOS satellite signals at GPS receivers
remain the major source of positioning errors in urban can-
yons. In principle, a GPS receiver needs to receive signals
from at least four satellites for accurately triangulating its
location [33]. In urban canyon scenarios, the signal of an
NLOS satellite may be reflected by one or even more tall
buildings, and causes the so-called pseudorange, which is an
approximation of the distance between the target satellite
andGPS receiver, to be larger, resulting in positioning errors.

In the literature, tremendous efforts have already been
devoted to mitigate the impact of NLOS receptions. Early
works [21] apply ray-tracing algorithms on satellite signals to
compute pseudorange errors, which have to reconstruct the
reflective surfaces of street buildings using specialized hard-
ware, e.g., panoramic cameras [54] and LiDAR [57]. Based on
the proprietary 3D city models, most of recent works exploit
building geometry to calculate the similarity of signal paths
[29], [39], [45], [48] or satellite visibility [23], [49], [60], [63], [68]
between candidate locations around GPS’s initial position and
the receiver’s observations, and output the spot with the best
match as the solution. These works, however, heavily rely on
the precise proprietary 3D city models or other third-party
resources, e.g., panoramic images [39], which are not easily
accessible and thus largely limit their practical adoptions.

Despite the limitations of previous works, they motivate
us to imagine that there should exist somemapping function
f that can map a GPS estimation and its surrounding envi-
ronment to the ground truth position where the receiver
actually stands. It is possible and reasonable, since themajor-
ity of key environmental factors, e.g., buildings, are rela-
tively stationary and satellites are regularly operating in

� Zhidan Liu, Jiancong Liu, and Xiaowen Xu are with the College of Com-
puter Science and Software Engineering, Shenzhen University, Shenzhen,
Guangdong 518060, China. E-mail: liuzhidan@szu.edu.cn, {liujiancong2018,
xuxiaowen2019}@email.szu.edu.cn.

� Kaishun Wu is with The Hong Kong University of Science and Technology
(Guangzhou), Guangzhou, China, and also with the College of Computer
Science and Software Engineering, Shenzhen University, Shenzhen,
Guangdong 518060, China. E-mail: wu@szu.edu.cn.

Manuscript received 26 March 2022; revised 13 July 2022; accepted 14 Sep-
tember 2022. Date of publication 21 September 2022; date of current version 5
December 2023.
This work was supported in part by China NSFC under Grants 62172284,
61872248, and U2001207, in part by the Grant of Guangdong Basic and
Applied Basic Research Foundation under Grants 2022A1515010155 and
2017A030312008, in part by Shenzhen Science and Technology Foundation
under Grants ZDSYS20190902092853047 and R2020A045, in part by the
Project of DEGP under Grants 2019KCXTD005 and 2021ZDZX1068, and in
part Guangdong “Pearl River Talent Recruitment Program” under Grant
2019ZT08X603.
(Corresponding author: Kaishun Wu.)
Digital Object Identifier no. 10.1109/TMC.2022.3208240

376 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

1536-1233 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0002-7297-3026
https://orcid.org/0000-0002-7297-3026
https://orcid.org/0000-0002-7297-3026
https://orcid.org/0000-0002-7297-3026
https://orcid.org/0000-0002-7297-3026
https://orcid.org/0000-0001-5255-6754
https://orcid.org/0000-0001-5255-6754
https://orcid.org/0000-0001-5255-6754
https://orcid.org/0000-0001-5255-6754
https://orcid.org/0000-0001-5255-6754
https://orcid.org/0000-0003-2216-0737
https://orcid.org/0000-0003-2216-0737
https://orcid.org/0000-0003-2216-0737
https://orcid.org/0000-0003-2216-0737
https://orcid.org/0000-0003-2216-0737
mailto:liuzhidan@szu.edu.cn
mailto:liujiancong2018@email.szu.edu.cn
mailto:xuxiaowen2019@email.szu.edu.cn
mailto:wu@szu.edu.cn

most of the time. Therefore, given a location and its contex-
tual information, e.g., heights of buildings and satellite sta-
tuses, the ground truth position can be inferred. Of course, it
is impossible to explicitly enumerate all positioning contexts
to find the mapping function f , due to huge computation
and storage costs, while we could build a deep neural net-
work to approximate the mapping function f for enhancing
GPS positioning in urban canyons, by leveraging the power-
ful representation ability of deep learning [35]. Thanks to the
widely available GPS trajectories [70], they provide us rich
training data to learn the deep neural network model for a
given region. The well trained model then can provide swift
and accurate GPS positioning for users of that region.

In this paper, we present a deep learning enhanced GPS
positioning system - DeepGPS, which can achieve accurate
positioning in urban canyons. We build a deep neural net-
work to implicitly capture the complex relationships
between positioning contexts and the ground truth positions
frommassive labeled GPS samples. The trainedmodel, serv-
ing as a black box, can effectively transform an erroneous
GPS estimation to its correct position and thus greatly
improve positioning accuracy in urban canyons.

InstantiatingDeepGPS, however, requires to address three
key challenges. First, there are multiple factors, e.g., layouts
and heights of buildings, satellite distribution, human
dynamics, and etc, which would affect GPS accuracy in
urban canyons, while these factors are in different forms of
modality, resulting in their representations with varied
dimensions. How to properly represent and fuse relevant
positioning contexts as the input of deep neural network, yet
without information loss, is challenging. To attack this issue,
we transform all contextual factors into matrices of the same
size, and combine them as a holistic multi-source data input.
Such representations allow us to leverage the recent advan-
ces on 2D image based techniques in computer vision [32],
[36], which are useful on capturing spatial correlations
among environmental factors aroundGPS’s initial position.

Second, predicting the correct positions from GPS estima-
tions and other inputs can be modeled as a regression prob-
lem. Since position is usually denoted as a pair of latitude and
longitude, it is thus difficult to train the regressionmodel, due
to the huge search space for float numbers. As a result, how to
model the position correcting problem is crucial, since it also
determines the architecture of deep neural network. To
address this challenge, we analyze GPS error distribution in
urban canyons, and generate a set of candidate cells around
GPS’s initial position. Then, we transform the position cor-
recting problem into a classification problem, where we aim
to predict which cell is the most likely to contain the ground
truth position. To solve this classification problem, we adopt
an encoder-decoder network. The model consists of an
encoder, which extracts features from the input matrices, and
two decoders, i.e., distance decoder and position decoder,
which feed into feature map generated by encoder to predict
positioning error and correct position, respectively. More
importantly, these two decoders share information from the
same encoder, and mutually constrain each other to predict
the most possible error and position, which can best match
with the observation. Furthermore, we embed the environ-
mental context into a constraint mask that can improve the
model’s accuracy by filtering out inaccessible cells.

Third, most of location-based applications generally need
to track objects of interest, which calls for continuous and
accurate positioning. Althoughwe could exploit themodel to
separately correct each GPS estimation, such a method omits
temporal correlations among user’s movements and thus is
inefficient. Indeed, we can adopt advanced techniques like
particle filtering [59] to track user’s location, however, these
solutions require extra devices to collect mobility data. Thus,
it remains a challenge tomake themodelwell support contin-
uous localization. To that end, we propose a simple mobility
model based continuous localization method. We use the lat-
est fixed positions to update user’s mobility model, which
helps to compute a reachable area of the user given time inter-
val between two positioning instances. The reachable area
offers different confidences on candidate cells, and helps us
to accurately and efficiently determine the cell with correct
position.

In summary, this papermakes the following contributions:

� To the best of our knowledge, we are the first to
enhance GPS performance in urban canyons by
implicitly learning the relationships between diverse
positioning contexts and GPS estimations.

� We design and implementDeepGPS, which is built on
the encoder-decoder network architecture and can
accurately predict positioning errors and correct posi-
tions from erroneous GPS estimations and multi-
source data fusion.

� We incorporate domain knowledge into a novel con-
straintmask that further improves the neural network,
and propose a mobility model to enable continuous
localization.

� A prototype system1 is developed and experimen-
tally evaluated. Extensive evaluation results based
on both a large bus GPS trajectory dataset and real-
field GPS measurements show the effectiveness of
DeepGPS. On average, our system can effectively cor-
rect 90.1% GPS estimations with positioning accu-
racy improvement by 64.6%.

The rest of this paper is organized as follows. We present
the background and motivation in Section 2. The design of
DeepGPSis elaborated and implemented in Sections 3 and 4,
respectively. The performance evaluations are conducted in
Section 5. We review related works in Section 6, and present
the discussions in Section 7. Finally, Section 8 concludes this
paper.

2 BACKGROUND AND MOTIVATION

In this section, wewill introduce the background of GPS, dis-
cuss howGPS performs in urban canyons, and thenmotivate
our design ofDeepGPSby analyzing previousworks.

2.1 The Prime of GPS

The GPS navigation system is constituted of three compo-
nents: satellite constellation, ground stations, and user’s GPS
receiver. Specifically, satellite constellation consists of 32 sat-
ellites, each of which orbits the Earth every 12 hours and con-
tinuously broadcasts its position and other metadata above

1. The source code is shared for the benefits of the community [8].

LIU ETAL.: DEEPGPS: DEEP LEARNING ENHANCED GPS POSITIONING IN URBAN CANYONS 377

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

the Earth [33]. The metadata include various attributes of
each satellite, e.g., satellite’s position. The ground stations
monitor and manage all satellites by sending them with
parameters that control their orbits and trajectories. In
addition, satellites carry stable atomic clocks that are pre-
cisely synchronized with each other and clocks of ground
stations.

The GPS receiver receives signals from available satel-
lites, and calculates each signal’s travel distance, i.e., pseu-
dorange, by multiplying speed of light with the signal’s
propagation delay. With the positions of observed satellites
and their pseudoranges, the receiver estimates its location
ðx; y; zÞ using the least square method under constraint con-
ditions as follows:

ffi
ðx� xiÞ2 þ ðy� yiÞ2 þ ðz� ziÞ2

q
¼ ‘i; (1)

for i ¼ 1; 2; . . . ;m, where m is the number of visible satel-
lites for the receiver, ðxi; yi; ziÞ is the position of the i-th sat-
ellite, and ‘i is the measured distance between the receiver
and the i-th satellite. In practice, the receiver’s clock is not
synchronized with satellites’ clocks, and thus a receiver
must have at least four satellites in view to determine its
location and the unknown time deviation between the
receiver and the satellites.

A standalone GPS receiver suffers from a lot of error
sources that severely affect GPS positioning performance
[33]. For example, the inconsistencies of atmospheric condi-
tions will affect the travel speed of GPS signals, resulting in
ionospheric delay and tropospheric delay. In addition, the
Doppler effect due to the Earth’s rotation and the satellite’s
velocity will also affect the travel time of GPS signals, and
introduces positioning error. Moreover, multipath interfer-
ence, where the same signal is received directly from the
satellite and via reflection, and NLOS satellites, whose sig-
nals are received via reflection only, will both affect the
pseudorange estimation. Lastly, it is worthy to note that
although satellite clocks are highly accurate, they are still
not perfect with clock error about 8.64 to 17.28ns per day
[3]. For simplicity, we only mention several major error
sources in GPS positioning, and more analysis about GPS
errors can be found in [3], [33].

There exist various techniques, e.g., differential GPS [25],
to compensate for the errors caused by inconsistencies of
atmospheric conditions and Doppler effect in modern GPS
receivers [39]. Different from GPS receiver clock error that
can be fixed by receiving more satellite signals, the satellite

clock error can be corrected using a fitted polynomial model
[52]. The other two error sources, i.e., multipath interference
and NLOS satellites, remain the major challenge for GPS
positioning, and are particularly severe in urban canyons
[16], [20], [23].

2.2 How GPS Performs in Urban Canyons

In urban canyons, satellite signals are frequently reflected or
blocked by the densely distributed buildings. As a result,
the GPS receivers cannot receive sufficient readings or mis-
takenly estimate pseudoranges, leading to larger position-
ing errors, e.g., more than 50 meters [28]. As shown in
Fig. 1, the user’s receiver receives a direct signal (i.e., the
green line) and a reflected signal (i.e., the blue line) from sat-
ellite A. These two signals form multipath receptions for the
receiver and interfere its positioning. As satellite B is
blocked by buildings, the receiver can only receive reflected
signals from satellite B, which is thus called asNLOS satellite
for the receiver. Compared to the direct signal, a reflected
signal will travel more distance, e.g., 100 meters [39], result-
ing in a much larger estimated pseudorange. Unfortunately,
the GPS receivers cannot reliably distinguish between direct
and reflected signals. Therefore, both multipath and NLOS
receptions become the primary causes of GPS errors in
urban areas.

To understand the practical performance of GPS, we ana-
lyze two real-world GPS datasets, which are collected from
regularly operated buses equipped with GPS sensors and
several modern smartphones, respectively. More details
about our GPS datasets are described in Section 5.1. The
positioning error statistics of these GPS data are plotted in
Fig. 2. Since public buses travel along scheduled routes
within the downtown areas, we find that the GPS position-
ing errors are relatively large, with the 80th quantile error is
13.0 meters and the average error is 9.1 meters, as shown in
Fig. 2. Although modern smartphones have enhanced their
positioning components with advanced techniques, e.g.,
wireless signal based mobile positioning [24], [30], we still
see rather large errors as shown in Fig. 2, e.g., the average
and 80th quantile errors are 7.0 meters and 11.9 meters,
respectively.

Fig. 3 further demonstrates a concrete example, where
we see that the trajectory observed by smartphone’s GPS
receiver deviates from the actual trajectory greatly, with
average positioning error as large as 12.3 meters. Therefore,
effective techniques are imperatively required to improve
GPS accuracy in urban canyons.

Fig. 1. The multipath and NLOS receptions of satellite signals in urban
canyons.

Fig. 2. GPS error statistics in two datasets collected by buses and
smartphones.

378 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

2.3 Motivation

The root cause of GPS errors in urban canyons is satellite sig-
nal reflection caused by complex and dynamic urban envi-
ronments, in particular high-rising buildings. Thus, we
imagine that there exists some relationship between GPS
performance and the environment around a GPS receiver. It
could be true. On one hand, for a given location p expressed
by a pair of latitude and longitude, the factors of its sur-
rounding environment that will affect satellite signals, i.e.,
buildings, are consistent in a long period. On the other hand,
navigation satellites are constantly and regularly operating,
and their positions are predicable [33]. As a result, we could
enumerate all possible combinations of available satellites,
including satellite identities and their positions in the sky,
for location p, and for each satellite combination there will
exist an observation p̂ that is the position estimated by a GPS
receiver. The relationship between actual location p and GPS
estimation p̂ can bemodeled by amapping function f , which
is defined as:

fðp; c; sÞ ! p̂; (2)

where c encodes the urban environment around p, while s
represents the satellite distribution when GPS positioning is
invoked. In practice, we would like to infer ground truth
position p from GPS estimation p̂, the function is thus
expressed as fðp̂; c; sÞ ! p.

Existing works [22], [47], [58] usually assume that GPS
errors, i.e., the difference between p and p̂, follow a Gauss-
ian distribution, while some researches [64] report that GPS
errors actually follow the Raleigh distribution. In fact, both
Gaussian distribution and Raleigh distribution are lack of
versatility to model practical GPS estimations across a large
area. For example, Wu et al. [58] have to fit one private
Gaussian distribution for GPS estimations of each small
road segment. These statistical models omit the important
positioning contexts, e.g., buildings and satellites, and thus
are inadequate to model the mapping function f .

There indeed exist a number of works that consider
information of both buildings and satellites to improve GPS
performance. In general, they use proprietary 3D city mod-
els to approximate function f by implicitly linking location
p with visible satellites or explicitly tracing signal paths
between p and observed satellites. For research works of the
former category, they study and extend the idea of shadow
matching [23], [49], [60], [63], [68] to improve positioning

accuracy. The shadow matching algorithm determines the
user’s position from candidate positions with satellite visi-
bility that compares with the GPS receiver’s measurements
[23]. Given the initial GPS position p̂, a certain area around
p̂ is uniformly divided into grids, and each grid is treated as
a candidate position for the actual position. For each candi-
date position, the algorithm predicts satellite visibility based
on the 3D city model and satellites’ positions. A given satel-
lite is visible if its direct signal to the candidate position can-
not be blocked by obstacles, e.g., buildings. Meanwhile, the
satellite visibility can also be estimated by GPS receiver’s
received signals. As the reflected NLOS signal may lead to
an incorrect visibility estimation, shadow matching algo-
rithm usually assumes that the satellite with received signal
strength larger than a predefined threshold is visible.
Finally, the candidate position that has the best match of sat-
ellite visibility with the signal-based satellite visibility esti-
mation is deemed as the solution of shadow matching.

Based on the precise 3D city models, research works
belonging to the latter category either remedy pseudoranges
by recovering “virtual direct paths” [39] (e.g., recovering
actual path as the red dashed line for satellite B in Fig. 1), or
compute the similarity between signal paths of candidate
locations and the observed ones [29], [45]. However, both
shadow matching based methods and satellite signal path
based methods heavily rely on the proprietary 3D city mod-
els, which are not easily accessible. Even worse, it is difficult
to properly set the threshold for determining satellite visibil-
ity in shadow matching, while recalculating pseudoranges
can incur huge computation overheads that largely restrict
their practicability on ordinary devices like smartphones.

Inspired by deep reinforcement learning theory that
employs deep neural networks as function approximators
to learn Q functions [13], we instead propose to utilize a
powerful deep neural network to approximate mapping
function f for better describing complex relationships
between GPS estimations and positioning contexts, which
include urban environment, satellite distribution, and etc. It
is feasible and beneficial to build such a deep neural net-
work model. First, thanks to the powerful representation
ability of deep learning [35], we can feed coarse contextual
information, which encode urban environment c and satel-
lite distribution s, rather than proprietary 3D city models,
into a deep neural network model. Second, we could have
abundant GPS data to well train the model. Due to the wide
adoptions of GPS devices in vehicles, e.g., taxis and buses,
and smart devices, e.g., smartphones, we can accumulate
massive GPS measurements as the training samples [41].
Lastly, although training a deep learning model would be
time-consuming, the inference is extremely quick [53]. Com-
pared to previous works [23], [39], [45], [49] that require
large storage for 3D city models and huge real-time compu-
tations, deep learning based solutions can train and deploy
the bulky model at cloud, and quickly respond each request
to fix the GPS estimation.

Challenges. Despite the promising advantages, it is
non-trivial to realize the deep learning enhanced GPS posi-
tioning system, due to the following challenges.

First, multiple key factors, e.g., building heights and
satellite statuses, could affect GPS performance in urban
canyons, while they are in different modalities with varied

Fig. 3. Comparison on localization results of smartphones and the actual
trajectory.

LIU ETAL.: DEEPGPS: DEEP LEARNING ENHANCED GPS POSITIONING IN URBAN CANYONS 379

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

dimensions. Thus, how to represent them and properly feed
them into the deep neural network, without information
loss, is challenging.

Second, position is normally expressed as a pair of lati-
tude and longitude, which are hard to predict due to the
huge search space. Therefore, how to devise the network
architecture, including the forms of both input and target,
and exploit more opportunities to refine the search space
remain to be explored.

Third, location-based applications generally require to
track objects of interest. Although we can invoke the model
to fix each individual GPS estimation, however, such a
method is inefficient and possibly with low accuracy. There-
fore, how to make the deep neural network support contin-
uous localization is a challenge.

3 DESIGN OF DEEPGPS

In this section, we will elaborate the design details of
DeepGPS, and discuss how to extend DeepGPSfor continu-
ous localization.

3.1 System Overview

Fig. 4 illustrates the system architecture of DeepGPS, which
consists of four major modules: Input Representation, Encoder,
Distance Decoder, and Position Decoder. At the high-level,
DeepGPSfuses multiple factors that affect GPS positioning in
urban canyons, and represents them in the same size of
matrices. Based on the encoder-decoder network design,
DeepGPSextracts latent features from the input matrices, and
then simultaneously predicts positioning error and correct
position for a given GPS estimation.

Specifically, Input Representationmodule (Section 3.2) takes
satellite statuses, positioning time, and the surrounding envi-
ronment (i.e., information of roads and buildings around orig-
inal coordinate outputted by the GPS receiver) into account,

and represents them as matrices.DeepGPSadopts an encoder-
decoder network model to realize the deep neural network
for approximating the mapping function f (Section 3.3). The
Encodermodule aims to extract high-level features from input
matrices, whileDistance Decoder and Position Decodermodules
use derived featuremaps to generate distance probability vec-
tor and position probability matrix, respectively. The distance
probability vector indicates possible positioning error while
position probability matrix indicates the correct position for
current GPS positioning instance.Moreover,DeepGPSbuilds a
constraint mask from the environment matrix to filter out
impossible locations from position probability matrix, and
outputs the final matrix, where the position with the largest
value is the final solution. In addition, DeepGPSmaintains a
mobility model that is learned from the user’s latest move-
ments, and exploits thismodel to refine the output for efficient
continuous localization (Section 3.4).

3.2 Multi-Source Data Fused Input Representation

Besides the inconsistencies of atmospheric conditions and
Doppler effect, multiple factors may affect GPS performance
in the urban canyons,which should be considered as the input
for DeepGPS. As aforementioned in Section 2.3, GPS errors in
urban canyons are primarily caused by the satellite signal
reflections. In principle, whether a single is reflected or not is
determined by both satellite position and heights of build-
ings2 around the GPS receiver. In practice, people usually
walk or drive on roads in urban areas, thus road information
are important to restrict users’ possible locations. Besides, the
specific time when GPS positioning instance is taken should
also be considered for the following reasons. First, human
mobility is regular and consistent [66], and thus time can be
an implicit indicator of urban dynamics that may influence

Fig. 4. The system architecture of DeepGPS, which takes the three representation matrices of satellite statuses, timestamp, and the surrounding
environment as the input, and simultaneously predicts the positioning error interval and correct position using an encoder-decoder network model.
For each Conv2d and ConvTranspose2d layer, the four key values are [kernel-width, kernel-height, stride, padding]; while for each linear layer, the
two key values are [input-dimension, output-dimension]. The white number next to each block indicates the number of kernels.

2. We omit tall trees and other high-rising things, since they are less
common in the GPS positioning scenarios.

380 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

GPS positioning. Second, navigation satellites are regularly
operating and time could be used to indirectly encode the
information of satellite distribution as well. In summary, we
take satellite statuses, time, and surrounding environment as
the input of DeepGPS. In particular, we describe the environ-
ment using information of roads and buildings near the origi-
nal coordinate provided by the receiver.

Instead of separately building a deep neural network
model for each input data source and strategically aggregat-
ing outputs of all models to derive the final result, we prefer
to fuse multi-source data as the input. Such an operation
can avoid information loss of raw data and the troublesome
training of multiple models. To this end, we represent
multi-source data in the same size of matrices, which can
well capture spatial relations among objects of interest. We
detail the representation of each data source as follows.

(1) Representation of surrounding environment When posi-
tioning is required, the GPS receiver will provide an esti-
mated position p̂ in the form of [latitude, longitude] and
an error that specifies position uncertainty. In principle,
the actual position p is within a circle centered at esti-
mated position p̂ with its radius as the GPS error. Thus,
we consider the environment, especially the height and
layout of buildings and the geographic distribution of
roads, around p̂ to search for the actual position p.

We construct an environment matrix Me to represent these
environmental factors that may affect this GPS positioning
instance. We first select a square area, which centers at p̂with
side length as 2R, and then divide this area into cells with size
of c� c. These cells are treated as candidate locations where p
may locate. Each cell in the square area corresponds to an ele-
ment of matrixMe. For each element in the matrix, its value is
set according to the following rules: i) If the cell is part of a
building, its value is set as the building height; ii) If the cell is
part of a road, the value is zero; iii) Otherwise, it is -1, which
implies the corresponding cell is inaccessible. According to
our analysis on massive GPS data, we conservatively set R ¼
50 meters, which is larger than 99% GPS errors as shown in
Fig. 2. In addition, we set the cell size c ¼ 1 meter to achieve
fine-grained position fixes. Therefore, matrix Me is of size
100� 100. Fig. 5a demonstrates how we divide the area of
interest into candidate cells, and construct the corresponding
environmentmatrixMe as shown in 5(b).

(2) Representation of satellite statuses In addition to the
estimated position p̂, we can obtain satellite metadata from
the receiver as well, which include each satellite’s azimuth,
elevation, and signal-to-noise ratio (i.e., SNR). Given the

received satellite metadata, a skyplot can be draw to illus-
trate the satellite geometry over a given ground site [43].
Fig. 6a shows an example skyplot that is plotted with satel-
lite metadata collected during our real-field experiments.
Each circle represents a satellite detected by the GPS
receiver, with the number as satellite identity. The color of
each circle indicates the satellite’s signal strength: green is
very good, yellow is fair, while red is bad.

Skyplot is an effective representation of satellite statuses,
and previousworks usually exploit skyplot to filter out NLOS
satellites [50], [60], or perform shadow matching based posi-
tion fixing [23], [49], [68], with assistance of 3D city models.
Thus, we attempt to transform the skyplot into a matrix as
partial input of DeepGPS. We call this matrix as the skyplot
matrix Ms because it can encode relative positions and SNR
values of all detected satellites. We set matrixMs as the same
size asMe, and embed information of each satellite on the sky-
plot into matrixMs. First, we align the centers of skyplot and
Ms. Then, for each detected satellite, its position is mapped
from the skyplot toMs leveraging satellite’s elevation and azi-
muth. Specifically, the satellite’s elevation determines the dis-
tance between its position on matrixMs toMs’s center, while
satellite’s azimuth determines the angle clockwise-positive
from the “up” direction. If the position on matrixMs “has” a
satellite, its value is set as the corresponding satellite’s SNR
value; otherwise, its value is zero. Fig. 6b shows the skyplot
matrix for the example skyplot in Fig. 6a.

(3) Representation of timestamp Ingeneral, timestamp of a
GPS positioning instance is represented as a number.
According to the operation rules of GPS satellites, each sat-
ellite orbits the Earth every 12 hours, which means that it
will return back to the same place periodically in theory.
However, since the Earth rotates at the same time, the rela-
tive position from satellites to the receiver at the same loca-
tion may be different after one orbital period. Recent
studies [11], [61] report that the revisit period is variable
across the GPS satellites. Specifically, the revisit period of
GPS satellites is slightly different and a bit earlier than a
day for each satellite in the range of 240 s and 250 s. In addi-
tion, the average satellite revisit period is 246 s less than a day
[11]. For simplicity, we set the revisit period for all satellites as
86154 s (i.e., 24� 3600� 246)3, which means the receiver at a

Fig. 5. (a) The square area of interest given the estimated position p̂ and
maximum error distance R; (b) The environment matrix Me represents
environmental factors within the square area in (a).

Fig. 6. (a) An example skyplot of satellites seen by the receiver; (b) The
skyplot matrixMs transformed from the skyplot of (a).

3. Even the revisit period for the same GPS satellite is changing
across time [61], and the accurate calculation requires extra informa-
tion. We thus leave the dynamical revisit period calculation for each
GPS satellite as a future work.

LIU ETAL.: DEEPGPS: DEEP LEARNING ENHANCED GPS POSITIONING IN URBAN CANYONS 381

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

fixed location will “see” the same GPS satellites again after
such a revisit period. Based on the revisit periodicity of
GPS satellites, we generate a timestamp matrix Mt from
timestamp t.

First, we convert the given timestamp t into a 7-dimen-
sion vector Vt by considering the prior knowledge about
revisit period and rotation period. Each element of vector
Vt is derived from the specific operation as shown in
Table 1. Specifically, element Vt½0� and Vt½1� represent the
progress in a rotation period of the Earth and in a revisit
period of satellites, respectively. Noting that the total sec-
onds of a revisit period is set as 86154 seconds, and the total
seconds of a nature day (i.e., 24 hours) is 86400 seconds. The
3rd to 6th elements of vector Vt are the results of applying
Sine and Cosine to Vt½0� and Vt½1�, which can help to quickly
find the periodicity [10]. In addition, element V½6� is set as
one if t is before noon of a day; otherwise zero.

Then, we apply a simple multilayer perception (MLP)
model to transform vector Vt to an embedding. The MLP
model consists of five layers, including one input layer,
three hidden layers, and one output layer. Fig. 7 illustrates
the MLP model structure. Specifically, the input layer takes
the 7-dimension vector Vt as the input; the three hidden
layers have 100, 1000, and 2000 nodes, respectively; while
the output layer will generate an embedding of size 10000.
In addition, we adopt the rectified linear unit (ReLU) as the
activation function. The derived embedding is reshaped
into a matrix having the same size 100� 100 as Me and Ms.
We call this matrix as timestamp matrix Mt for the given
timestamp t, which implies the periodical features of the
GPS positioning time.

3.3 Deep Neural Network Design

Given these input matrices, one may build a deep neural
network to directly predict the correct position. However,
the searching space is infinite as both latitude and longitude
are float numbers, which make the derived model hard to
train and use in practice. Instead, we set the target output as
a matrix with the same size as input matrices, and configure
the desired model to predict which cell correct position
locates. The center of predicted cell is treated as the fixed
position. In the meanwhile, we actually do not need to cor-
rect all positioning results, since many GPS estimations may
be sufficiently accurate for upper applications. We thus
expect that our model can predict the positioning error as
well, then we could determine whether to fix current GPS

estimation according to the requirements of location-based
applications.

To that end, we model the desired deep neural network
as an encoder-decoder architecture, where two decoders
feed off the encoder, as shown in Fig. 4. Specifically, encoder
E learns a feature map M from input matrices (i.e., Me, Ms,
and Mt), and feeds M to distance decoder Ddist and position
decoder Dposi to predict positioning error and correct posi-
tion, respectively. An extra advantage of the dual-decoder
design is that given the same feature map M, position
decoder and distance decoder can mutually bound each
other and make their predictions best match with the
receiver’s observations and positioning context.

Model structure. Since the input of our model are matrices,
which are similar as images, we thus construct encoder E

with a series of 2D convolution layers to extract spatial fea-
tures from the positioning contexts that are represented by
environment matrix, skyplot matrix, and timestamp matrix.
In addition, we adopt 4 and 6 Resnet blocks in encoder E

and position decoder Dposi, respectively, to form a deep neu-
ral network which can explore enough feature space and
avoid vanishing gradient, simultaneously. The implementa-
tion of Resnet blocks is inspired from [32].

Distance decoder: We put forward distance decoder, Ddist :
M ! Vdist, to predict positioning error given feature map
M. Decoder Ddist applies two 2D convolution layers to pro-
cessM, then the intermediate result is flattened and fed into
four linear layers to derive final outputVdist. Rather than pre-
dicting an exact error, which can be modeled as a regression
problem, we prefer to predict an error interval, where the
exact error falls into. Thus, we define outputVdist as a proba-
bility vector, where each element of Vdist corresponds to an
error interval and its value indicates a probability. In our
implementation, we set the interval as 2 meters and Vdist

with size of 25-dimension, as GPS errors over 99% cases are
smaller than 50 meters. Thus, the i-th element ofVdist means
that the error is in the range of ð2 � i; 2 � ðiþ 1Þ�meters.

Position decoder: Similarly, position decoder, Dposi : M !
Rposi, is devised to predict correct position p0 from the fea-
ture map M. As shown in Fig. 4, Dposi shares a similar but
inverse structure as encoder E, which firstly applies 6 Resnet
blocks to feature map M, then two 2D transposed convolu-
tion layers are used to re-scale the intermediate result,
ended with one 2D convolution layer. The output Rposi is a
matrix of the same size as input matrices, and thus each ele-
ment in Rposi corresponds to a candidate cell defined in envi-
ronment matrix Me. Instead of marking the cell containing
the ground truth position as one and the rest zeros, we set the

TABLE 1
The Operations Applied to Calculate Each Element

in the Vector Vt from Timestamp T

Element Description

Vt½0� ðt%86400Þ=86400
Vt½1� ðt%86154Þ=86154
Vt½2� cos ð2 � p �Vt½0�Þ
Vt½3� sin ð2 � p �Vt½0�)
Vt½4� cos ð2 � p �Vt½1�Þ
Vt½5� sin ð2 � p �Vt½1�Þ
Vt½6� Before noon (¼ 1) or after noon(¼ 0) Fig. 7. The MLP model structure.

382 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

target position as a Gaussian peak. Therefore,Rposi is a proba-
bility matrix, and the element with the largest probability
implies where the ground truth position locates. Compared to
one-hot encoding, Gaussian peak representation can help to
avoid gradient vanishing during themodel training [14].

Constraint mask: The position decoder Dposi may predict
any cell as the target, however, some cells that are occupied
by buildings or obstacles obviously cannot contain correct
position. Therefore, we propose the constraint mask Cenv,
which embeds prior knowledge of surrounding environ-
ment, to constrain the output of Dposi. Specifically, the ele-
ment of Cenv is set as zero if the corresponding cell is
inaccessible; otherwise the element is one and the corre-
sponding cell is a valid candidate.

The blue flow in Fig. 4 demonstrates how we make use of
constraint mask Cenv to enhance position fixing. The final out-
put Renv is the element-wise product of original output Rposi

of Dposi and constraint mask Cenv, i.e., Renv ¼ Rposi � Cenv. With
these operations, the inaccessible cells can be filtered out,
while the cell with the largest value in Renv is considered as
the final cell containing the correct position.

Loss Function.Weadopt one-hot encoding to prepare target
vector Vtrue for distance decoder Ddist. For each GPS sample,
we calculate its true positioning error e using the GPS estima-
tion and actual position, and then compute the error interval
j ¼ be2cwhere e falls into. Then, we prepare target vectorVtrue

for this GPS sample by setting the value ofVtrue’s j-th element
as one and the values of the rest elements as zero. Because we
model positioning error prediction as a classification problem,
we thus adopt cross-entropy loss to measure the distance
between Ddist’s output Vdist and the target Vtrue, which is
defined as:

Ldist ¼ �
Xn
i¼1

bilog ðpiÞ; (3)

where bi is a binary indicator (bi ¼ 1 if the i-th interval is the
truth; otherwise bi ¼ 0), pi is a Softmax probability for the
i-th interval, and n is the size of Vdist. By default, we set
n ¼ 25.

For position decoder, we instead utilize the mean-square
error loss (i.e., L2-norm loss) to measure distance between
the enhanced output Renv and the target Rtrue, which is the
Gaussian representation of ground truth position. Therefore,
the loss function for position decoder Dposi is defined as:

Lposi ¼ jjRtrue � Renvjj2; (4)

where jj � jj2 is the L2-norm loss.
Finally, the overall loss function for our model is a

weighted sum of both Ldist and Lposi, i.e.,

Loverall ¼ �� Ldist þ Lposi; (5)

where � is a regularization parameter to balance the influen-
ces of distance decoder and position decoder on the encoder.
In order to determine the proper setting of �, we separately
train Ddist and Dposi to observe their losses, and then set � to
make the losses of the two decoders well-balanced. Accord-
ing to our experiments, we finally set � ¼ 0:001, which can
achieve the best prediction performance for both decoders.

Model Training. We utilize massive labeled GPS samples,
along with road network, building survey data, and satellite
data, to train DeepGPS. For each GPS positioning instance
and its ground truth position, we build an environment
matrixMe by exploiting the information of road network and
building heights, a timestampmatrixMt from the positioning
time, and a satellite matrix Ms from the corresponding sky-
plot. In addition, we construct a vector Vtrue of 25-dimension
via one-hot encoding and a matrix Rtrue that marks the cell
containing actual position as the Gaussian peak. The vector
Vtrue and matrix Rtrue are target outputs of distance decoder
Ddist and position decoder Dposi, respectively.

With the proper setting of � and the loss function Loverall,
we train the network holistically using the labeled GPS sam-
ples. Since the distance loss and position loss add up to
update the common encoder, the two decoders can mutu-
ally access information from each other and, as a result,
achieve more accurate predictions. It is worthy to note that
we treat the MLP model, which transforms time t to a time-
stamp matrix Mt as part of encoder E, and thus we train
MLP model along with the encoder.

3.4 Extend to Continuous Localization

With sufficient positioning instances, user’s mobility infor-
mation can be inferred, which can be utilized to further
improve position fixing by reducing location uncertainty.
Specifically, DeepGPSmaintains a mobility model, as illus-
trated in Fig. 4, which aims to roughly estimate user’s mov-
ing speed and utilizes the speed to calculate a reachable area
to constrain future localization.

Mobility Model. DeepGPSmakes use of the latest k cor-
rected positioning instances, in particular the positions
ðp0i�1; � � � ; p0i�kÞ and the corresponding positioning time
ðti�1; � � � ; ti�kÞ, to infer user’s movement. For simplicity and
generality, DeepGPSonly estimates the user’s average mov-
ing speed v, because other mobility information, e.g., mov-
ing direction, require extra sensor data. For a given user,
DeepGPScontinuously updates the average speed v with the
latest k positioning instances through the follow equation:

v ¼
Pk�1

j¼1

Lðp0i�j;p
0
i�j�1Þ

ti�j�ti�j�1

k� 1
; (6)

where Lðp0i�j; p
0
i�j�1Þ calculates the distance between posi-

tion p0i�j and p0i�j�1. When there are insufficient positions for
speed calculation, we set k as the available number for the
initial use.

Mobility Improved Position Fixing. Once the average mov-
ing speed v is ready, we can derive an extra mobility con-
straint for position correction. For GPS estimated position
p̂i, on one hand, we construct a square area centered at p̂i
with side length of 2R, and divide the square area into cells
with size of c� c. On the other hand, we construct a circle,
which is centered at position p0i�1, i.e., the corrected position
of last positioning instance p̂i�1, with radius of S ¼ v� Dt,
where Dt is the time difference between positioning time ti
of p̂i and time tt�1 of p̂i�1. The circle area indicates the reach-
able area of the user according to her recent moving speed.
Combining GPS position and reachable area, cells in the
intersection of square area and circle area are the most likely

LIU ETAL.: DEEPGPS: DEEP LEARNING ENHANCED GPS POSITIONING IN URBAN CANYONS 383

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

candidates to contain correct position of p̂i, while other cells
of the square area are less possible. Based on this intuition,
we construct a matrix named as mobility mask Cmob, each ele-
ment of which corresponds to a cell in the square area. Spe-
cifically, if the cell is (or partially) covered by the circle,
its value is set as one; otherwise we set its value as r

(0 	 r < 1), which means this cell may contain correct posi-
tion with confidence r. It is worthy to note that if we set r ¼
1, we actually disable the function of mobility improved
position fixing. Fig. 8 illustrates an example that makes use
of both mobility information and GPS estimation to deter-
mine themobilitymask.

Instead of applying constraint mask and mobility mask
together to the original output of position decoder, mobility
mask will take effect after constraint mask. The reason
behind is that we can make the mobility model be indepen-
dent of deep neural network, and thus alleviate the model
training overheads. Therefore, we dot-multiply mobility
mask Cmob with Renv, which is the processed result of apply-
ing constraint mask to original output of position decoder,
and then derive the final probability matrix Rmob ¼
Renv � Cmob, which is rectified according to mobility infor-
mation. Finally, the center of the cell owing the largest value
in Rmob is outputted as the corrected position of DeepGPS.

In fact, our mobility model can be further enhanced with
richer mobility data and advanced tracking techniques. For
example, if inertial measurement unit (IMU) sensor data of
the user’s smartphone are available, we could derive more
mobility information about the user [62], e.g., moving speed
and direction, and exploit more advanced techniques, e.g.,
particle filter [59], to track user’s movements, and thus
refine the reachable area to greatly reduce location uncer-
tainty. We leave this study as our future work.

4 IMPLEMENTATION

We design and implement a prototype on the cloud (as the
server) and several Android smartphones (as the clients), as
illustrated in Fig. 9. Android clients collects and uploads raw
GPS measurements to the cloud server that is responsible for
predicting error distance and correct position. We detail the
implementation of each component and the whole work-
flow as follows.

Client on the Android. We implement the client compo-
nent on smartphones with Android OS, which allows us to
easily access the raw GPS measurements (including GPS
estimated position and error, satellite metadata, etc.)

through Android APIs [2]. The client can log raw GPS
measurements for data analysis. If the user needs more
accurate positioning in urban canyons, she can trigger the
“location update” button to fix GPS estimation, which is
supported by DeepGPSmodel on the cloud. If necessary,
the user can also enable automatic location updating func-
tion by switching on the “auto” option, which will allow
DeepGPSto analyze user’s coarse mobility information for
continuous localization.

Server on the Cloud. We implement DeepGPSmodel in
PyTorch 1.8.1 (CUDA 11.1) [7] on a server with CPU of Intel
(R) Core(TM) i7-10700K 3.80GHz, GPU of RTX3090, and
memory of 48GB. To train our model, we use Adam as the
optimizer, and set learning rate a ¼ 1e� 5 and batch size as
128. Furthermore, we deploy DeepGPSmodel on the cloud,
so that users can access to the position fixing service any-
time and anywhere. The cloud deploymentwill also alleviate
the computation and storage overheads for the smartphone
clients [37].

At the server side, we also maintain a spatial database,
which is implemented in PostgreSQL [6] with a spatial data-
base extender – PostGIS[5] for efficient data querying. The
spatial database is used to store road network and building
survey data (e.g., height and boundary of buildings) of the
testing city.

The spatial database interacts with DeepGPSmodel for
data retrieval and recording. On one hand, given the esti-
mated position p̂ from a client, DeepGPScan retrieve road
network and building information around p̂ to construct the
environment matrix. On the other hand, when a user ena-
bles continuous localization, DeepGPSwill record the user’s
historical positioning data into the database for dynamically
updating this user’s mobility model.

Workflow. As illustrated in Fig. 9, DeepGPSperforms the
position fixing upon each request as follows.

➀When accurate positioning is required, the client firstly
acquires GPS estimated position p̂ and other satellite meta-
data via Android APIs, and then communicates these data
(including p̂, timestamp t, and satellite metadata) and an
error threshold d to the server. Noting that threshold d is
optional, and the users can let DeepGPSalways correct GPS
estimations. If necessary, threshold d could be specified by
some location-based application according to its require-
ments on positioning accuracy.

➁ After receiving the request, DeepGPSmodel retrieves
data of road network and buildings around position p̂ from
the spatial database, and then constructs environment
matrix Me, timestamp matrix Mt, and satellite matrix Ms,

Fig. 8. (a) The candidate cells of GPS estimation p̂i intersect with the
reachable area from position p0i�1; (b) The mobility mask for p̂i, where
green cells are reachable with confidence 1 while gray cells may be
reachable with a lower confidence r.

Fig. 9. The implementation and workflow of DeepGPS.

384 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

respectively, by exploiting the multi-source data. Once these
input matrices are ready and if d is provided, the model will
firstly exploit distance decoder Ddist to predict possible error
e. If e is smaller than threshold d, DeepGPStreats p̂ as the cor-
rect position p0, since p̂ is sufficiently accurate for the user’s
applications. Otherwise, DeepGPSinvokes position decoder
Dposi to predict correct position p0. Noting that Deep-
GPSoffers the best-effort service only. As we have no way to
know the ground truth position, DeepGPShas no further
operation after predicting the correct position. If d is not pro-
vided, Dposi is directly executed to infer p0.

➂Once the positioning request has been processed, Deep-
GPSwill log a record < t; p̂; p0 > to the database. This
record indicates that the requester visited position p0 at time
t, and will be appended to a specific file of the requester.
These records help DeepGPSto dynamically update the
given user’s mobility model.

➃ Finally, the server sends back position p0 to the client.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance ofDeepGPSwith
a large bus GPS trajectory dataset and real-field GPS meas-
urements that are collected using our Android clients.

5.1 Experiment Setup

We conduct all experiments in Shenzhen city, China, which
has the second most skyscrapers in the world [9].

Dataset. We collect five different types of data for the per-
formance evaluation. Specifically, road network and build-
ing survey data are used to represent the positioning
environment, and satellite data describe the satellite distri-
bution and statuses. In addition, we treat both bus trajectory
data and real-field GPS measurements as positioning
instances for model training and testing.

Road Network. We download the road network of Shenz-
hen city from OpenStreetMap (OSM)[4]. The OSM file con-
tains all roads and points-of-interest (POIs), e.g., lake and
grassland, of our testing city in the form of nodes (i.e.,
points), ways (i.e., roads), and relations (i.e., properties of
POIs). In particular, we can exploit relations to distinguish
whether a given cell is accessible or not.

Building Survey Data. We obtain the building survey data
from our collaborators. This survey file shares the similar
format as OSM file, and contains information about the lay-
outs, heights, and properties of all buildings in Shenzhen
city. Specifically, a list of nodes are connected end to end to
form the outline of each building, while the height and
building properties (e.g., name) are tagged in relations.
These data help us to identify the building heights and inac-
cessible areas in a city.

Bus Trajectory Data. Equipped with GPS devices, public
buses can periodically report their statuses back to the oper-
ation center. In general, the buses in Shenzhen city operate
regularly following fixed routes and schedules, and send
back a report every 5 seconds [56]. Each report includes a
timestamp, GPS location, travel speed, direction, status, and
etc. We prepare a bus GPS trajectory dataset that was col-
lected by 16690 buses covering 1845 routes on June 12th,
2020. These bus routes cover most urban areas of Shenzhen
city. In total, we have 41540968 bus reports.

Real-Field GPS Measurements. By installing our Android
client (see Section 4) on their smartphones, five volunteers
drive private vehicles to collect GPS measurements every 5
seconds, following some planned routes in the downtown
area of Nanshan District, Shenzhen city. Their smartphones
include HUAWEI Mate 10 pro, Mate 30 pro, Mate 40 pro,
and Samsung Galaxy Note 5. Finally, we have collected
16814 valid positioning samples.

Satellite Data. Our Android client can collect satellite
metadata, and thus the real-field GPS dataset contains satel-
lite information when taking a positioning sample. How-
ever, those bus reports do not include satellite metadata. To
make up, we visit CelesTrak [1] to retrieve historical satellite
metadata given the timestamp and actual location of each
bus report. As a result, we can supplement all bus reports
with the corresponding satellite data.

Ground Truth Collection. Similar as the previous works
[22], [53], [58], we use an advanced hidden Markov based
map matching algorithm [47] to map GPS sequences of both
bus trajectories and real-field GPS measurements to road
segments. Because both public buses and testing vehicles
drive along the planned routes, we can exploit such prior
knowledge to verify the map matching results and manu-
ally correct these erroneous matching results. Finally, for
each GPS estimated position p̂, we treat its projection on the
matched road segment as the ground truth p.

Testing Regions and Model Training. Since we target on
improving GPS performance in urban canyons, we thus
select three downtown areas of Nanshan District, Futian
District, and Baoan District, respectively, in Shenzhen city
as our testing regions. The three regions own the densest
high buildings of Shenzhen city, and we denote them as
region N, region F, and region B, respectively. We collect real-
field GPS measurements in region N as well.

We keep bus reports that fall within the three regions for
experiments. Considering that different regions have dis-
tinct environments, we thus train a specialized DeepGPSmo-
del for each region using its own bus reports. For each
region, we utilize 70% of bus reports to train its model,
while keeping the rest 30% for the testing. All real-field GPS
data are used for testing only. Besides, we will compare the
performance of a unified model that is trained using data of
the three regions with these customized models later.

Performance Metrics. We define the following three met-
rics to evaluate DeepGPS’s performance.

� Accuracy. Prediction accuracy is measured as the
average distance between correct position outputted
by the model and ground truth, i.e.,

accuracy ¼ 1

N

XN
i¼1

Lðpi; p0iÞ; (7)

where N is the number of GPS samples, pi and p0i are
the i-th ground truth and correct position, respec-
tively, while function Lðpi; p0iÞ returns a distance
between them.

� Effective ratio. In addition to accuracy, we define effec-
tive ratio to evaluate the positioning improvement of
DeepGPSover the original GPS estimations. Specifi-
cally, we define effective ratio as the proportion of

LIU ETAL.: DEEPGPS: DEEP LEARNING ENHANCED GPS POSITIONING IN URBAN CANYONS 385

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

samples whose correct positions predicted by Deep-
GPSare closer to the ground truths than GPS’s esti-
mated positions, i.e.,

ratio ¼
PN

i¼1 IðLðpi; p0iÞ < Lðpi; p̂iÞÞ
N

� 100%; (8)

where indicator function IðaÞ will return one if the
condition a is true; Otherwise zero.

� Prediction error. Since our model can predict position-
ing error distance, we thus define the average predic-
tion error to evaluate DeepGPSas follows:

error ¼
PN

i¼1 j argmaxðVi
distÞ � argmaxðVi

trueÞj
N

� 2; (9)

where argmaxðVÞ returns the index of the largest
element in vector V. Recall that each interval in vec-
tor V corresponds to 2 meters, thus the average
index offset is multiplied by 2 to derive the predic-
tion error.

We use accuracy and effective ratio to evaluate the effec-
tiveness of position decoder Dposi, while exploiting predic-
tion error to evaluate distance decoder Ddist. In the following
experiments, we set � ¼ 0:001 and d ¼ 0 that enforces posi-
tion decoder to correct each GPS estimation. By default, we
set k ¼ 5 and r ¼ 0:4 for the mobility model, and set c ¼ 1
meter for the cell size.

5.2 Evaluation on Bus Data

Overall Performance. For each testing region, we train a cus-
tomized model using GPS samples that are collected in this
region. In addition, we train a unified model based on the
training data of the three regions. To investigate the general-
ization ability ofDeepGPS, we also apply one region’s model
to other two regions for cross-validations. We have disabled
the mobility model for experiments in this subsection.

As shown in Table 2, we find the unified model achieves
high positioning accuracy for the three regions, with accu-
racy as 4.2 meters, 4.1 meters, and 3.2 meters, respectively.
Compared to the unified model, the customized models
derive much better accuracy. Specifically, each customized
model achieves the best accuracy on its own region, e.g., the
best accuracy results of models trained on datasets of region
N, region F, and region B, are 3.6 meters, 2.3 meters, and 2.3
meters, respectively. While we still observe relatively high
accuracy for cross-region applications. For example, the
model trained for region N achieves average accuracy as 4.8
meters on testing data of region F, which is much better than
average GPS error of region F, i.e., 7.2 meters. These results
imply that the DeepGPSmodel has good generality and can

achieve the best performance if it is specially trained with
samples of the target region. Compared to original GPS
errors, DeepGPSimproves GPS positioning by 57.6%, 68.1%,
and 68.1% for region N, region F, and region B, respectively,
with an average as 64.6%.

Fig. 10 demonstrates a concrete example, where Deep-
GPScorrectly fixes the GPS estimation. Due to the impact of
surrounding buildings, GPS mistakenly positions the user
on a neighboring road segment, as shown in Fig. 10a. We
further manually investigate the positioning environment,
as shown in Fig. 10b, which turns to be a typical street can-
yon in our testing city.

We observe similar results for the metrics of effective
ratio and prediction error, as shown in Tables 3 and 4,
respectively. From the experiment results in Table 3, we see
that although the unified model can achieve high effective
rations on the three regions, i.e., with average effective ratio
as 85.3%, each customized model derives the highest effec-
tive ratio on the target region, with an average effective ratio
as 90.1%. Even if the customized model is trained on one
region’s samples and is leveraged to correct GPS estima-
tions of other regions, DeepGPSstill performs well with
effective ratio larger than 72.0%. The results in Table 3 indi-
cates that DeepGPScan derive a better corrected position
than GPS’s original output in the majority of cases.

Table 4 presents the evaluation results of DeepGPS’s dis-
tance decoder Ddist. We find that the prediction errors are
quite small, i.e., 1:4
 4:1 meters. In particular, if we train
and test DeepGPSmodel on the same region, the average
prediction error is only 1.7 meters, which corresponds to
one interval offset only in the 25-dimension vector Vdist.
Thus, Ddist performs quite good.

According to above experiment results, we find that Deep-
GPShas excellent generality and positioning performance. On
average,DeepGPSimproves GPS positioning accuracy by 64.6%,
and can effectively correct GPS estimations in 90.1% cases.

Effect of Building Heights.We explore the effect of building
heights on positioning performance in urban canyons by
exploiting environment matrix Me that contains building
height information. For each GPS sample, we calculate
building height around the GPS receiver as the average of
elements in Me, whose values are greater than zero. Fig. 11
compares the positioning accuracy of both GPS and Deep-
GPSunder various building heights. Noting that each value
x of X-axis indicates a range of building heights, i.e., ½x; xþ
20Þ meters. Typically, higher buildings are more likely to
reflect or even block the satellite signals, and thus signifi-
cantly affect positioning. The accuracy results of both GPS
andDeepGPSbecome worse when there are higher buildings
around the receiver. However, DeepGPSstill performs better
than GPS, with much smaller positioning errors.

TABLE 2
Average Accuracy (InMeters) of Models

Applied Across Regions

Testing Data Model

Unified Region N Region F Region B None

Region N 4.2 3.6 5.3 6.8 8.5
Region F 4.1 4.8 2.3 6.5 7.2
Region B 3.2 5.9 5.2 2.3 7.2

The last column reports average GPS error of each region.

Fig. 10. An example of DeepGPS’s position fixing.

386 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

As shown in Fig. 12, we observe that building height also
affects DeepGPS’s performance on the metrics of effective
ratio and prediction error. In general, higher buildings
cause effective ratio of DeepGPSdecrease, while increasing
the prediction error.

Effect of Positioning Time.We examine the effect of time on
the accuracy of GPS and DeepGPSas well, and plot the
results in Fig. 13. We see that the accuracy of both systems
slightly varies across time of day. DeepGPSstill works much
better than GPS over all the time. In addition, we observe
similar varying trends for the two metrics of effective ratio
and prediction error in Fig. 15. From these two figures, we
observe slight performance degradation of DeepGPSin some
hours, e.g., 11AM and 11PM. However, the reason needs to
be further explored.

5.3 Evaluation on Real-Field Data

In this subsection, we make use of real-field GPS measure-
ments to further evaluate DeepGPS. Specifically, we will
investigate the performance of each model component and
the impacts of some important parameters.

Visualization. We collect raw GPS measurements using
modern smartphones in street canyons of Region N, and
visualize partial GPS data in Fig. 14. Compared to the
ground truth positions as shown in Fig. 14a, GPS estima-
tions from smartphones are quite noisy and deviate from
the ground truths greatly. In contrary, DeepGPScan effec-
tively correct these erroneous GPS estimations, as shown in

Fig. 14c. In addition to comparison on discrete positions,
Fig. 3 compares three complete traces, which are the ground
truth trace, smartphone trace, and DeepGPS’s corrected
trace. Fig. 3 shows that DeepGPSimproves GPS performance
by largely reducing the error from 12.3 meters to 5.2 meters.

Impact of Different Model Components. To understand how
input data sources and functional components affect the
performance of DeepGPS, we conduct various ablation
experiments. We treat GPS performance as the baseline, and
take variant system designs for comparison. In the follow-
ing experiments, we remove each component and train the
remaining model. All variant models are trained and tested
with the same training and testing datasets, respectively.
The results are shown in Fig. 16, where “w.o.” is short for
without and “dist. dec.” stands for distance decoder.

In general, we find that these input data, i.e., building
heights, road information, and timestamp, have much
larger impacts on DeepGPS’s performance than other mod-
ules, e.g., the constraint mask and mobility model. If we
omit the input of building or road information, DeepGPS’s
performance is severely degraded to 6.9 meters, with accu-
racy similar as the GPS error and effective ratio smaller than
60%. Thus, it proves that environment is an important factor
that affects GPS positioning performance in urban canyons.

From Fig. 16, we surprisingly find that time has the larg-
est influence on the positioning performance. Without
inputting the timestamp matrix, the accuracy of Deep-
GPSwill decrease to 7.5 meters that is even larger the GPS
error (i.e., 7.2 meters), while the effective ratio is as low as
39.3%. This phenomenon could be explained as follows. In
urban canyons, multipath and NLOS satellites are the major
causes for GPS performance degradation. For the GPS
receiver at a specific place, whether the received GPS signal
is reflected or not is mainly determined by the surrounding
buildings and the distribution of satellites, i.e., satellite

TABLE 3
Effective Ratio of Models Applied Across Regions

Testing Data Model

Unified Region N Region F Region B

Region N 83.7% 85.6% 78.1% 75.0%
Region F 84.4% 78.0% 91.5% 72.1%
Region B 87.9% 74.1% 78.9% 93.3%

TABLE 4
Prediction Errors (InMeters) Across Regions

Testing Data Model

Unified Region N Region F Region B

Region N 3.1 1.4 3.3 4.0
Region F 2.8 3.1 1.9 3.4
Region B 2.0 4.1 2.5 1.8

Fig. 11. Effect of building heights on the accuracy of GPS andDeepGPS.

Fig. 12. Effect of building heights on effective ratio and prediction error.

Fig. 13. Effect of time on the accuracy of GPS and DeepGPS.

LIU ETAL.: DEEPGPS: DEEP LEARNING ENHANCED GPS POSITIONING IN URBAN CANYONS 387

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

geometry the receiver can observe. Considering that GPS sat-
ellites are operating periodically, as a result, when the envi-
ronment around a receiver remains unchanged, multipath
andNLOS satellites at that place have an intrinsic repeatabil-
ity characteristic due to the approximate repetition of satel-
lite geometry [19]. Fig. 16 shows that skyplot can affect
DeepGPS’s performance as well. Compared to other input
data sources, however, its impact is limited, with accuracy
and effective ratio dropping to 4.4 meters and 73.4%, respec-
tively. Compared to the skyplot, timestamp serves as a more
crucial factor that can capture the important relationship
between satellite geometry and positioning performance.

In our deep neural network model, we use the distance
decoder and position decoder to train the encoder together
and the results in Fig. 16 also demonstrate the effectiveness
of distance decoder, which improves the accuracy from 4.3
meters to 3.6 meters. It confirms that distance decoder can
affect position decoder by adding implicit constraints on
the position predictions.

We have proposed two functional masks, i.e., constraint
mask and mobility mask, to further improve DeepGPS. The
constraint mask exploits environment information to do the
job like map matching and reduces positioning error by fil-
tering out impossible cells, with accuracy improvement by
10%. In addition, the mobility mask further improves Deep-
GPS’s accuracy by about 5%.

Impact of k and r. The mobility model uses the latest k cor-
rect positions to compute user’s moving speed, and assigns
a confidence r to unreachable cells. We thus perform experi-
ments to study the impact of k and r on the positioning
accuracy. As shown in Fig. 17, when we utilize more correct
positions, i.e., increasing k, for the speed calculation, the
accuracy generally increases for a given r. However, when

k � 5, more positioning samples bring negligible accuracy
improvement.

With the increase of confidence r, the accuracy increases
for the settings of k 	 5; for other k values, the positioning
accuracy increases when r 	 0:4, but becomes a bit worse
with larger r. When the speed calculation is not sufficiently
accurate (e.g., with k 	 5 samples), DeepGPStends to equally
treat all candidate cells by preferring a larger r for the better
positioning accuracy. When we can accurately estimate the
moving speed (i.e., with k � 5 samples), the user’s actual
position should be very likely in these cells covered by the
reachable area (i.e., green cells with confidence 1 in Fig. 8)
and thus we need a small r to filter out the unreachable cells.
However, too smaller r value (e.g., 0.1) implies that Deep-
GPSwill blindly believe in the mobility model and may mis-
takenly filter out the correct cells for some positioning
instances that occasionally fall in the unreachable cells. Thus,
too smaller r is a bit aggressive andwould harm the position-
ing accuracy. On the other hand, larger r value will weaken
the filtering capability of the mobility mask, and mistakenly
select some unreachable cell as the output, which instead
reduces the positioning accuracy. From Fig. 17, we conclude
that k ¼ 5 and r ¼ 0:4 are good settings to achieve the best
accuracy while avoiding extra computations.

Processing Time. We evaluate the efficiency of DeepGPS,
and present average processing time of four key modules in
Table 5. To process each request, the input representation
module takes the most time, e.g., 34.1 ms, to construct the
three matrices, while the processing time of encoder or any
decoder is very little, e.g., < 4 ms. In addition, it will take
several milliseconds to derive the correct position by search-
ing the element with the maximum probability in the final

Fig. 14. Visualization of partial real-field GPS measurements: (a) Ground truth positions; (b) GPS estimations from smartphones; (c) Corrected posi-
tions from DeepGPS.

Fig. 16. Impact of each input data source and functional component on
performance.Fig. 15. Effect of time on effective ratio and prediction error.

388 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

output matrix. The overall processing time of DeepGPSto
correct a GPS estimation is about 43 ms. As a clear compari-
son, the state-of-the-art method Gnome [39], which recom-
putes the pseudorange based on 3D building models and
satellite positions for position correction, needs several sec-
onds to correct a GPS estimation (excluding the time for off-
line pre-computations). Hence, training a deep learning
model for inferring correct positions is efficient.

Impact of Cell Size. Fig. 18 shows the positioning accuracy
and end-to-end processing time under various settings of
cell size c. In general, larger cells can reduce the size of input
matrices, and thus reduce the whole processing time. How-
ever, they bring larger positioning errors at the same time.
For example, 4m� 4m cells lead to positioning error as 8.6
meters, which is larger than the GPS error. In contrary, 1m�
1m cells improve the accuracy to 3.6 meters, at the cost of 10
ms increasing on latencymerely. Since the increased process-
ing time is quite small, DeepGPSthus adopts 1m� 1m cells
for better positioning performance.

6 RELATED WORK

Tremendous efforts have been devoted to improve GPS
accuracy in the urban areas. Vehicles can combine various
techniques, e.g., map matching [47], [53] and dead-reckon-
ing [31], with GPS estimations to map their positions to
road segments. Pedestrian users can exploit cellular/WiFi
signals [24], [30], inertial sensors [15], [62], magnetic com-
passes [55], and barometer [26], on their smartphones to
enhance localization. Other techniques, like cooperative
GPS [17] and differential GPS [25], have been proposed to
improve GPS accuracy by sharing localization information
among multiple receivers. For example, Chen et al. [17]
present BikeGPS that realize accurate localization of shared
bikes in urban canyons by sharing GPS receptions among a
group of bikes. These works, however, require extra sensor
or cooperation among multiple GPS receivers. Moreover,
they do not attack the root cause of GPS error in urban can-
yons, i.e., NLOS satellite signals.

Previous works indeed have explored the mitigation of
NLOS receptions, which can be classified into three catego-
ries, namely ray-tracing based methods [21], [67], shadow
matching based methods [20], [23], [49], [50], [60], [63], [68]
and satellite signal path based methods [29], [39], [45], [48].
Researches of the first category [21], [67] apply ray-tracing
algorithms on satellite signals to correct the pseudorange
errors. For example, Zhang et al. [67] propose a 3D mapping
database aided GNSS based collaborative positioning
method, which exploits the ray-tracing algorithm to correct
the NLOS pseudorange for each GPS receiver and employs
the factor graph optimization technique to collaboratively
optimize the positioning among multiple receivers. This
method, however, relies on the 3D building model and col-
laboration among multiple GPS receivers. For high-quality
ray-tracing, some methods require to reconstruct reflective
surfaces of street buildings using specialized hardware, e.g.,
panoramic cameras [54] or LiDAR [57].

In Section 2.3, we have discussed shadowmatching based
methods and satellite signal path based methods, which
leverage proprietary 3D city models and real-time satellite
information to explicitly correct GPS estimations. As a repre-
sentative work of the former category, Ng et al. [49] imple-
ment shadow matching for smartphones with a machine
learning classifier to distinguish LOS and NLOS satellites.
However, shadow matching based methods primarily rely
on precise 3D city models, and removing NLOS satellites
may reduce the number of usable satellite readings and fail
to calculate the receiver’s position. In addition, Gnome [39], a
recent work of the latter category, uses panoramic images
fromGoogle Street View to adjust building heights of 3D city
model, and then estimates true position from candidate grids
by leveraging these building data. Gnome heavily relies on
third-party resources, which are not widely available, and
will incur huge computation overheads. As a result, the
restricted availability of 3D building models will largely
limit the practical adoptions of thesemethods.

With the wide availability of GPS trajectory data [70],
many works attempt to measure and calibrate GPS errors
from the aspect of statistic [28], [42], [46], [51], [58]. For
example, Ma et al. [42] assess GPS environment friendliness
of urban road segments using historical bus GPS trajectory
data. Wu et al. [58] assume GPS errors follow a Gaussian
distribution, and locate one single GPS position to a road
segment based on a statistical model specially learned from
GPS data of that road segment. Different from these works,
we exploit massive GPS samples to train a deep neural

TABLE 5
Processing Time (inms) of Each Module in DeepGPS

Module Input Encoder Position Decoder Distance Decoder

Time 34.1 3.9 1.6 0.9

Fig. 18. Impact of cell sizes on the accuracy and processing time.

Fig. 17. Impact of various k and r settings on the position prediction
accuracy.

LIU ETAL.: DEEPGPS: DEEP LEARNING ENHANCED GPS POSITIONING IN URBAN CANYONS 389

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

network, which transforms GPS estimations to their correct
positions and can serve for a large urban area.

7 DISCUSSION

In this section, we discuss some issues covering DeepGPS’s
performance comparison, implementation, updating, and
data release.

Accuracy Comparisons With Other Works. Previous works
heavily rely on precise proprietary 3D building models that
are not easily accessible, as a result, we cannot implement
existing methods for direct performance comparisons.
Instead, we summarize their average positioning accuracy
according to their experiment results, and compare Deep-
GPSwith three representative works [39], [49], [67] men-
tioned in previous section on the performance metric of
positioning accuracy. As shown in Table 6, we see thatDeep-
GPSsignificantly outperforms existing methods by achiev-
ing much better positioning accuracy, e.g., improving the
accuracy by 53.8%, 40.0%, and 41.9%, respectively.

Deployment on Smartphones. We have to address two key
challenges when deploying DeepGPSon the smartphones.
First, the execution of DeepGPSdepends on a well-trained
model whose size is a bit large, i.e., about 170 MB, and other
resources, e.g., the road network and building survey data,
which are usually of large sizes. For example, the road net-
work file of Shenzhen city is about 344 MB, and the building
survey data is about 420 MB. Therefore, the deployment of
DeepGPSconsumes at least 934 MB memory, which is a rela-
tively huge storage overhead for the ordinary smartphones.
Second, DeepGPSwill incur considerable computation cost.
Given a position fixing request, the system needs to query
road network and building survey data to retrieve environ-
ment information around the initial GPS position, and then
calculate the environment matrix, skyplot matrix and time-
stampmatrix. Then, it feeds the three matrices into the model
to infer positioning error and correct position. Currently, we
leave these computations to the powerful server rather than
the smartphones.

In the future, we will study how to compress the deep
neural network model while retaining its performance by
investigating some advanced model compression techni-
ques [38]. Besides, we find that GPS actually performs well
in most areas except those areas with densely distributed
high buildings. Therefore, we could conduct a survey about
the GPS error distribution across a city, and determine the
regions where GPS performs poorly. For each region, we
prepare an environment package, which only contains the
road network and building survey data of that region. Com-
pared to the city-scale road network and building survey
data, such region-level environment packages will be much
smaller and are friendly to the smartphones. The users can
thus download the packages they just need. However, more
efforts are required to reduce the computation overheads.

System Resilience and Updating. Even if the urban environ-
ment changes, e.g., the construction of new buildings and/
or the demolition of old buildings,DeepGPScan be still effec-
tive. It is because our deep neural network model captures
the general mapping relationship between GPS estimations
and positioning contexts. Once the urban environment
changes are recorded in the road network file or building
survey data, such information can be immediately encoded
in the environment matrix. In addition, we propose the con-
straint mask Cenv, which embeds prior knowledge of sur-
rounding environment, e.g., buildings, to constrain the
prediction of correct position. As a result, if an area is occu-
pied by new buildings, the cells covered by the buildings
are marked as unavailable in the constraint mask Cenv. With
these designs, our system can effectively correct GPS esti-
mations, and thus be resilient to environment changes.

Despite above novel designs, we still suggest to periodi-
cally retrain the model using the latest resource data, includ-
ing the newly collected GPS samples, the latest road network
and building survey data. Periodical model retraining aims to
timely update themapping relationship between GPS estima-
tions and positioning contexts. Specifically, after a given
period, e.g., three months, we can retrain the model using the
latest resource data. In general, the retraining process could
be completed within a few hours. For example, it takes about
6.6 hours to train the model for Shenzhen city, China. During
the model retraining, the existing model can be still used to
serve position fixing requests. Once the model retraining is
done, we will replace the old model with the updated one to
providemore accurate position fixing service.

Data Release for Reproducibility. We share the source code
of DeepGPS’s implementation and the real-field GPS sam-
ples [8] for the community to reproduce our results and
inspire future studies.

8 CONCLUSION

In this paper, we present a deep learning enhanced GPS posi-
tioning system – DeepGPS, which leverages an encoder-
decoder network model to implicitly map erroneous GPS
estimations to ground truth positions. More specifically, Deep-
GPSfuses multiple factors that affect GPS accuracy in urban
canyons, and inputs them into the model to predict both posi-
tioning error and correct position through two parallel
decoders. We further enhanceDeepGPSwith a novel constraint
mask design by filtering out inaccessible candidate locations,
and enable continuous localization using a simple yet effective
mobility model. The system has been implemented and evalu-
ated. Extensive experiments based on a large-scale bus trajec-
tory dataset and real-field GPS measurements show that
DeepGPScan significantly enhance GPS positioning in urban
canyons, e.g., on average effectively correcting 90.1% GPS esti-
mationswith accuracy improvement by 64.6%.

REFERENCES

[1] Celestrak.Accessed: Jul. 2022. [Online]. Available: https://celestrak.
com/

[2] GnssStatus. Accessed: Jul. 2022. [Online]. Available: https://
developer.android.com/reference/android/location/GnssStatus

[3] GPS errors and biases. Accessed: Jul. 2022. [Online]. Available:
http://what-when-how.com/category/gps/

TABLE 6
Accuracy Comparison With Other Methods

Method Ref. [67] Ref. [49] Gnome [39] DeepGPS

Accuracy (m) 7.8 6.0 6.2 3.6

390 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

https://celestrak.com/
https://celestrak.com/
https://developer.android.com/reference/android/location/GnssStatus
https://developer.android.com/reference/android/location/GnssStatus
http://what-when-how.com/category/gps/

[4] Open Street Map. Accessed: Jul. 2022. [Online]. Available:
https://www.openstreetmap.org/

[5] PostGIS. Accessed: Jul. 2022. [Online]. Available: https://postgis.
net/

[6] PostgreSQL. Accessed: Jul. 2022. [Online]. Available: https://
www.postgresql.org/

[7] Pytorch. Accessed: Jul. 2022. [Online]. Available: https://pytorch.
org/

[8] DeepGPS source code. Accessed: Jul. 2022. [Online]. Available:
https://github.com/bducgroup/DeepGPS

[9] Wikipedia: List of cities with the most skyscrapers. Accessed: Jul.
2022. [Online]. Available: https://en.wikipedia.org/wiki/
List_of_cities_with_the_most_skyscrapers

[10] A. Adams and P. Vamplew, “Encoding and decoding cyclic data,”
South Pacific J. Natural Sci., vol. 16, pp. 54–58, 1998.

[11] D. C. Agnew and K. M. Larson, “Finding the repeat times of the
GPS constellation,” GPS Solutions, vol. 11, no. 1, pp. 71–76, 2007.

[12] F. Ahmad, H. Qiu, R. Eells, F. Bai, and R. Govindan, “CarMap:
Fast 3D feature map updates for automobiles,” in Proc. USENIX
Symp. Netw. Syst. Des. Implementation, 2020, pp. 1063–1081.

[13] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bhar-
ath, “Deep reinforcement learning: A brief survey,” IEEE Signal
Process. Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.

[14] R. Ayyalasomayajula et al., “Deep learning based wireless locali-
zation for indoor navigation,” in Proc. ACM Annu. Int. Conf. Mobile
Comput. Netw., 2020, pp. 1–14.

[15] C. Bo, X.-Y. Li, T. Jung, X. Mao, Y. Tao, and L. Yao, “SmartLoc:
Push the limit of the inertial sensor based metropolitan localiza-
tion using smartphone,” in Proc. ACMAnnu. Int. Conf. Mobile Com-
put. Netw., 2013, pp. 195–198.

[16] J. Bressler, P. Reisdorf, M. Obst, and G. Wanielik, “GNSS position-
ing in non-line-of-sight context - a survey,” in Proc. IEEE Int. Conf.
Intell. Transp. Syst., 2016, pp. 1147–1154.

[17] K. Chen and G. Tan, “BikeGPS: Accurate localization of shared
bikes in street canyons via low-level GPS cooperation,” in Proc.
ACM Annu. Int. Conf. Mobile Syst. Appl. Serv., 2018, pp. 150–162.

[18] X. Chen, F. Dovis, S. Peng, and Y. Morton, “Comparative studies
of GPS multipath mitigation methods performance,” IEEE Trans.
Aerosp. Electron. Syst., vol. 49, no. 3, pp. 1555–1568, Jul. 2013.

[19] W. Dai, D. Huang, and C. Cai, “Multipath mitigation via compo-
nent analysis methods for GPS dynamic deformation mon-
itoring,” GPS Solutions, vol. 18, no. 3, pp. 417–428, 2014.

[20] V. Drevelle and P. Bonnifait, “iGPS: Global positioning in urban
canyons with road surface maps,” IEEE Intell. Transp. Syst. Mag.,
vol. 4, no. 3, pp. 6–18, Fall 2012.

[21] R. Ercek, P. De Doncker, and F. Grenez, “NLOS-multipath effects on
pseudo-range estimation in urban canyons for GNSS applications,”
inProc. IEEE 1st Eur. Conf. Antennas Propag., 2006, pp. 1–6.

[22] J. Feng et al., “DeepMM: Deep learning based map matching with
data augmentation,” IEEE Trans. Mobile Comput., vol. 21, no. 7,
pp. 2372–2384, Jul. 2022.

[23] P. D. Groves, “Shadow matching: A new GNSS positioning tech-
nique for urban canyons,” J. Navigation, vol. 64, no. 3, pp. 417–430,
Jul. 2011.

[24] F. Gustafsson and F. Gunnarsson, “Mobile positioning using wire-
less networks: Possibilities and fundamental limitations based on
available wireless network measurements,” IEEE Signal Process.
Mag., vol. 22, no. 4, pp. 41–53, Jul. 2005.

[25] W. Hedgecock, M. Maroti, J. Sallai, P. Volgyesi, and A. Ledeczi,
“High-accuracy differential tracking of low-cost GPS receivers,”
in Proc. ACM Annu. Int. Conf. Mobile Syst. Appl. Serv., 2013,
pp. 221–234.

[26] P.-F. Ho, C.-C. Hsu, J.-C. Chen, and T. Zhang, “Using barometer
on smartphones to improve GPS navigation altitude accuracy,”
in Proc. ACM Annu. Int. Conf. Mobile Comput. Netw., 2018,
pp. 741–743.

[27] L.-T. Hsu, “GNSS multipath detection using a machine learning
approach,” in Proc. IEEE Int. Conf. Intell. Transp. Syst., 2017, pp. 1–6.

[28] L.-T. Hsu, “Analysis and modeling GPS NLOS effect in highly
urbanized area,” GPS Solutions, vol. 22, no. 1, pp. 1–12, 2018.

[29] L.-T. Hsu, Y. Gu, and S. Kamijo, “3D building model-based pedes-
trian positioning method using GPS/GLONASS/QZSS and its
reliability calculation,” GPS Solutions, vol. 20, no. 3, pp. 413–428,
2016.

[30] M. Ibrahim et al., “Wi-Go: Accurate and scalable vehicle position-
ing using WiFi fine timing measurement,” in Proc. ACM Annu.
Int. Conf. Mobile Syst. Appl. Serv., 2020, pp. 312–324.

[31] Y. Jiang et al., “Carloc: Precise positioning of automobiles,” in
Proc. ACM Conf. Embedded Netw. Sensor Syst., 2015, pp. 253–265.

[32] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in Proc. Eur. Conf. Com-
put. Vis., 2016, pp. 694–711.

[33] E. D. Kaplan and C. Hegarty, Understanding GPS/GNSS: Principles
and Applications. Norwood, MA, USA: Artech House, 2017.

[34] D. Karamshuk, A. Noulas, S. Scellato, V. Nicosia, and C. Mascolo,
“Geo-spotting: Mining online location-based services for optimal
retail store placement,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2013, pp. 793–801.

[35] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[36] C.-T. Lin, Y.-Y. Wu, P.-H. Hsu, and S.-H. Lai, “Multimodal struc-
ture-consistent image-to-image translation,” in Proc. Conf. Assoc.
Advanc. Artif. Intell., 2020, pp. 11490–11498.

[37] J. Liu, B. Priyantha, T. Hart, H. S. Ramos, A. A. Loureiro, and Q.
Wang, “Energy efficient GPS sensing with cloud offloading,” in
Proc. ACM Conf. Embedded Netw. Sensor Syst., 2012, pp. 85–98.

[38] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand
deep model compression for mobile devices: A usage-driven
model selection framework,” in Proc. ACM Annu. Int. Conf. Mobile
Syst. Appl. Serv., 2018, pp. 389–400.

[39] X. Liu, S. Nath, and R. Govindan, “Gnome: A practical approach
to NLOS mitigation for GPS positioning in smartphones,” in Proc.
ACM Annu. Int. Conf. Mobile Syst. Appl. Serv., 2018, pp. 163–177.

[40] Z. Liu, Z. Gong, J. Li, and K. Wu, “Mobility-aware dynamic taxi
ridesharing,” in Proc. IEEE Int. Conf. Data Eng., 2020, pp. 961–972.

[41] Z. Liu, Z. Li, K. Wu, and M. Li, “Urban traffic prediction from
mobility data using deep learning,” IEEE Netw., vol. 32, no. 4,
pp. 40–46, Jul./Aug. 2018.

[42] L. Ma et al., “Estimating urban road GPS environment friendli-
ness with bus trajectories: A city-scale approach,” Sensors, vol. 20,
no. 6, 2020, Art. no. 1580.

[43] J. Marshall, “Creating and viewing skyplots,” GPS Solutions,
vol. 6, no. 1, pp. 118–120, 2002.

[44] J.-I. Meguro, T. Murata, J.-I. Takiguchi, Y. Amano, and T. Hashi-
zume, “GPS multipath mitigation for urban area using omnidirec-
tional infrared camera,” IEEE Trans. Intell. Transp. Syst., vol. 10,
no. 1, pp. 22–30, Mar. 2009.

[45] S. Miura, L.-T. Hsu, F. Chen, and S. Kamijo, “GPS error correction
with pseudorange evaluation using three-dimensional maps,” IEEE
Trans. Intell. Transp. Syst., vol. 16, no. 6, pp. 3104–3115, Dec. 2015.

[46] M. Modsching, R. Kramer, and K. ten Hagen, “Field trial on GPS
accuracy in a medium size city: The influence of built-up,” in Proc.
3rd Workshop Positioning, Navigation Commun., 2006, pp. 209–218.

[47] P. Newson and J. Krumm, “Hidden Markov map matching
through noise and sparseness,” in Proc. ACM SIGSPATIAL Int.
Conf. Adv. Geogr. Inf. Syst., 2009, pp. 336–343.

[48] H.-F. Ng, G. Zhang, and L.-T. Hsu, “A computation effective
range-based 3D mapping aided GNSS with NLOS correction
method,” J. Navigation, vol. 73, no. 6, pp. 1202–1222, Nov. 2020.

[49] H.-F. Ng, G. Zhang, and L.-T. Hsu, “Robust GNSS shadow match-
ing for smartphones in urban canyons,” IEEE Sensors J., vol. 21,
no. 16, pp. 18307–18317, Aug. 2021.

[50] S. Peyraud et al., “About non-line-of-sight satellite detection and
exclusion in a 3D map-aided localization algorithm,” Sensors,
vol. 13, no. 1, pp. 829–847, 2013.

[51] J. Schipperijn, J. Kerr, S. Duncan, T. Madsen, C. D. Klinker, and J.
Troelsen, “Dynamic accuracy of GPS receivers for use in health
research: A novel method to assess GPS accuracy in real-world
settings,” Front. Public Health, vol. 2, 2014, Art. no. 21.

[52] K. L. Senior, J. R. Ray, and R. L. Beard, “Characterization of peri-
odic variations in the GPS satellite clocks,” GPS Solutions, vol. 12,
no. 3, pp. 211–225, 2008.

[53] Z. Shen, W. Du, X. Zhao, and J. Zou, “DMM: Fast map matching
for cellular data,” in Proc. ACM Annu. Int. Conf. Mobile Comput.
Netw., 2020, pp. 1–14.

[54] S. Tay and J. Marais, “Weighting models for GPS pseudorange
observations for land transportation in urban canyons,” in Proc.
6th Eur. Workshop GNSS Signals Signal Process., 2013, Art. no. 4p.

[55] C.-C. Wang et al., “MVP: Magnetic vehicular positioning system
for GNSS-denied environments,” in Proc. ACM Annu. Int. Conf.
Mobile Comput. Netw., 2021, pp. 531–544.

[56] G. Wang, X. Xie, F. Zhang, Y. Liu, and D. Zhang, “bCharge: Data-
driven real-time charging scheduling for large-scale electric bus
fleets,” in Proc. IEEE Real-Time Syst. Symp., 2018, pp. 45–55.

LIU ETAL.: DEEPGPS: DEEP LEARNING ENHANCED GPS POSITIONING IN URBAN CANYONS 391

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

https://www.openstreetmap.org/
https://postgis.net/
https://postgis.net/
https://www.postgresql.org/
https://www.postgresql.org/
https://pytorch.org/
https://pytorch.org/
https://github.com/bducgroup/DeepGPS
https://en.wikipedia.org/wiki/List_of_cities_with_the_most_skyscrapers
https://en.wikipedia.org/wiki/List_of_cities_with_the_most_skyscrapers

[57] W. Wen, G. Zhang, and L.-T. Hsu, “Correcting NLOS by 3D
LiDAR and building height to improve GNSS single point posi-
tioning,”Navigation, vol. 66, no. 4, pp. 705–718, 2019.

[58] H. Wu, W. Sun, and B. Zheng, “Is only one GPS position sufficient
to locate you to the road network accurately?,” in Proc. ACM Int.
Joint Conf. Pervasive Ubiquitous Comput., 2016, pp. 740–751.

[59] H. Xie, T. Gu, X. Tao, H. Ye, and J. Lu, “A reliability-augmented
particle filter for magnetic fingerprinting based indoor localiza-
tion on smartphone,” IEEE Trans. Mobile Comput., vol. 15, no. 8,
pp. 1877–1892, Aug. 2016.

[60] H. Xu, A. Angrisano, S. Gaglione, and L.-T. Hsu, “Machine learn-
ing based LOS/NLOS classifier and robust estimator for GNSS
shadowmatching,” Satell. Navigation, vol. 1, no. 1, pp. 1–12, 2020.

[61] Y. Yang, J. Jiang, and M. Su, “Comparison of satellite repeat shift
time for GPS, BDS, and Galileo navigation systems by three meth-
ods,” Algorithms, vol. 12, no. 11, 2019, Art. no. 233.

[62] Z. Yang, C. Wu, Z. Zhou, X. Zhang, X. Wang, and Y. Liu,
“Mobility increases localizability: A survey on wireless indoor
localization using inertial sensors,” ACM Comput. Surv.s, vol. 47,
no. 3, pp. 1–34, 2015.

[63] R. Yozevitch, B. Ben-Moshe, and A. Dvir, “GNSS accuracy
improvement using rapid shadow transitions,” IEEE Trans. Intell.
Transp. Syst., vol. 15, no. 3, pp. 1113–1122, Jun. 2014.

[64] P. A. Zandbergen, “Positional accuracy of spatial data: Non-nor-
mal distributions and a critique of the national standard for spa-
tial data accuracy,” Trans. GIS, vol. 12, no. 1, pp. 103–130, 2008.

[65] K. C. Zeng et al., “All your GPS are belong to us: Towards stealthy
manipulation of road navigation systems,” in Proc. USENIX Secur.
Symp., 2018, pp. 1527–1544.

[66] D. Zhang, J. Huang, Y. Li, F. Zhang, C. Xu, and T. He, “Exploring
human mobility with multi-source data at extremely large metro-
politan scales,” in Proc. ACM Annu. Int. Conf. Mobile Comput.
Netw., 2014, pp. 201–212.

[67] G. Zhang, H.-F. Ng, W. Wen, and L.-T. Hsu, “3D mapping data-
base aided GNSS based collaborative positioning using factor
graph optimization,” IEEE Trans. Intell. Transp. Syst., vol. 22,
no. 10, pp. 6175–6187, Oct. 2021.

[68] G. Zhang, W. Wen, B. Xu, and L.-T. Hsu, “Extending shadow
matching to tightly-coupled GNSS/INS integration system,” IEEE
Trans. Veh. Technol, vol. 69, no. 5, pp. 4979–4991, May 2020.

[69] Y. Zhang et al., “Route prediction for instant delivery,” Proc. ACM
Interactive,Mobile, Wearable Ubiquitous Technol., vol. 3, no. 3, pp. 1–25,
2019.

[70] Y. Zheng, “Trajectory data mining: An overview,” ACM Trans.
Intell. Syst. Technol., vol. 6, no. 3, pp. 1–41, 2015.

Zhidan Liu (Member, IEEE) received the PhD
degree in computer science and technology from
Zhejiang University, Hangzhou, China, in 2014.
After that, he worked as a research fellow with
Nanyang Technological University, Singapore. He
is currently an Associate Professor with the Col-
lege of Computer Science and Software Engi-
neering, Shenzhen University, Shenzhen, China.
His research interests include mobile computing,
big data analytics, Internet of Things, and urban
computing. He is a member ACM, and CCF.

Jiancong Liu is currently working toward the
fourth-year undergraduation degree with the Col-
lege of Computer Science and Software Engi-
neering, Shenzhen University, Shenzhen, China,
under the supervision of Dr. Zhidan Liu. His
research interests are in the areas of trajectory
data analysis and mobile computing.

Xiaowen Xu is currently working toward the third-
year undergraduation degree with the College of
Computer Science and Software Engineering,
Shenzhen University, Shenzhen, China, under
the supervision of Dr. Zhidan Liu. Her research
interests are in the areas of trajectory data analy-
sis and mobile computing.

Kaishun Wu (Member, IEEE) received the PhD
degree in computer science and engineering
from The Hong Kong University of Science and
Technology (HKUST), Hong Kong, China, in
2011. After that, he worked as a research Assis-
tant Professor with HKUST. In 2013, he joined
Shenzhen University as a distinguish professor.
Currently, he is a professor with the DSA & IoT
Thrust Area under the Information Hub, Hong
Kong University of Science and Technology
(Guangzhou), Guangzhou, China. He has coau-

thored 2 books and published more than 100 high quality research
papers in international leading journals and primer conferences, like
IEEE Transactions on Mobile Computing, IEEE Transactions on Parallel
and Distributed Systems, ACM MobiCom, IEEE INFOCOM. He is the
inventor of 6 US and more than 90 Chinese pending patents. He
received 2012 Hong Kong Young Scientist Award, 2014 Hong Kong ICT
Awards: Best Innovation, and 2014 IEEE ComSoc Asia-Pacific Out-
standing Young Researcher Award. He is an IET fellow.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

392 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2023 at 04:53:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

