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Abstract—Federated learning (FL) is an emerging distributed and privacy-preserving machine learning framework. However, the

performance of traditional FL methods is seriously impaired by the real-world data, which appear to be non-independent and identically

distributed (non-IID). The recent clustered federated learning (CFL) methods eliminate the impact of non-IID data by grouping clients

with similar data distribution into the same cluster. Unfortunately, existing CFL methods heavily rely on the pre-setting of the cluster

number, failing to achieve adaptive client clustering. Even worse, we experimentally observe that imbalanced data across clients largely

degrade their correctness of client clustering. In this paper, we present a novel CFL method without manual intervention, named

AutoCFL, which can eliminate both effects of non-IID and imbalanced data simultaneously. To deal with imbalanced data, the local

training adjustment strategy adaptively adjusts the number of local training epochs for each client. To further improve the clustering

correctness and adaptability, the weighted voting-based client clustering strategy automatically groups each client into an appropriate

cluster. Extensive experiments are conducted to evaluate the design of AutoCFL with three popular datasets under various data

settings. Experimental results demonstrate that AutoCFL outperforms the state-of-the-art methods under non-IID and imbalanced data

settings, e.g., on average improving the model accuracy by 9:24% when compared to the standard FL method, i.e., FedAvg, while

significantly reducing communication costs by 4:67� in an adaptive client clustering manner.

Index Terms—Federated learning, clustered federated learning, non-IID data, imbalanced data, client clustering, weighted voting

Ç

1 INTRODUCTION

THE rapid development of computing and storage capacity
on edge devices is driving the shift of machine learning

from the data-center mode toward the edge mode [3], [12].
Various edge devices, such as smartphones, wearables, and
smart TVs, can collect, store, and manipulate user-produced
data locally, which provides the data foundation for edge-
assisted machine learning. To leverage the massive amount
of data associated with users’ personal devices, large compa-
nies like Google generally adopt Federated Learning (FL) [14],
[19], [42], a novel distributed machine learning paradigm, to

let multiple participating clients collaboratively train a glob-
ally shared model without exposing users’ raw data. Due to
its privacy-preserving property, FL has been widely applied
in a variety of applications, e.g., computer vision [24], [25],
natural language processing [9], [43], and human activity
recognition [31], [37].

The lifecycle of an FL training typically involves three
key steps [28]: 1) The server broadcasts current global model
to the clients; 2) Each client updates the global model using
its local data; and 3) The server collects and aggregates all
locally updated models to update the global model. The
server and all clients interact with each other over the net-
work and keep performing above three steps until a model
accuracy target is achieved or the upper limit on the number
of communication rounds is reached. In practice, FL usually
involves thousands or even millions of participating clients,
which are owned by different users with diverse user habits
and usage environments. For example, different users may
use their smartphones to browse different types of content
with diverse frequencies. As a result, training data in FL
may possess two kinds of statistical heterogeneity: non-IID
(independent identically distributed) data distribution and
imbalanced data samples across the clients. More specifi-
cally, non-IID data indicate that data samples from different
clients do not obey the same data distribution, while imbal-
anced data imply that the quantity of data samples varies
largely across the clients.

The primary goal of FL is to train a model with the highest
possible accuracy in the shortest possible time [16], [20].
However, non-IID data across clients have been confirmed to
hinder this goal by prolonging the training time while only
achieving the sub-optimal accuracy [12], [22], [45]. Therefore,
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in the literature there exist a plenty of research works that
focus on mitigating the impact of non-IID data on FL [13],
[16], [20], [35], [39]. In particular, clustered federated learning
(CFL) [4], [6], [7], [31], [33], [41] seems to be a promising
framework to alleviate the impact of non-IID data by dividing
clients with similar data distribution into the same cluster,
and training a shared model for each client cluster individu-
ally. Since either raw data or statistical features of these data
cannot be directly used to guide the client clustering, existing
CFL methods usually utilize three common intermediate
results from collaborative model training, i.e., local model
updates [33], local model weights [4], [31], [41], and empirical
loss of the localmodel [7], to implicitlymeasure the similarity
of clients’ data distribution. Previous studies demonstrate
that CFL can improvemodel accuracy andmeanwhile reduce
the required communication rounds [33], [34], showing a
great advantage on confronting the non-IID challenge in FL.

Despite the promising performance, existing CFL meth-
ods, however, are still inefficient and non-adaptive on client
clustering. Most of existing CFL works [4], [6], [7], [27], [41]
require the specific number k of client clusters as the input,
lacking of adaptability. With no prior knowledge on the cli-
ents’ data distribution, it is hard to determine the optimal
k. Heuristic attempts on setting k inevitably incur huge
communication and computation costs, yet with no guaran-
tee on finding the best setting. Although iterative bi-parti-
tion client clustering proposed in [33] does not require the
number k as input, such a clustering process is communica-
tionally inefficient. This is because such a method requires
local models convergence before bi-partitioning clusters
each time.

Moreover, existing CFL works aim at attacking non-IID
data challenge, while largely ignoring the impact of imbal-
anced data across clients on the client clustering process.
Unlike the well-known non-IID data challenge, the imbal-
anced data challenge has not received much attention,
despite the prevalence of imbalanced data in reality. How-
ever, we experimentally observe that imbalanced data
severely affect the correctness of client clustering. Especially
for these local model weight based CFL methods [4], [31],
[37], [41], they cannot accurately discriminate the data distri-
bution similarity between clients with imbalanced data sam-
ples. This is because different amount of training samples
leads to varied training states of local models, and the model
differences caused by imbalanced data cover up the differen-
ces caused by non-IID data. This critical yet neglected issue
hinders the applications of CFL, and calls for timely research
efforts.

To further advance existing CFL works, in this paper, we
present a novel CFL method, named AutoCFL, which can
automatically group clients with non-IID and imbalanced
data into the suitable clusters. The design of AutoCFL is
mainly motivated from two aspects. First, imbalanced data
can impair the correctness of client clustering by affecting
the local model weights. The reason behind is that, according
to our experiment, the local empirical losses of local models
become inconsistent among the clients with similar data dis-
tribution, leading to improper client clustering. Thus, we
propose the local training adjustment strategy that dynami-
cally adjusts the number of local training epochs for each cli-
ent given its data amount. This strategy can diminish the

errors of local model weight distance caused by imbalanced
data, and the resultant local model weight distances better
reflect the similarity of all clients’ data distribution.

Second, existing CFL methods fail to consider both the
efficiency and the adaptability of client clustering. Instead
of pre-setting or trying the number k of clusters, we pro-
pose an adaptive client clustering strategy that can extract
the cluster structure of clients from the corrective model
weight distances between clients. Inspired by the impor-
tant criterion of evaluating clusters, i.e., minimum inter-
cluster distance should be not smaller than the maximum
intra-cluster distance, our strategy can automatically
detect the cluster demarcation, and group clients into clus-
ters with a well-designed weighted voting mechanism.
The voting process takes imbalanced data number of cli-
ents into account, and thus enhances the correctness of cli-
ent clustering further. Combining these two strategies,
AutoCFL can achieve efficient and adaptive client cluster-
ing by addressing the challenges of non-IID and imbal-
anced data simultaneously.

Our main contributions are summarized as follows:

� We are the first, to the best of our knowledge, to
study the impact of both non-IID and imbalanced
data across clients on existing CFL methods. The
imbalanced data lead to improper client clustering,
and further deteriorate the performances of CFL
methods along with non-IID data.

� We present AutoCFL to advance the CFL researches,
and attack both non-IID data and imbalanced data
challenges with two novel strategies, i.e., local train-
ing adjustment strategy and weighted voting based
adaptive client clustering strategy.

� We conduct extensive experiments to evaluate
AutoCFL over three popular datasets under a variety
of data settings. The experimental results have dem-
onstrated the effectiveness and efficiency of AutoCFL.
Under the non-IID and imbalanced data settings,
AutoCFL averagely reduces 4:67� communication
costs when compared to state-of-the-art methods,
while improving model accuracy by 9:24% when
compared to the standard FL method, i.e., FedAvg, in
an adaptive clusteringmanner.AutoCFL outperforms
state-of-the-art methods under non-IID and balanced
data settings as well, e.g., averagely reducing 4:28�
communication costs with improvedmodel accuracy.

The rest of the paper is organized as follows. Section 2
reviews the related works. We introduce the background
and motivation in Section 3. The design of AutoCFL is elabo-
rated and evaluated in Sections 4 and 5, respectively. Sec-
tion 6 finally concludes this paper.

2 RELATED WORK

We review existing research efforts on addressing the non-
IID data challenge and imbalanced data challenge in feder-
ated learning (FL) in Sections 2.1 and 2.2, respectively. Since
clustered federated learning (CFL) has become an important
branch of FL and attracted much attention in recent years,
we thus discuss these works separately in Section 2.3 to
highlight our contributions in this paper.
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2.1 Non-IID Data Challenge in Federated Learning

Since users may have different usage habits and patterns,
the distribution of local data stored in different clients varies
greatly and is not similar to each other i.e., practical data
used for FL training are non-IID. The most common FL
method FedAvg [28] does not consider such a challenge, and
fails to achieve good performance in real-world applica-
tions. Many works [18], [20], [45] have extensively demon-
strate that non-IID data not only affect the training
convergence with increased communication overheads, but
also make the model trained by native FL less accurate. In
the literature, many efforts have been made to address the
non-IID data challenge in FL from different aspects.

Client Drift Mitigation. The performance degradation of
FedAvg caused by non-IID is due to client drift [22], [26]. The
non-IID data make the local models differ from each other,
and thus the averaged model is, as a result, far from the true
global optimum. Therefore, some methods have been pro-
posed to attack the non-IID data challenge by addressing the
client drift issue. For example, FedProx [20] introduces a
proximal term for FedAvg to limit the difference between the
global model and local models, which makes sure that the
optimization objectives similar among all local models. In
addition, SCAFFOLD [13] corrects the bias among clients’
local updates by using variance reduction.

Client Selection. Instead of training the global model with
all clients, some recent methods [5], [30] turn to rigorously
select a subset of clients to participate in the FL training
according to some predefined policies. Specifically, Oort
[16] proposes a participant selection strategy based on the
novel concepts of client statistical utility and system utility.
FL training with well-selected clients is demonstrated to
have better time-to-accuracy performance. Wang et al. [39]
exploit a reinforcement learning model to select clients with
closer model weights in each communication round, which
ensures that the clients selected in each round would have
more similar data distribution. Besides, Cho et al. [5] reveal
that selecting clients with higher local empirical loss for FL
training will accelerate the model convergence.

Model Personalization. Differs from above approaches,
someworks [10], [23], [36] try to personalize the globalmodel
with each client’s local data, so as to provide users with per-
sonalized service. For example, Smith et al. [35] extendmulti-
task learning to FL training to simultaneously address the
challenges of non-IID data and system heterogeneity.

2.2 Imbalanced Data Challenge in Federated
Learning

Most of existing FL works have realized the non-IID
data challenge, while they largely neglected the imbalanced
data challenge and its impacts on the FL training. In prac-
tice, the samples stored in the clients obey different distribu-
tion, and meanwhile their sample sizes may be inconsistent
as well.

Imbalanced data have been examined to cause FedAvg to
produce unfair results, i.e., accuracy of the global model is
biased towards clients with more samples [21], [29], [38]. Li
et al. [21] have considered the unfairness problem in FL, and
proposed q-FedAvg, which encourages a more uniform accu-
racy distribution by reducing the variation of clients’ model
accuracy. Wang et al. [38] measure the contribution of each

client in horizontal and vertical FL respectively, and propose
to distribute the benefits according to clients’ contributions.
Furthermore, Michieli et al. [29] analyze the relationship
between fairness, accuracy and convergence speed, and thus
propose FairAvg, a fair model aggregation approach. In par-
ticular, they indicate that fair model aggregation can benefit
bothmodel accuracy and convergence.

2.3 Clustered Federated Learning

Clustered federated learning (CFL) [33] is an emerging FL
training strategy to attack non-IID data challenge. CFL
divides clients with similar data distribution into the same
cluster by identifying data-related features (including local
empirical loss, model weights, or update gradients), and cli-
ents of each cluster train a global model collaboratively.

Existing CFL works mainly differ in the operation of
identifying clients with similar data distribution. Sattler
et al. [33] propose to iteratively bi-partition clients into clus-
ters by exploiting the cosine similarity between local model
updates. However, their method is not communication effi-
cient, because a cluster is bi-partitioned only after related
clients’ local models have been converged. Ghosh et al. [7]
propose to exploit the local empirical loss of clients as the
metric to measure clients’ similarity on data distribution.
The proposed method, however, requires constant commu-
nication between clients and the server to build stable clus-
ters, which incurs high communication costs. Furthermore,
its performance is heavily affected by the prior setting on
the number of clusters, which is hard to decide without
knowledge on clients’ local data.

In addition to above works, there exist a bunch of works
[4], [31], [41] that identify client clusters based on the local
model distances calculated from model weights. Although
these methods often require few communications between
the server and clients for clustering clients, they still require
to set the number of clusters in advance. Moreover, we find
that imbalanced data across clients can make the local
model distances not clearly and correctly, and severely
affect the final client clustering results, resulting in poor
model accuracy and high communication costs.

In summary, existing CFL works fail to achieve commu-
nication efficiency and clustering adaptability. To the best
of our knowledge, there are no works that have investigated
how to mitigate the impact of imbalanced data on the model
weight distance based CFL, neither. To improve existing
CFL methods, in this paper we consider both challenges of
non-IID data and imbalanced data, and present a novel CFL
method, i.e., AutoCFL, to adaptively group clients into clus-
ters with high communication and computation efficiency.

3 BACKGROUND AND MOTIVATION

3.1 Federated Learning

Recently, federated learning (FL) [14], [28], [42] has been
widely used to train machine/deep learning models (e.g.,
image classification models) among many distributed cli-
ents, denoted by set M, which are coordinated by a central
server through T rounds of communications between the
server and the clients. Each client m 2M owns a local data-
set Dm of size jDmj, i.e., clientm has samples fðxm

i ; y
m
i Þ 2 X �

Y : i 2 Dmg for the FL training, where xm
i is the feature of the
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i-th sample in feature space X , while ymi is the correspond-
ing label of the sample in label space Y. Besides, we let C
represent all available labels in the target task. In addition,
let D ¼ [m2MDm denote all samples of the clients, and jDj be
the total number of samples. The target model v consists of
a feature extractor and a classifier. Given an input sample
ðx; yÞ, the feature extractor maps x to a feature vector, while
the classifier outputs the probability distribution over all
labels based on the feature vector.

Training a global model requires constant interaction
between clients and the server, which involves iterative exe-
cutions of two key operations, i.e., local model updating at
clients and global model aggregation at server side. Without
loss of generality, in t-th round of the FL training, the server
broadcasts the current global model vt�1 to the clients. Once
received, each client updates the global model vt�1 using its
local data. The two key operations are detailed as follows.

Local Model Updating at Client Side. Each client m 2M

uses its local data to update the model vt�1 to vt
m, whose

goal is to minimize the local empirical loss:

min
vtm

Eðxm
i
;ym
i
Þ�Dm Lmðvt

m;x
m
i ; y

m
i Þ

� �
; (1)

where Lm is the loss function for client m. In the typical FL
training, e.g., FedAvg [28], each client performs Em steps of
stochastic gradient descent (SGD) on the local dataset to
update vt�1 with cross entropy loss function defined as

vt
m ¼ vt�1 � hrLmðvt�1Þ
¼ vt�1 � h

X
c2C

pðy ¼ cÞrExjy¼c log ðfcðvt�1; xÞÞ� �
; (2)

where h is the learning rate, and fc represents the probabil-
ity of predicting sample x as the class c. It is worth noting
that the number of local SGD execution steps Em is set the
same for each client in the standard FL training.

Global Model Aggregation at Server Side. After the local
training, each client sends back the local model vt

m or only
model updates Dt

m , vt
m � vt�1 to the server. Once received

all local models or local model updates, the server then
aggregates the received parameters. As an example, we
illustrate the server’s model aggregation process in FedAvg
[28] using model updates Dt

m, i.e.,

Dt ¼
X
m2M

jDmj
jDj � D

t
m;v

t  vt�1 � Dt: (3)

In FL, the clients’ local model updating and the server’s
global model aggregation are iteratively performed to opti-
mize the following global objective:

min
v

F ðvÞ ,
X
m2M

jDmj
jDj � FmðvÞ

( )
; (4)

where FmðvÞ denotes the local empirical loss of clientm.

3.2 Clustering Clients to Attack Non-IID Data
Challenge

Among existing techniques proposed to attack non-IID data
challenge in FL, clustered federated learning (CFL) [33] has
been validated as one of the most promising frameworks

that divides all clients into different clusters according to
the similarity of their local data distribution. CFL-based
approaches indirectly measure the similarity between cli-
ents’ data distribution, as an example, using the distance
between their local model weights [4], [31], [37], [41]. Hence,
they still hold the promise of privacy preservation, while
obtaining multiple models to achieve higher overall model
accuracy.

We assume that jMj clients are divided into k clusters.
i.e., G ¼ fG1;G2; . . . ;Gkg, and clients belonging to the same
cluster will collaboratively train a shared model. The data
distribution of clients in the same cluster should be similar,
while data of clients from different clusters are still non-IID.
We will obtain multiple models, i.e., vG ¼ fv1;v2; . . . ;vkg.

Unlike traditional FL methods, e.g., FedAvg [28], which
optimize one single global objective, CFL decomposes the
global objective into multiple sub-objectives, and optimizes
them simultaneously, i.e.,

min
vi

F ðviÞ ,
X
m2Gi

jDmjP
m2Gi jDmj � FmðviÞ; Gi 2 G

( )
: (5)

The CFL idea has inspired many research works recently.
Existing CFL works can be categorized into two categories,
depending on whether the number k of clusters needs to be
set in advance. Most of existing CFL works require the num-
ber k as an input parameter [4], [6], [7], [41]. In practice,
however, we do not have access to the local data of each cli-
ent, so we cannot set the optimal kwithout prior knowledge
about all clients’ data distribution. Although some of them
may take several attempts on different k settings to select
the most suitable one with the best clustering results, these
methods inevitably introduce extra computation and com-
munication costs. Few works [33] of the other category do
not input k in advance, but they usually require more com-
munication rounds to achieve stable client clusters.

Motivation 1: Existing CFL methods do not consider both effi-
ciency and adaptability of the client clustering process. Therefore, it
stimulates us in designing one brand-new CFL method that can
adaptively cluster clients without knowing the number k of clusters
in advance, yet efficient on both communications and computations.

3.3 Imbalanced Data Affects Client Clustering

Just as non-IID data is prevalent among real-world data,
imbalanced data across clients i.e., varying number of sam-
ples among different clients, is quite common in FL [1], [29],
[35] as well. Existing CFL works primarily focus on solving
the non-IID data challenge, yet largely overlooking the
impact of imbalanced data on the client clustering.

Experimental Observations. We conduct a simple experi-
ment to understand the impact of imbalanced data on the
CFL methods. Similar to the experimental settings in previ-
ous works [33], [39], we make use of FL to construct a simple
three-layer convolutional neural network (CNN) for jMj ¼
10 clients using the CIFAR-10 dataset [15]. Specifically, the
CNN model contains two convolutional layers and a fully
connected layer. To simulate non-IID data setting, we group
10 clients into two clusters, e.g., G1 ¼ f1; 2; . . . ; 5g and G2 ¼
f6; 7; . . . ; 10g, according to their local label categories, i.e.,
XG1 ¼ XG2 but YG1 6¼ YG2 . The local data for clients of each
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cluster are sampled from CIFAR-10 dataset according to the
Dirichlet distribution with its scaling parameter a ¼ 1. In
addition, we simulate imbalanced data across clients by lim-
iting the number of samples for each client. Fig. 1 shows the
number of samples for each client in both normal and imbal-
anced scenario, respectively.

In both scenarios, we set up the training model with the
same parameters, and let the server to perform a total of T ¼
10 global model aggregations. Since model weight distance
between any two clients is usually used for guiding client
clustering in CFL works [4], [31], [37], [41], we thus calculate
the average euclidean distance between different clientmodel
weights, sayingvi andvj, using the following equation:

distðvi;vjÞ ¼ 1

jvj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xjvj
z¼1
ðvi;z � vj;zÞ

vuut ; (6)

where jvj is the number of weights for the two models.
Figs. 2a and 2b visualize the model weight distance

matrices for the normal and imbalanced scenario, respec-
tively. As shown in Fig. 2a, when the number of samples
stored in clients are balanced, a clear clustering structure
can be observed from the distance matrix of local model
weights, which is refereed as model similarity matrix in the
following. In contrast, when imbalanced data across clients
exists, it is difficult to observe the clustering sign from the
model similarity matrix as shown in Fig. 2b.

We conduct another experiment, where we divide the 10
clients into two clusters. Within each cluster, the clients
share similar label distribution but different feature space,
i.e., XG1 6¼ XG2 but YG1 ¼ YG2 . Figs. 3a and 3b show the influ-
ences of imbalanced data on client clustering when non-IID
data are caused by different input spaces of data samples.
In the lower right corner of Fig. 3a, we can observe a clear
clustering phenomenon, which is not captured in Fig. 3b. In
addition to the influence of non-IID data, above experimen-
tal results clearly demonstrate that imbalanced data also
have a great impact on the client clustering process, possibly
leading to improper clusters and degrading the perfor-
mance of many CFL methods.

We may have such a question: why and how do imbalanced
data influence the client clustering? The reason may be that

imbalanced data across clients seriously affects the model
weight distances between clients with varied data samples,
while many existing CFL methods [4], [31], [37], [41] heavily
rely on the model similarity matrix to measure data distri-
bution similarity of clients, resulting in inappropriate client
clustering results. Since model distance matrix is affected,
imbalanced data would make the local empirical loss incon-
sistent among the clients, which have similar data distribu-
tion and formerly should belong to the same cluster. For the
clustering results in Figs. 2a and 2b, we plot and compare
the local empirical losses of clients under normal and imbal-
anced data scenario in Figs. 4a and 4b, respectively. From
Fig. 4, we see that imbalanced data cause the local loss dif-
ferences among clients to be much larger than the scenario
when clients’ data are balanced.

To further explore the relationship between number of
samples and local loss, we conduct an experiment by vary-
ing the number of samples for a randomly selected client,
and plot the experimental result in Fig. 5. We find that
when the sample size is larger than 800, more samples lead
to a lower local loss. When insufficient samples (e.g., � 800)
are used to train the model, however, we observe anomaly
local losses. Meanwhile, when the sample size is larger than
a certain number, e.g., 2800 in our experiment, we find that
adding more samples leads to slower decrease of the local
loss, as shown in Fig. 5. According to experimental results
from Figs. 4 and 5, we find that more local samples gener-
ally yield lower empirical losses.

Motivation 2: Existing CFL works have neglected the impact of
imbalanced data on the client clustering process, while we observe
that there exists loss inconsistency among clients with imbalanced
samples. Such an observation inspires us to further optimize CFL
by mitigating the impact of imbalanced data through well han-
dling different clients’ local empirical losses.

4 DESIGN OF AUTOCFL

4.1 Overview

To advance existing CFL works, we present AutoCFL that
can automatically uncover cluster structure among clients
from their model weight distances. AutoCFL is able to miti-
gate the effects of both non-IID data and imbalanced data in
practical FL applications, and thus is efficient and effective
in both aspects of communication and computation.

Fig. 6 illustrates the workflow of AutoCFL, which is simi-
lar with FedAvg [28] and includes three main steps: (1) The
server broadcasts the global model to the clients; (2) Each
client trains the model using its local data; and (3) The
server aggregates these updated local models from clients.

Fig. 1. The number of samples stored in each client in both normal and
imbalanced scenario, respectively.

Fig. 2. The impact of imbalanced data on client clustering under non-IID
data caused by different label spaces.

Fig. 3. The impact of imbalanced data on client clustering under non-IID
data caused by different input spaces.
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Improved on the typical FL training, AutoCFL embeds two
key strategies to address the inadequacy of existing CFL
methods. First, we propose the local training adjustment strat-
egy (in Section 4.2) that adjusts the local training epochs for
each client given its data amount. Different clients may go
through a varied number of local training epochs, and their
resultant local models are used to calculate a model weight
distance matrix (i.e., model similarity matrix). Second, an
adaptive client clustering strategy (in Section 4.3) is proposed
to uncover the cluster relationship among clients from the
model similarity matrix, and adaptively partition them with
similar data distribution into the same cluster even without
specifying the number of clusters. A weighted voting mech-
anism is devised to further eliminate the effect of imbal-
anced data. Combining these two novel strategies, AutoCFL
can derive stable client clusters within only a few rounds of
communication between clients and the server in an effi-
cient and adaptive manner.

4.2 Local Training Adjustment Strategy

According to our experiments in Section 3.3, we find that
there is a close relationship between the number of local
samples and empirical loss of local model training. Given
the same settings of model training (e.g., the learning rate)
and proper training without the overfitting issue, we
observe from Figs. 4 and 5 that the clients with more local
samples have smaller local empirical loss, while the clients
with fewer local samples have larger local empirical loss.
Furthermore, the relative relationship between the number
of local samples and the local empirical loss can hold during
the whole FL process.

Above observation can be true from the aspect of model
training. Specifically, the number of iterations Niter in each
epoch is an important hyper-parameter that is jointly deter-
mined by batch size BS and number of training samples,
i.e., Niter ¼ jDmjBS . In addition, the total iterations of model
training is the product of Niter and the total training epochs.
When batch size BS is fixed, the more samples are available
for training, the greater the number of iterations Niter will
be in a single epoch. In general, more iterations of gradient
descent are performed, the closer the model is to the opti-
mum. Thus, we propose a local training adjustment strat-
egy, which lets clients with more samples train less epochs
while clients with fewer samples train more epochs, so that
to keep empirical losses among clients be consistent.

Typically, the local empirical loss reflects the state of a local
model during the FL training process, and is influenced by
the number of iterations. Specifically, more iterations tend to
make the empirical loss of local model training smaller before
model converged. In general, one epoch consists of multiple

Fig. 4. Local losses of different clients in (a) normal scenario; and (b)
imbalanced scenario.

Fig. 5. Effect of the number of samples on the local loss.

Fig. 6. The workflow of AutoCFL with three main steps and two key strat-
egies: (1) The server broadcasts the global model; (2) Each client
updates the model with local data samples, enhanced by the local train-
ing adjustment strategy; (3) The server aggregates updated local mod-
els, enhanced by the adaptive client clustering strategy for training and
aggregating multiple global models for client clusters.
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iterations traversing through all samples in the training pro-
cess of machine learning models. Therefore, unlike FedAvg
[28] that sets the same number of local epochs for all clients,
AutoCFL dynamically adjusts the number of epochs for each
client during localmodel training to control the client’s empir-
ical loss. Noting that the adjusted local epochs for clients are
not the same. Instead, more local epochs are set for clients
with fewer samples, while a smaller number of local epochs is
expected for the clients with more samples. Essentially, we
hope that the empirical losses of clients that have similar data
distribution should be consistent after such a local training
adjustment.

However, making the local empirical loss of clients with
varied number of samples be consistent in one single com-
munication round is difficult. This is because when the num-
ber of samples stored by a client is small, increasing its local
epochs may cause the local empirical loss to be significantly
reduced or even over-fitted. Therefore, we turn to make the
cumulative loss of a client be more consistent rather than the
local empirical loss of one single communication round. A
client’s cumulative loss reflects the change of its local losses
over multiple communication rounds, and it is easier to be
controlled compared to the local empirical loss of one single
communication round. The cumulative loss of client m after
t communication rounds is calculated as:

CLt
m ¼

Xt

i¼1
lossim; (7)

where lossim indicates the local empirical loss of client m at
the i-th communication round.

Based on the definition of cumulative loss CLt
m, AutoCFL

computes the number of local epochs Et
m for client m at the

t-th communication round as:

Et
m ¼

Et�1
m þ ða� jDs� jjDmjÞ

r CLt�1
m > CLt�1

s� ;

Et�1
m CLt�1

m � CLt�1
s� ;

(
(8)

where s� is the client owning the most local samples, jDs� j
and jDmj represent the number of local samples at client s�

andm, respectively. Besides, parameter a denotes the epoch
growth factor that controls the epoch growth rate, and
parameter r is defined as:

r ¼ min 1;
losst�1m

losst�1s�

� �
: (9)

On one hand, the cumulative loss of the client with more
local samples tends to be more reliable. On the other hand,
increasing the number of epochs for clients will introduce
excessive local computation overheads. Thus we should set
the local epochs for all clients within a reasonable range. In
practice, we take the cumulative loss of the client (i.e., s�)
with the most local samples as the benchmark that usually
has the lowest loss, and make the cumulative loss between
clients to be more consistent by controlling the cumulative
loss of other clients to move closer to the benchmark. In
Equation (8), AutoCFL calculates the number of local epochs
for each client using both the number of local samples and
the cumulative loss. Specifically, the number of local sam-
ples determines the maximum step size (i.e., jDs� jjDmj) of each

epoch increase, while the local empirical loss determines
the actual increase step size (i.e., r) based on the maximum
step size. Our adjustment strategy is conservative, as the
actual growth step of epoch is decreasing during the local
training adjustment process. More local training epochs will
lead to a faster decrease of local empirical loss, and thus the

ratio, i.e.,
losst�1m

losst�1
s�

, between a client’s local empirical loss to the

benchmark’s local empirical loss will gradually decrease.

Adjustment Termination. AutoCFL can stop the local train-
ing adjustment naturally. After the first communication
round, the client with fewer local samples usually trains the
local model with more epochs, and therefore owns a faster
declining of the local empirical loss. The gap between cumu-
lative loss of such clients and the benchmark client s� would
be narrowing. But once they are smaller than CLs� , the gap
between them andCLs� would be gradually increasing again
because the number of epochs of the clients does not
decrease. To sum up, once the variance of clients’ cumulative
losses is minimized, AutoCFL will stop the local training
adjustment process, and each client will finish its local model
trainingwithin current round.

4.3 Adaptive Client Clustering

Different from previous CFL works [4], [6], [7], [27] that
need to input the number k of clusters in a prior, AutoCFL is
able to accomplish the client clustering without knowing k
by solely exploiting the model similarity matrix.

The adaptive client clustering design is motivated by an
important criterion on evaluating the clustering results,
namely the minimum inter-cluster distance should be not smaller
than the maximum intra-cluster distance [8], i.e.,

min distðGi�;Gj�Þ 	 max distðGi�;Gi�Þ (10)

where distðGi�;Gj�Þ denotes the model distance between any two
clients from two different clusters (e.g., Gi and Gj), and
distðGi�;Gi�Þ denotes the model distance between any two clients
of the same cluster Gi. Such a precondition ensures that all clients
can be classified into the suitable clusters. Based on this precondi-
tion, AutoCFL can simply search for cluster separability condi-
tions rather than optimizing inter-cluster distance and intra-
cluster distance.

Using all weights of a large model to calculate model
similarity between clients can result in significant computa-
tional overheads. To reduce computation costs for deriving
the model similarity matrix, AutoCFL calculates the model
similarity between any two clients with partial well-selected
weights. The selected weights would better reflect the dif-
ferences between these two models, which is theoretically
supported by some previous works. Specifically, [32] and
[44] propose that higher-layer weights of the model are
more task related than these lower-layer weights. Similarly,
[26] reports that when non-IID data exist, the neural net-
work model has greater model differences between weights
of the classifier-layers when compared to the models trained
on the IID data. Inspired by these works, we choose the
weights of the layer closest to the output layer as a represen-
tative weight set of all model weights to calculate the simi-
larity of two models. We denote v as the whole weights of
the model, and v0 as the selected partial weights.
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AutoCFL groups clients using the model similarity matrix
M only, which is computed from all clients’ stable local
models after the adjusted local training. Specifically, each
element M½m;n
 ¼ distðv0m;v0nÞ measures the model dis-
tance between any two clients, e.g., m and n, using Equa-
tion (6). The m-th row M½m; �
 of matrix M denotes the
model distances between client m’s model and all other cli-
ents’ models. Specifically, M½m;m
 ¼ 0, and M½m;n
 >
0; n 6¼ m. Taking M as the input, AutoCFL conducts client
clustering following three key steps, i.e., cluster demarcation
detection, weighted voting, and voting based clustering, which
are detailed as follows.

(1) Cluster demarcation detection. For client m, AutoCFL
first sorts the model distance values inM½m; �
 in an ascend-
ing order to obtain M0½m; �
, where M0½m;n
 	 M0½m; z
,
n > z. Then, AutoCFL calculates the difference between any
two neighboring model distance values stored in M0½m; �
,
and gets the maximum distance difference tm. Considering
the precondition of “good” clustering expressed in Equa-
tion (10), we treat tm as the demarcation of clustering all cli-
ents with client m as the reference. Based on tm, all the
clients indexed byM0½m; �
 are partitioned into two groups
Pm;1 and Pm;2. The difference between any two adjacent val-
ues in Pm;1 is smaller than tm, while the difference between
any two adjacent values in Pm;2 is not smaller than tm.

Intuitively, clients in Pm;1 could be assigned to the
same cluster, while we cannot make the clustering deci-
sions for the clients belonging to Pm;2, since their model
differences are relatively large. In addition, the maximum
distance difference tm computed for clients with fewer
samples is less stable compared to those with more sam-
ples, thus we cannot cluster clients solely relying on tm.
To address these concerns, we propose a weighted voting
mechanism to adaptively determine the final client clus-
tering results.

(2) Weighted voting. For each client m and its correspond-
ingM0½m; �
, we find the client clientmmax that has the largest
number of local samples among clients in Pm;1:

clientmmax ¼ argmaxfjDnj; n 2 Pm;1g: (11)

Then, AutoCFL lets each client n in Pm;1 to vote for
clientmmax according to Equation (12), and updates the vot-
ing score Smmax

n of client n for clientmmax.

Smmax
n ¼ Smmax

n þ jDnjP
z2Pm;1

jDzj : (12)

Each client maintains a list to record its accumulated voting
score (e.g., Smmax

n ) to other clients (e.g., clientmmax), which
have been selected as the client with the most samples.

In general, we assign voting weights to clients according
to their sample sizes. Specifically, more local samples are
empowered with a larger voting weight for a given client.
The weighted voting could further eliminate the instability
of clusters caused by the clients with imbalanced samples,
and decrease the chance of improper clustering.

(3) Voting based clustering. After running step (1) and (2)
for all clients by traversing all rows ofM, we can derive the
final voting score list for each client. For a given client m,
we assign it to be in the same cluster G� as the representative

client client� that has the highest accumulated score in m’s
voting score list, i.e.,

client� ¼ argmax
�
ðS�mÞ: (13)

By scanning all clients and their voting score lists, AutoCFL
automatically selects some representative clients as the clus-
ter heads and assigns other clients to these clusters.

Algorithm 1. Adaptive Client Clustering

Input:Model similarity matrixM
Output: Client clusters G ¼ fG1;G2; . . . ;Gkg
1: for each clientm do
2: M0½m; �
  SortM½m; �
 in an ascending order;
3: Calculate difference between any two adjacent values in

M0½m; �
;
4: tm  maxðM0½m;nþ 1
 �M0½m;n
Þ.
5: PartitionM0½m; �
 into two groups Pm;1 and Pm;2 with tm

as the demarcation;
6: Find clientmmax using Eq. (11);
7: for each client n in Pm;1 do
8: Update voting score using Eq. (12);
9: for each clientm do
10: Assignm to cluster G� based on Eq. (13);

Algorithm 1 presents the pseudocode of our adaptive cli-
ent clustering. Our strategy only relies on the input of
model similarity matrixM, without requiring the input or
pre-setting any parameters related to the number of clus-
ters. The algorithm scans the matrix M, and detects the
cluster demarcation for each reference client m (line 2-4).
Based on the cluster demarcation tm, the algorithm parti-
tions all clients into two groups, and executes the weighted
voting for clients in group Pm;1 (line 5-8). After obtaining
the voting score lists for all clients, the algorithm automati-
cally assigns clients to the clusters that are led by some rep-
resentative clients with more samples and higher voting
scores (line 9-10). Finally, the client clustering result G is
outputted. It is worth noting that our client clustering strat-
egy does not break the privacy-preserving promise. The
server only needs to know the number of local samples per
client, which is the same as the requirement of FedAvg [28].

4.4 Analysis and Discussion

We will analyze the computation and communication effi-
ciency of AutoCFL, and then discuss the privacy-preserving
property of AutoCFL.

Computation Efficiency.We analyze the time complexity of
AutoCFL, which mainly includes two parts, i.e., model simi-
larity calculation and client clustering process. (1) The com-
plexity of model similarity calculation using all model
weights is OðjMj2jvj2Þ, while complexity of model similarity
calculation using partial selected weights is OðjMj2jv0j2Þ,
where jMj denotes the total number of clients. Since jv0j is
much smaller than jvj, OðjMj2jv0j2Þ is thus much smaller
than OðjMj2jvj2Þ. (2) AutoCFL adaptively clusters clients
based on their model similarity values, as shown in Algo-
rithm 1. The time complexity of Algorithm 1 is dominated
by sorting model similarity values for each row of model
similarity matrixM. For each client, the time complexity of
model similarity sorting is OðjMjlog jMjÞ, while the sorting
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will be executed jMj times in total. Therefore, the time com-
plexity of Algorithm 1 is OðjMj2log jMjÞ. As a comparison,
the time complexity of hierarchical agglomerative clustering
algorithm, which has been widely used by previous meth-
ods [4] for client clustering in FL, isOðjMj3Þ. Thus, our client
clustering is much efficient.

In summary, the overall time complexity of our AutoCFL
is OðjMj2jv0j2 þ jMj2log jMjÞ.

Communication Efficiency. Existing CFL methods (e.g.,
[33]) adopt iterative clustering to continuously bi-partition
client clusters. However, global convergence is required
before each bi-partitioning of clusters, and thus these meth-
ods will incur a large number of communication rounds
[41]. In contrary, our AutoCFL uses a one-pass clustering
strategy, and combines with the local training adjustment
strategy to derive more robust and stable local models.
Therefore, AutoCFL can complete client clustering within a
few communication rounds, without requiring global con-
vergences. The communication efficiency of AutoCFL is also
validated by experiments in Section 5.2.

Privacy. AutoCFL requires each client to report the num-
ber of local samples for efficient client clustering. Specifi-
cally, the number of local samples is leveraged by AutoCFL
to calculate a specific adjusted number of local epochs for
each client, and determine the weight for each client in the
weighted voting process. Except for the number of client’s
local samples, AutoCFL does not require any other informa-
tion. In fact, the most famous FL method, i.e., FedAvg [28],
also holds such an assumption that the participating clients
need to report the number of local samples to determine the
weight of each client at the model aggregation phase. Many
other existing FL methods [21], [29], [38] that are inspired
by FedAvg also require such sample numbers from clients to
support proper operations. Therefore, AutoCFL is similar as
other FL methods, and requires the least necessary informa-
tion from clients. This assumption is rational and feasible,
and thus AutoCFL can achieve the same privacy-preserving
property as FedAvg-like methods.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

Baseline Methods. We compare our proposed AutoCFL with
the other four baseline methods:

� FedAvg [28] is the most common and fundamental
algorithm in FL, which aggregates local models
using a weighted averaging method based on the
number of clients’ local samples. Assuming the IID
data distribution among clients, FedAvg coordinates
all clients to train one global model.

� IFCA [7] assigns a client m to the cluster, where m’s
local model will achieve the smallest local empirical
loss. For better performance, IFCA has to know the
number k of clusters in advance, and executes the cli-
ent clustering process in an iterative manner.

� MTCFL [33] computes the cosine similarity between
updates of local models for indirectly measuring the
data distribution similarity among clients, and bi-par-
titions the clusters, whose global models have been
converged. MTCFL can adaptively group clients into

clusters as it works without setting the number k of
clusters, while it will introduce a large amount of
communication costs.

� FL+HC [4] extracts the client cluster structure from
the model similarity matrix using a hierarchical clus-
tering algorithm. FL+HC does not require to know
the number k of clusters in advance, but the hierar-
chical clustering algorithm needs to set the model
distance threshold, which implicitly requires prior
knowledge about clients’ data distribution.

Noting that FedAvg will train only one global model for
all clients, while our method AutoCFL and the other three
baseline methods will train multiple models, i.e., one global
model for each cluster, to attack the non-IID data challenge.

Datasets and Models. We consider three different image
classification tasks that are accomplished on three popular
benchmark datasets, i.e., CIFAR-10 [15], MNIST [17], and
FashionMNIST [40], respectively. For each task and dataset,
we build one convolutional neural network (CNN) model,
each of which consists of a feature extractor and a classifier.
The three models share the basic structure that contains a
total of three layers, with two 5� 5 convolutional layers
forming the feature extractor, and one fully connected layer
acting as the classifier. Each convolutional layer is followed
by a 2� 2 max pooling layer. The three models differ in the
number of output channels for the two convolutional layers.
In our experiments, we set the numbers of output channels
for MNIST model as 20 and 50, the CIFAR-10 model as 6
and 16, and the FashionMNIST model as 16 and 32.

FL Simulation Setup. To simulate the heterogeneous and
imbalanced data distribution among clients, we set up four
different data environments that are made of different data
distribution and sample sizes: (1) IID and balanced data
(IID-Balanced); (2) IID and imbalanced data (IID-Imbalanced);
(3) Non-IID and balanced data (Non-IID-Balanced); and (4)
Non-IID and Imbalanced data (Non-IID-Imbalanced). Specifi-
cally, we generate the data distribution and sample sizes for
clients according to the following rules.

� For the IID data setting, we randomly select samples
from the complete dataset for each client and the
proportions of samples from different categories are
consistent across all clients.

� For the non-IID setting, since the joint distribution,
i.e., pðx; yÞ ¼ pðyÞpðxjyÞ, of x 2 X and y 2 Y is deter-
mined by pðyÞ and pðxjyÞ together, we thus adjust
the local samples of the clients from either input
space X or label space Y. Specifically, we change the
clients’ samples in the input space X by rotating
each sample (i.e., Non-IID-Input), while changing the
label space Y by assigning samples with inconsistent
label categories to the clients (i.e., Non-IID-Label).

� For the balanced data setting, we make sure that the
numbers of local samples in all clients are consistent
or approximate.

� For the imbalanced data setting, we randomly adjust
the number of samples from each category to gener-
ate imbalanced samples among clients.

Therefore, we can obtain six combinatorial data settings,
i.e., IID-Imbalanced (short for IID-Im.), IID-Balanced (short for
IID-B.), Non-IID-Input-Imbalanced (short for Non-IID-In.-Im.),
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Non-IID-Input-Balanced (short for Non-IID-In.-B.), Non-IID-
Label-Imbalanced (short for Non-IID-La.-Im.), and Non-IID-
Label-Balanced (short for Non-IID-La.-B.).

Implementation. We simulate a FL system with jMj ¼ 20
clients. To implement non-IID data setting with different
label spaces, we divided all clients equally into four groups
similar to [33], and the local label categories owned by the
four groups are 0� 2, 3� 6, 4� 9, and 0� 9, respectively.
Such a data division contains three relationships: non-inter-
section, intersection and inclusion. In addition, we let all cli-
ents have samples of the same label categories, and make
the input space X different among them by selecting a frac-
tion of clients and rotating their samples. For the datasets of
MNIST and FashionMNIST, we rotate half of the clients’
samples by 180�, and we equally divide all clients into four
clusters. For the CIFAR-10 dataset, we rotate the samples of
the four clusters with angles of 0�, 90�, 180�, and 270�,
respectively. For the imbalanced data setting, we randomly
select 9 out of the 20 clients and adjust the sample size
of each three clients to 10%, 30%, and 60% of the original
sample size, which is the unified size of all clients in the
balanced data setting.

We implement our AutoCFL and the four baseline
methods using Pytorch.1 For the three CNN models, we
set the learning rate h and batch size as 0.01 and 128,
respectively. For AutoCFL, we set a ¼ 0:5 by default in the
local training adjustment. AutoCFL will stop the local
training adjustment to avoid wasting communication
resources when the variance of the cumulative losses of
the first five rounds shows an increasing trend. For the
baseline method FL+HC, we set it to cluster clients in the
fifth communication round. For all other methods, we
adopt the optimal settings specified in their corresponding
papers, respectively. We conduct all experiments on a
server, which is equipped with an NVIDIA 2080Ti GPU,
AMD 3800X CPU and 64G RAM.

5.2 Performance Comparisons

In this section, we compare the performance of our AutoCFL
with the four baseline methods on the performance metrics
of model accuracy, communication efficiency, and clustering cor-
rectness. In addition to above experimental setup, we simu-
late the FL training with totally T ¼ 100 communication
rounds between the server and clients. For each experiment
setting, we report the average results of five runs.

Model Accuracy. We compare AutoCFL with four baseline
methods on four datasets under various data settings. Table 1
presents the overall model accuracy (with standard devia-
tion) comparison results, where we find that AutoCFL
achieves the highest model accuracy in most data settings,
e.g., 15 out of 18 cases. Without any prior knowledge about
clients‘ data distribution,AutoCFL improves the model accu-
racy of these state-of-the-art methods by 0:13%� 4:70%. In
addition, we find that AutoCFL owns the smallest standard
deviation in the majority cases, which implies that AutoCFL
can obtainmore stable clustering results.

To verify whether AutoCFL can improve model accuracy
of clients with fewer samples, we conduct an experiment
under Non-IID-La.Im. data setting over CIFAR10. In this
experiment, we compare the performances of client’s local
training method (Local for short), FedAvg, and AutoCFL. In
particular, client’s local trainingmeans that training the local
model using client’s own data separately, rather than in the
FL paradigm. Table 2 shows the model accuracy results for
clients that have samples fewer than the average (i.e., 1260).
In general, more samples usually lead to a higher model
accuracy for the three methods. The average model accuracy
results of all clients are 62.40%(�11.19%), 43.23%(�9.39%),
and 72.05%(�5.86%) for Local, FedAvg, and AutoCFL, respec-
tively. Table 2 demonstrates that AutoCFL can help clients
with fewer samples achieve higher model accuracy, which is
comparable with the average accuracy of all clients. In con-
trary, accuracy gap between clients with more samples and
the oneswith fewer samples is quite large for FedAvg.

In addition to the comprehensive model accuracy com-
parisons, we also plot one example running result for all

TABLE 1
Model Accuracy (% � Std) of Each Method over CIFAR10, MNIST, FashionMNIST

Dataset Method Data Setting

IID-Im. IID-B. Non-IID-In.-Im. Non-IID-In.-B. Non-IID-La.-Im. Non-IID-La.-B.

CIFAR10

FedAvg 44.68 � 0.36 48.88 � 0.19 34.54 � 1.51 39.11 � 0.88 39.89 � 1.29 43.47 � 0.67
IFCA 44.64 � 0.49 49.78 � 0.36 35.58 � 0.73 41.47 � 0.52 66.02 � 0.73 67.86 � 0.83
MTCFL 46.83 � 0.87 50.98 � 0.74 38.74 � 2.13 44.46 � 1.59 57.68 � 2.74 68.37 � 1.42
FL+HC 43.71 � 1.23 48.96 � 0.96 35.88 � 1.76 40.02 � 1.03 60.85 � 0.80 74.61 � 0.25
AutoCFL 47.23 � 0.35 50.81 � 0.14 39.21 � 1.32 44.94 � 0.64 69.13 � 0.27 75.73 � 0.21

MNIST

FedAvg 95.18 � 0.42 96.82 � 0.27 91.49 � 0.31 91.59 � 0.17 96.14 � 0.42 96.28 � 0.28
IFCA 95.72 � 0.26 97.22 � 0.17 95.22 � 0.70 96.01 � 0.54 98.35 � 0.36 98.94 � 0.37
MTCFL 94.74 � 0.74 96.52 � 0.68 95.36 � 0.97 95.57 � 1.26 97.88 � 1.05 98.86 � 1.13
FL+HC 94.75 � 0.32 96.87 � 0.30 91.85 � 1.03 92.33 � 0.87 93.42 � 1.13 98.91 � 0.32
AutoCFL 95.64 � 0.23 97.50 � 0.19 96.77 � 0.54 96.86 � 0.23 98.48 � 0.39 98.93 � 0.17

FMNIST

FedAvg 84.26 � 0.21 86.11 � 0.12 82.52 � 0.57 79.85 � 0.27 82.10 � 0.63 81.72 � 0.59
IFCA 84.73 � 0.32 86.68 � 0.23 84.91 � 0.71 85.92 � 0.51 90.12 � 1.22 89.34 � 0.93
MTCFL 82.52 � 0.63 84.19 � 0.76 81.82 � 2.49 84.61 � 1.33 90.39 � 0.78 91.25 � 0.55
FL+HC 84.49 � 0.43 86.49 � 0.58 83.60 � 2.05 85.69 � 1.48 86.35 � 1.82 94.17 � 0.34
AutoCFL 85.45 � 0.27 86.85 � 0.24 85.08 � 0.86 86.49 � 0.69 95.09 � 0.47 94.79 � 0.27

1. Pytorch: https://pytorch.org/
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methods for each data setting in Fig. 7. This figure compares
the time-accuracy performance of all methods. We find that
AutoCFL can achieve the highest model accuracy within the
fewest communication rounds.

Communication Efficiency and Clustering Correctness.
During the FL training, we also record the number of com-
munication rounds required by each method to obtain sta-
ble clusters, i.e., when client clusters do not change any
more and the model accuracy of each cluster becomes con-
verged. We analyze the clustering correctness of each
method for IID and non-IID data settings separately. Specif-
ically, for the non-IID data setting, we record the number of
clients that have been correctly clustered. For the IID data
setting, we only record the number of final clusters, because
all clients under this setting should be grouped into the
same cluster.

Table 3 shows the overall comparison results on perfor-
mance metrics of communication efficiency and clustering
correctness. Noting that we do not record the number of
communication rounds for FL+HC, because it is configured
to complete the client clustering process in the fifth commu-
nication round. In general, our method AutoCFL can achieve
the best clustering correctness yet with the fewest communi-
cation rounds, i.e., the highest communication efficiency.

On the one hand, our method AutoCFL always completes
the client clustering with the least number of communica-
tion rounds under various data settings (see the first num-
ber of each result in Table 3). IFCA can complete the client
clustering with sub-optimal communication efficiency
because of its extra information about the number of clus-
ters. MTCFL requires much more communication rounds to
achieve the final clustering results, because it cannot wisely
control the clustering process due to its poor stopping con-
dition setting. At the same time, MTCFL often gets the
improper client clusters, when compared to the ground
truth of client clusters. Furthermore, combined with the
model accuracy results of MTCFL in Fig. 7, we see that
improper clusters also lead to unstable FL training.

On the other hand, AutoCFL achieves the best clustering
correctness in most cases (see the second number of each
result in Table 3), except for the Non-IID-Input-Balanced data
setting overMNIST dataset, where AutoCFL has assigned one
client to the wrong cluster. Compared with the imbalanced
data settings, the four methods have better clustering correct-
ness on the balanced data settings in almost all cases. Such
results further validate our observations in Section 3.3 that
imbalanced data affect the correctness of client clustering. For
the IID data settings, since all clients are supposed to be
grouped into the same cluster, we record the final number of
clusters for each method to compare the clustering ability.
Our AutoCFL can always group all clients into one cluster,
and the same for IFCA that knows the actual cluster number
k ¼ 1. The other twomethods (i.e.,MTCFL and FL+HC), how-
ever, mistakenly group clients into multiple clusters. For the
non-IID data settings, AutoCFL also has the best clustering
correctness among all methods by correctly assigning most
clients into the right clusters. Even knowing the actual cluster
number, IFCA still fails to correctly group clients into the suit-
able clusters in some cases, e.g., in the Non-IID-Input-Imbal-
anced data setting. In contrast, the other twomethods have the
worst results, as shown in Table 3.

TABLE 2
The Model Accuracy Results for Clients That Have Samples

Fewer than the Average of All Clients

The number of the first row indicates the sample size of each client that has
insufficient data, while the last number is the average sample size of all clients.

Fig. 7. Time-Accuracy performance of each method over CIFAR10, MNISTand FashionMNIST. The abbreviations of IID-Im., IID-B., Non-IID-In.-Im.,
Non-IID-In.-B., Non-IID-La.-Im. and Non-IID-La.-B. denote the six different data settings as specified in Section 5.1. Fig. 7(a)-(f) show the results
over CIFAR10, Fig. 7(g)-7(l) show the results over MNIST, and Fig. 7(m)-(r) show the results over FashionMNIST.
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According to the results in Table 1, Table 3 and Fig. 7, our
AutoCFL outperforms the state-of-the-art methods on vari-
ous performance metrics under non-IID and imbalanced
data settings, e.g., on average reducing communication costs
by 4:64�, while improving model accuracy by 9:24% com-
pared to FedAvg [28], the standard FL method. Therefore,
AutoCFL can eliminate the impacts of both non-IID and
imbalanced data challenges, and achieves adaptive and cor-
rect client clustering with no prior knowledge about clients’
raw data. Even under the non-IID and balanced data set-
tings,AutoCFL still outperforms the state-of-the-art methods,
e.g., averagely reducing 4:28� communication costs with
improved model accuracy. In summary, AutoCFL outper-
forms the state-of-the-art methods under all data settings.

5.3 Effectiveness of Local Training Adjustment

Contrast Experiments. We conduct experiments in the Non-
IID-Label-Imbalanced setting to evaluate the effectiveness
of the local training adjustment strategy. We further com-
bine this strategy with FL+HC to explore its generality.

Fig. 9 shows the time-accuracy performance of our
method AutoCFL and FL+HC in both with and without the
dynamic adjustment strategy scenarios. When both methods
enable the adjustment strategy, their final model accuracy
results are much higher than that without such a strategy.
This is because our local training adjustment strategy can
eliminate the impact of imbalanced data and enhance the
clustering signs. Fig. 8 visualizes the model similarity matrix
for our method with and without the strategy on the three

datasets. Obviously, we see that local training adjustment
strategy is very helpful to restore the original model similar-
ity matrix that is affected by imbalanced data. The experi-
ment results in Figs. 8 and 9 demonstrate the effectiveness of
our local training adjustment strategy, and suggest that our
strategy can also improve existing CFLmethods with a great
generality.

Impact of Epoch Growth Factor a. We study the impact of
parameter a in our local training adjustment strategy. We
run AutoCFL for FL training with 10 communication rounds
under Non-IID-Label-Imbalanced data setting over the
CIFAR10 dataset by varying a. Our strategy will terminate
the strategy when we observe the elbow point on the vari-
ance of cumulative loss. Fig. 10 shows that different a leads
to a slight change in the optimal stopping time at which
point the model similarity matrix for the best clustering
results is obtained. In general, a larger a leads to an earlier
stopping time, while a smaller awill postpone the timing.

5.4 Effectiveness of Adaptive Client Clustering

Contrast Experiments. To evaluate the effectiveness of our
adaptive client clustering strategy, we compare the cluster-
ing results of our strategy with other classic clustering meth-
ods, i.e., K-means [8], HAC [11], and DBSCAN [2], based on
the same model similarity matrix shown in Fig. 8d, which is
derived by AutoCFL under the Non-IID-Label-Imbalanced
data setting over the CIFAR10 dataset.

However, these compared methods require to set param-
eters related to the number of clusters, we thus configure

TABLE 3
Comparisons on the Communication Efficiency and Clustering Correctness among Different Methods

Dataset Method Data Setting

IID-Im. IID-B. Non-IID-In.-Im. Non-IID-In.-B. Non-IID-La.-Im. Non-IID-La.-B.

CIFAR10

IFCA 23 / 1 7 / 1 27 / 10 28 / 15 11 / 20 6 / 20
MTCFL 72 / 6 73 / 4 63 / 14 55 / 15 53 / 12 27 / 15
FL+HC - / 2 - / 1 - / 11 - / 12 - / 14 - / 20
AutoCFL 5 / 1 5 / 1 3 / 15 5 / 17 5 / 20 4 / 20

MNIST

IFCA 19 / 1 6 / 1 12 / 18 7 / 20 7 / 20 5 / 20
MTCFL 39 / 6 81 / 6 33 / 18 55 / 19 32 / 20 47 / 20
FL+HC - / 2 - / 1 - / 11 - / 12 - / 11 - / 20
AutoCFL 5 / 1 5 / 1 4 / 20 3 / 20 3 / 20 3 / 20

FMNIST

IFCA 17 / 1 6 / 1 7 / 20 5 / 20 10 / 15 7 / 16
MTCFL 42 / 7 90 / 7 46 / 11 47 / 17 46 / 16 65 / 15
FL+HC - / 1 - / 1 - / 18 - / 20 - / 11 - / 20
AutoCFL 5 / 1 5 / 1 3 / 20 5 / 20 6 / 20 5 / 20

For each result a=b, a indicates the number of communication rounds required by each method for clustering, while b denotes the number of correctly clustered cli-
ents or the final number of clusters. The best result is marked in bold.

Fig. 8. Visualization of the resultant model similarity matrix of AutoCFL over different datasets. Here, the suffix W.O. and W. represent without and
with the local training adjustment strategy, respectively.
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them with the optimal values. Table 4 compares the final
clustering results of all methods. The final client clusters
derived by our adaptive clustering strategy are the same as
those classic clustering methods, only the order of forming
clusters differs. This experiment result demonstrates that
when the inputted model similarity matrix is the same, our
strategy can produce the same and correct client clusters as
classic methods do, even without setting any parameters.

Impact of Weighted Voting. We propose the weighted vot-
ing mechanism to further eliminate the impact of imbal-
anced data and improve the clustering correctness. To
evaluate the effectiveness of weighted voting, we compare
the clustering results with weighted voting and unweighted
voting, i.e., setting the same weights for all clients, under all
data settings over the three datasets.

Table 5 shows the comparison results, where we see that
the clustering results with weighted voting are generally
better than those with unweighted voting. In particular, the

number of correctly clustered clients for unweighted clus-
tering is almost half of that for weighted clustering under
the Non-IID-Input data settings. This is because unweighted
voting based clustering ignores the impact of imbalanced
data, which leads to improper clustering results. The results
imply that our weighted voting can overcome the problem
of unstable inter-model distances caused by unbalanced
local samples, and thus obtains better clustering results.

6 CONCLUSION

In this paper, we present AutoCFL to advance existing CFL
researches. The design of AutoCFL is driven by two major
observations. First, most existing CFL works heavily rely on
the prior knowledge of the number of clusters, and fail to
achieve efficient and adaptive client clustering. Second,
existing CFL works have largely neglected the impact of
imbalanced data on client clustering, while we experimen-
tally observe that imbalanced samples across clients cause
the local empirical loss inconsistent between clients even
with similar data distribution. Therefore, we propose two
novel strategies to attack the non-IID data and imbalanced
data challenge simultaneously. Specifically, the local train-
ing adjustment strategy can dynamically adjust the local
epochs for each client to eliminate the impact of imbalanced
data. AutoCFL further exploits the weighted voting based

Fig. 9. Comparison on the time-accuracy performance of AutoCFL and
FL+HC over different datasets.

Fig. 10. The changes of cumulative loss variance under different a,
where the point in the red dashed circle indicates the optimal stopping
time to obtain the model similarity matrix for the best client clustering.

TABLE 4
Comparison on the Final Client Clusters Derived by Different

Clustering Methods, Given the Input Model Similarity
Matrix Shown in Fig. 8d.

For each result a=b, a indicates the number of communication rounds required
by each method for clustering, while b denotes the number of correctly clustered
clients or the final number of clusters. The best result is marked in bold.

TABLE 5
Comparison on the Clustering Correctness of

Weighted Voting and Unweighted Voting

The final number of clusters for IID data settings and the number of correctly
clustered clients for non-IID data settings are listed, respectively. The best
result is marked in bold.
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adaptive client clustering strategy to automatically extract
the cluster structure among clients from the model similar-
ity matrix, getting ride of pre-setting any parameters related
to the cluster number. Extensive experiments over three
popular datasets under various data settings have demon-
strated the effectiveness and efficiency of AutoCFL.

REFERENCES

[1] A. A. Abdellatif et al., “Communication-efficient hierarchical fed-
erated learning for IoT heterogeneous systems with imbalanced
data,” Future Gener. Comput. Syst., vol. 128, pp. 406–419, 2022.

[2] D. Birant and A. Kut, “ST-DBSCAN: An algorithm for clustering
spatial–temporal data,”Data Knowl. Eng., vol. 60, no. 1, pp. 208–221,
2007.

[3] K. A. Bonawitz et al., “Towards federated learning at scale: System
design,” in Proc. Mach. Learn. Syst. Conf., 2019, pp. 374–388.

[4] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierar-
chical clustering of local updates to improve training on non-IID
data,” in Proc. Int. Joint Conf. Neural Netw., 2020, pp. 1–9.

[5] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated
learning: Convergence analysis and power-of-choice selection
strategies,” 2020, arXiv:2010.01243.

[6] M. Duan et al., “FedGroup: Ternary cosine similarity-based clus-
tered federated learning framework toward high accuracy in het-
erogeneous data,” 2020, arXiv:2010.06870.

[7] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient
framework for clustered federated learning,” in Proc. Adv. Neural
Informat. Process. Syst., 2020, pp. 19586–19597.

[8] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” J. Roy. Statist. Soc.: Ser. C (Appl. Statist.),
vol. 28, no. 1, pp. 100–108, 1979.

[9] D. Jiang et al., “A GDPR-compliant ecosystem for speech recogni-
tion with transfer, federated, and evolutionary learning,” ACM
Trans. Intell. Syst. Technol., vol. 12, no. 3, pp. 1–19, 2021.
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