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ABSTRACT

Existing domain generalization (DG) methods for cross-person

generalization tasks often face challenges in capturing intra- and

inter-domain style diversity, resulting in domain gaps with the tar-

get domain. In this study, we explore a novel perspective to tackle

this problem, a process conceptualized as domain padding. This

proposal aims to enrich the domain diversity by synthesizing intra-

and inter-domain style data while maintaining robustness to class

labels. We instantiate this concept using a conditional diffusion

model and introduce a style-fused sampling strategy to enhance

data generation diversity. In contrast to traditional condition-guided

sampling, our style-fused sampling strategy allows for the flexible

use of one or more random styles to guide data synthesis. This

feature presents a notable advancement: it allows for the maximum

utilization of possible permutations and combinations among ex-

isting styles to generate a broad spectrum of new style instances.

Empirical evaluations on a board of datasets demonstrate that our

generated data achieves remarkable diversity within the domain

space. Both intra- and inter-domain generated data have proven

to be significant and valuable, contributing to varying degrees of

performance enhancements. Notably, our approach outperforms

state-of-the-art DG methods in all human activity recognition tasks.

CCS CONCEPTS

• Human-centered computing → Ubiquitous computing; •

Computing methodologies→ Transfer learning.
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1 INTRODUCTION

Human activity recognition (HAR) is a crucial application of time

series data collected from wearable devices like smartphones and

smartwatches, garnering substantial attention in recent years [6, 22,

55]. Deep learning (DL) techniques have proven effective in time

series classification (TSC) for HAR tasks [53, 64, 66]. However, a

common assumption underpinning thesemodels is that training and

test data distributions are identically and independently distributed

(i.i.d.) [48], a condition that does not often hold up in real life due to

individual differences in activity styles influenced by factors such as

age and gender [33, 36]. For instance, sensor data distributions can

diverge significantly between younger and older individuals due to

variations in walking speed and frequency, leading to challenges in

achieving cross-person generalization with standard DL models.

Domain generalization (DG) seeks to address this issue [48].

Approaches such as domain-invariant [1, 10, 13, 32, 33, 68] and

domain-specific [5, 30, 49, 65] methods are designed to extract ro-

bust inter-domain and intra-domain features that can withstand

data distribution shifts across various domains. However, their ef-

fectiveness is reliant on the diversity and breadth of the training

data [56]. The challenge arises in HAR tasks, where the collected

training data is often small-scale and lacks the necessary diversity

due to resource constraints on edge devices [36, 50]. This inherent

diversity scarcity in source domain training data can lead to overfit-

ting to local and narrow inter- or intra-domain features, resulting

in poor generalization to new, unseen domains. As shown in Fig. 1
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(a) and (b), the learned features lack required intra- or inter-domain

feature robustness, thereby impeding their generalization to target

domains (red circles).

One promising solution is to enrich training distributions by data

generation. Recent research [36] has focused on enhancing training

data richness through standard data augmentation like rotation and

scaling; however, it primarily enhances intra-domain diversity and

falls short of addressing inter-domain variability. As shown in Fig. 1

(c), the augmented data (stars) for source domains (orange and blue

circles) tends to cluster tightly, yet fails to generate the necessary

inter-domain data. The target domain (red circles) thus cannot be

comprehensively represented.

In this work, we focus on the generation of highly diverse data

distributions to address the issue of limited domain diversity in

HAR. We explore a novel perspective to tackle this problem. As

depicted in Fig. 1 (d), the core idea involves enabling synthetic data

(stars) to fill the empty spaces within and across source domains

while maintaining robustness to class labels, a process we concep-

tualize as “domain padding”. For instance, as illustrated in Fig. 1(e),

we can combine multiple walking styles of an elderly man and a

young man to create a novel inter-domain style or merge multiple

walking styles of a young man to generate a new intra-domain style.

Compared to existing DGmethods, our domain padding holds great

potential to generate a more extensive range of unknown style dis-

tributions. This enables TSC models to comprehensively explore a

wide array of intra- and inter-domain variations, contributing to

enhanced generalization in HAR scenarios.

We instantiate our concept using conditional diffusion proba-

bilistic models [16, 41]. To generate samples with instance-level

diversity, we first design a contrastive learning pipeline [9]. It aims

to extract the activity style representations of the available data in

the source domains while preserving their robustness for classifica-

tion tasks. The resulting style representation, denoted as 𝑆𝑖 , can be

interpreted as “a [class] activity performed in [𝑆𝑖 ] style". We then pro-

pose a novel style-fused sampling strategy for the diffusion model

to achieve domain padding requirements. This involves randomly

combining one or multiple style representations of training samples

within the same class. Styles in each combination are then utilized

to jointly guide the diffusion to generate novel activity samples that

fuse the styles. This innovation presents a notable advancement:

the randomness of the combination (whether originating from dif-

ferent or the same domains) ensures diversity in both inter-domain

and intra-domain, thereby achieving the domain padding, as shown

in Fig. 1 (d) and (e). Moreover, it allows for the maximum utilization

of possible permutations and combinations among existing styles

to generate a broad spectrum of new style instances. Hence, we

term our approach as Diversified Intra- and Inter-domain distribu-

tions via activity Style-fused Diffusion modeling (DI2SDiff)1. We

summarize our main contributions as follows:

• We explore a pivotal challenge hampering the effectiveness of

current DG methods in HAR: diversity scarcity of source do-

main features. In response, we introduce the concept of “domain

padding”, offering a fresh perspective for enhancing domain di-

versity and ultimately improving DG models’ performance.

1Our code is available at https://github.com/jrzhang33/DI2SDiff.
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Figure 1: T-SNE visualization [46] of time-series features

extracted by various methods across three domains in HAR.

Existing representation learning methods result in domain

gaps as in both (a) and (b), covering a small portion of target

domain (red circles). Standard data augmentation (DA) leads

to augmented data (stars), with source domains (orange/blue

circles) remaining in close proximity to each other and failing

to fill gaps. Our method (d) creates a comprehensive feature

space by padding domain gaps via the idea of (e).

• We propose to use activity style features as conditions to guide

the diffusion process, extending the information available at the

instance-level beyond mere class labels.

• We propose a novel style-fused sampling strategy, which can

flexibly fuse one or more style conditions to generate new, unseen

samples. This strategy achieves data synthesis diversity both

within and across domains, enabling DI2SDiff to instantiate the

concept of domain padding.

• We conduct extensive empirical evaluations of DI2SDiff across a

board of HAR tasks. Our findings reveal that it markedly diversi-

fies the intra- and inter-domain distribution without introducing

class label noise. Leveraging these high-quality samples, DI2SDiff

outperforms existing solutions, achieving state-of-the-art results

across all cross-person activity recognition tasks.

2 RELATEDWORK

Human activity recognition (HAR) uses sensors like ECGs for

recognizing activities in healthcare and human-computer interac-

tion [7, 54]. The complexity of daily activities, varying among indi-

viduals with different personal styles, makes recognition challeng-

ing [33, 64]. With the rise of deep learning, deep neural networks

have been increasingly utilized to extract informative features from

activity signals [20, 59, 62, 64]. For example, DeepConvLSTM in-

corporates convolutional and LSTM units for multimodal wearable

sensors [34]. MultitaskLSTM extracts features using shared weights,

then classifies activities and estimates intensity separately [3].

Domain generalization (DG) aims to improve model perfor-

mance across different domains. Early works [1, 10, 13, 32, 68]

focused on utilizing multiple source domains and enforcing do-

main alignment constraints to extract robust features. For example,

DANN [1] employed adversarial training to accomplish this task,

but it requires target data during training. To recall more beneficial

features, several methods [5, 30, 49, 65] such as mDSDI [5] have

been proposed to preserve domain-specific features. Another line
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of research in DG focuses on data augmentation techniques [14,

15, 23, 47, 58, 67] to explore more robust patterns for improved

generalization, such as generating adversarial examples [14].

Given the practical significance of DG learning for HAR tasks,

researchers [27, 33, 35, 36, 52] have turned their focus to studying

DG problems in this field. For instance, Wilson et al. [52] proposed

an adversarial approach to learn domain-invariant features, which

requires labeled data in the target domain during training. Qian

et al. [33] improved variational autoencoder (VAE) framework [21]

to disentangle domain-agnostic and domain-specific features auto-

matically, but domain labels are required. DDLearn [36] is a recent

advanced approach that enriches feature diversity by contrasting

augmented views but is limited to standard augmentation tech-

niques that only enrich intra-domain features.

Diffusion models have showcased their remarkable potential

in generating diverse and high-quality samples in various domains,

like computer vision [28], natural language processing [24], and

decision-making [11]. Furthermore, classifier-free guidance models

[17] have achieved impressive outcomes in multimodal modeling,

with wide applications in tasks such as text-to-image synthesis [39]

and text-to-motion [44]. Considering the potential non-stationary

distribution of time-series data [18], we propose harnessing the

power of diffusion models to generate diverse data in HAR tasks,

and thereby enhancing the model’s generalization ability. Intrigu-

ingly, diffusion models have received limited attention in HAR

tasks. A recent survey on time-series diffusion models [25] indi-

cates that although some successful attempts have been made to

apply diffusion models to time-series tasks like interpolation [43]

and forecasting [4, 37], comprehensive investigations in time-series

generation tasks are still lacking. Our study not only establishes

diffusion models for time-series generation but also guides the dif-

fusion model to produce diverse samples, effectively addressing the

challenges of DG in HAR tasks. Our work thus presents a novel

and challenging contribution to the field.

3 PRELIMINARIES

3.1 Problem Statement

In cross-person activity recognition [36], a domain is characterized

by a joint probability distribution 𝑃𝑋,𝑌 across the product space

of time-series instances X, and the corresponding label space Y.

Each instance X𝑖 ∈ R
𝐾×𝐿 represents the values of each time series

obtained from sensors, where 𝐾 is the dimensionality of features,

and 𝐿 is the temporal length of the series. Moreover, each instance

X𝑖 corresponds to an activity class label 𝑦𝑖 ∈ {1, 2, · · · ,𝐶}, indicat-

ing the specific activity category performed by the subjects, with𝐶
denoting the total number of activity categories. The domain gen-

eralization challenge lies in the nonintersection and domain differ-

ences between the training and testing sets. Typically, the training

set 𝐷𝑠 = {(X𝑖 , 𝑦𝑖 )}
𝑛𝑠
𝑖=1 is collected from the labeled source-domain

subjects, where 𝑛𝑠 represents the number of training instances.

Importantly, 𝑛𝑠 is often small in cross-person activity recognition

scenarios, presenting the small-scale challenge. On the other hand,

the test set 𝐷𝑡 = {(X𝑖 , 𝑦𝑖 )}
𝑛𝑡
𝑖=1 consists of 𝑛𝑡 instances obtained

from the unseen target-domain subjects and satisfies the condi-

tion 𝐷𝑠 ∩ 𝐷𝑡 = ∅. In addition, source and target domains have

different joint probability distributions while sharing the identi-

cal feature space and class label space, i.e., 𝑃𝑠 (X𝑖 , 𝑦𝑖 ) ≠ 𝑃𝑡 (X𝑖 , 𝑦𝑖 ),
and X𝑠 = X𝑡 , Y𝑠 = Y𝑡 . The primary objective is to leverage the

available data in 𝐷𝑠 to train a TSC model 𝑓 : X → Y capable of

effectively generalizing to an inaccessible, unseen test domain 𝐷𝑡 ,

without any prior exposure to target domain data or domain labels

during training. This task is inherently more challenging than con-

ventional transfer learning settings [33, 36] due to the disparate

distributions across source and target domains, compounded by

the small-scale settings of the training data.

3.2 Diffusion Probabilistic Model

Diffusion model [41] involves training a model distribution 𝑝𝜃 (𝑥)
to closely approximate the target ground-truth data distribution

𝑞(𝑥). It assumes distribution 𝑝𝜃 (𝑥) as a Markov chain of Gauss-

ian transitions: 𝑝𝜃 (𝑥0) =
∫

𝑝𝜃 (𝑥𝑇 )
∏𝑇

𝑡=1 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )𝑑𝑥1:𝐾 , where
𝑥1, . . . , 𝑥𝑇 denote the latent variables with the same dimensionality

as original (noiseless) data 𝑥0. 𝑝𝜃 (𝑥𝑇 ) ∼ N (0, I) is the Gaussian
prior. 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) is the trainable reverse process given by

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) := N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), 𝜎𝜃 (𝑥𝑡 , 𝑡)). (1)

Diffusion predefines a forward process that progressively adds

Gaussian noise to 𝑥0 in 𝑇 steps, defined as

𝑞(𝑥𝑡 |𝑥𝑡−1) := N
(
𝑥𝑡 ;

√
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I

)
, (2)

where 𝛽𝑡 ∈ (0, 1) is variance schedule for noise control.
Training procedure. The diffusion model’s parameters 𝜃 are

optimized by maximizing the evidence lower bound of the log-

likelihood of the data, i.e., log𝑝𝜃 (𝑥0), which can be further simpli-

fied as a surrogate loss [16]:

L(𝜃 ) := E𝑥0,𝑡∼U,𝜖∼N(0,I)
[
| |𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡) | |

2] , (3)

whereU is the uniform distribution and the noise predictor 𝜖𝜃 (𝑥𝑡 , 𝑡),
parameterized with a deep neural network, aims to estimate the

noise 𝜖 at time 𝑡 given 𝑥𝑡 . As 𝜇𝜃 (𝑥𝑡 , 𝑡) is determined by 𝜖𝜃 (𝑥𝑡 , 𝑡),
the target 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) can be consequently derived.

Sampling procedure. Given a well-trained 𝑝𝜃 , the data gen-
eration procedure begins with a Gaussian noise 𝑥𝑇 ∼ N(0, I)
and proceeds by iteratively denoising 𝑥𝑡 for 𝑡 = 𝑇, · · · , 1 through
𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ), culminating in the generation of the new data 𝑥0.

4 DOMAIN PADDING

A major obstacle to achieving domain generalization in HAR tasks

is the limited data diversity of the source domain. This presents

representation learning methods from extracting robust features

to distribution shifts across domains. Moreover, data augmenta-

tion also shows insufficient data richness within the domain space,

particularly the inter-domain distribution.

In response, our work aims to achieve highly diverse data gen-

eration to enrich the training distributions. We propose a novel

perspective, which we refer to as “domain padding”. The core idea is

to achieve the richness of the domain space by “padding” the distri-

butional gaps within and between source domains, as demonstrated

in Fig. 1 (d). To ensure the generation of high-quality, diverse data

that can effectively augment the training datasets for HAR models,

domain padding adheres to two key criteria:



KDD ’24, August 25–29, 2024, Barcelona, Spain Junru Zhang, et al

• Class-Preserved Generation: The generated data should main-

tain alignment with the original data in terms of class labels,

ensuring consistency.

• Intra- and Inter-DomainDiversity: The generated data should

not only boost diversity within individual domains (i.e., intra-

domain diversity) but should also enrich distribution between

distinct domains (i.e., inter-domain diversity).

The first criterion ensures that the enhanced diversity does not

compromise the semantic integrity of the data. By maintaining con-

sistency in class labels, domain padding contributes meaningfully

to model learning without introducing label noise or confusion. The

second criterion guarantees that the models are exposed to a wide

range of domain variations, thereby enhancing their robustness

against shifts in data distribution.

5 METHODOLOGY

We implement domain padding using conditional diffusion mod-

els given their highly-expressive generative capabilities [16, 60].

The iterative denoising process of diffusion models makes them

exceptionally suited for flexible conditioning mechanisms. In this

framework, given the original dataset 𝐷𝑠 , we generate a new sam-

ple 𝑥0 ∼ X̃𝑠 using conditional information 𝑠 ∈ Xcond to guide the

generation process. The ensemble of all generated data constitutes

a synthetic dataset, denoted as �̃�𝑠 = {(X̃i, 𝑦𝑖 )}
�̃�𝑠
𝑖=1, with �̃�𝑠 denoting

the total count of generated samples. Next, we use 𝑥0 to denote an

example of the synthetic samples. The generation objective is to

estimate the conditional data distribution 𝑞(𝑥 |𝑠). This allows us to
generate a synthetic sample 𝑥0 given a specific constraint 𝑠 . The
conditional diffusion process can be described by:

𝑞(𝑥𝑡 |𝑥𝑡−1, 𝑠), 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝑠). (4)

Sequentially performing 𝑝𝜃 enables the generation of new samples

to capture the attributes of 𝑠 . However, realizing domain padding

is not a trivial task due to a key aspect: how to guide the diffusion

model to generate diverse activity samples meeting two criteria of

domain padding.

In the following, we introduce the DI2SDiff framework, designed

to enable diffusion to achieve domain padding. In §5.1, we present

a contrastive learning pipeline that extracts style features to serve

as conditions for the diffusion model. Given a style condition, we

employ classifier-free guidance [17] to generate new samples that

meet the first criterion in §5.2. For the second criterion, we construct

a diverse style combination space for the condition space Xcond

and introduce a style-fused sampling strategy to generate highly

diverse intra and inter-domain data in §5.3. We finally provide the

workflow of DI2SDiff in §5.4.

5.1 Activity Style Condition

Conditional diffusion models are typically guided by label or text

prompts that provide task-specific knowledge, such as "create a

[cartoonish] [cat] image" [31, 51, 61]. However, the generation of

instance-level time-series data introduces distinct challenges. It is

difficult to capture the complex patterns solely through label or text

prompts due to the inherently high-dimensional and non-stationary

nature [18]. To address this issue, we propose the development of a

style conditioner using a contrastive learning approach [9]. This ap-

proach has demonstrated robustness in extracting representations

from unlabeled time-series data. The transformed data can retain

the distinctive characteristics of the original data while preserving

the semantic information of the classes. Thus, it is well-suited for

extracting robust instance-level representation, termed as “style”,

which can serve as conditions to guide diffusion models.

Delving into specifics, the contrastive learning pipeline consists

of a feature encoder and Transformer on the available training

data. The objective is to maximize the similarity between different

contexts of the same sample and minimize the similarity between

contexts of different samples. Once the module is trained, we utilize

it as style conditioner denoted as 𝑓style. When extracting the style

from the original data X𝑖 , the style conditioner produces a style

vector 𝑆𝑖 = 𝑓style (X𝑖 ) ∈ R𝐻 , where 𝐻 denotes the length of the

vector. Consequently, each activity style condition can be inter-

preted as "a [𝑦𝑖 ] activity performed in [𝑆𝑖 ] style", where 𝑦𝑖 denotes
the class of the original data. This approach takes an important

step towards the first criteria of domain padding due to the preser-

vation of class semantics. The aggregation of all context vectors

from 𝑛𝑠 training instances constitutes a set S = {𝑆𝑖 }
𝑛𝑠
𝑖=1, which can

be further divided into 𝐶 class-specific subsets corresponding to 𝐶
classes. Each subset contains style vectors pertaining to a specific

class, expressed as S = {S1 ∪ S2 ∪ · · · ∪ S𝐶 }. In Appendix A, we

provide the details of the contrastive learning approach [9].

5.2 Synthesizing with Classifier-Free Guidance

To control the generation of time-series samples, we can leverage

the style inS to guide the conditional sampling process 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝑠)
presented in Eq. (4). To this end, we adopt the classifier-free guid-

ance [17], which has proven to be effective in generating data with

specific characteristics. In this framework, the training process is

modified to learn a conditional 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑠) and an unconditional

𝜖𝜃 (𝑥𝑡 , 𝑡, ∅), where ∅ symbolizes the absence of the condition 𝑠 . The
loss function is formulated as follows:

L(𝜃 ) := E𝑥0∼X𝑠 ,𝜖∼N(0,I ),𝑡∼U,𝑠∼S
[
‖𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑠)‖

2] , (5)

where condition 𝑠 is one style feature in S derived from the pre-

trained conditioner, and it is randomly dropped during the training.

During the sampling phase, a sequence of samples 𝑥𝑇 , . . . , 𝑥0
is generated starting from 𝑥𝑇 ∼ N(0, I). For each timestep 𝑡 , the
model refines the process of denoising 𝑥𝑡−1 based on 𝑥𝑡 through
the following operation:

𝜖𝜃 = 𝜖𝜃 (𝑥𝑡 , 𝑡, ∅) + 𝜔
(
𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑠) − 𝜖𝜃 (𝑥𝑡 , 𝑡, ∅)

)
, (6)

where𝜔 is a scalar hyperparameter that controls alignment between

the guidance signal and the sample [17]. Through the iterative

application of Eq. (6), the diffusion model is capable of sampling

new time-series samples that conform to specific styles 𝑠 ∈ S. It is

worth noting that the styles 𝑆1, . . . , 𝑆𝑛𝑠 are robust to the class labels,
the generation process guarantees the first criterion of domain

padding: each generated sample belongs to a known class under

the guidance of a single condition.

5.3 Beyond One Activity Style

So far our approach has not yet achieved the second criterion of

domain padding, as samples conditioned on a singular style 𝑠 ∈ S
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Figure 2: Illustration of the diffusion within DI2SDiff. It contains a style conditioner to produce styles and a conditional

diffusion for data generation. Suppose we have three original walking samples: X1, X2, and X3, where X1 is from a different

domain while X2 and X3 come from the same domain. (a) The style conditioner generates style features from the original data.

The style features are randomly combined to build the condition space, in which the combination of inter-domain styles is

indicated by blue brackets and the combination of intra-domain styles is indicated by grey brackets. (b) During training, the

diffusion retrieves each data sample with one style for the forward process. (c) During sampling, the diffusion receives noise

and a style combination, e.g., [𝑆1, 𝑆3], for the reverse process. (d) The generated sample X̃𝑖 is used to diversify the data space.

could demonstrate a limited range of variation within the intra-

domain space. Therefore, we then propose a style-fused sampling

strategy to further enhance the diversity. This strategy guides the

diffusion to generate new data that satisfy any number and combi-

nation of styles (conditions), rather than just one. By doing so, the

generated data fuse diverse inter and intra-domain styles, effectively

meeting the second criterion of domain padding.

Random style combination. Random style combination entails

the ensemble of one or multiple style features under a unified class

to establish a new diffusion sampling condition. Importantly, the

ensemble styles must belong to the same class to preserve class

consistency. For each class label 𝑐 , we randomly select any number

of style features from the class-specific set S𝑐 and combine them

in all possible ways. This will end up with 2𝑘 − 1 different style

combinations (excluding the empty set), where 𝑘 = |S𝑐 | is the

number of styles inS𝑐 . Mathematically, the collection of all possible

style combinations for class 𝑐 can be expressed by the power set

P(S𝑐 ) of S𝑐 :

P(S𝑐 ) = {D𝑗 |D𝑗 ⊆ S𝑐 ,D𝑗 ≠ ∅} (7)

For instance in Fig. 2 (c), three styles in S𝑐 = {𝑆1, 𝑆2, 𝑆3} results
in 7 different combinations2. This operation is replicated across

all classes 1, . . . ,𝐶 , integrating them into a comprehensive style

combination set D = {P(S1) ∪ · · · ∪ P(S𝐶 )}. The randomness

in selecting style combinations can significantly foster diversity

within and between domains, and maximize the exploitation of

existing styles to generate highly diverse condition space Xcond.

Style-fused sampling. Subsequently, our efforts are directed

towards empowering the diffusionmodel to fuse multiple styles dur-

ing the data generation conditioned on a specific style combination

D𝑗 ∈ D. Assuming the diffusion has learned the data distributions

2P(S𝑐 ) =
{
{𝑆1 }, {𝑆2 }, {𝑆3 }, {𝑆1, 𝑆2 }, {𝑆1, 𝑆3 }, {𝑆2, 𝑆3 }, {𝑆1, 𝑆2, 𝑆3 }

}

{𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑠)}
𝑛𝑠
𝑖=1 through Eq. (5), sampling from the composed data

distribution 𝑞(𝑥0 |D𝑗 ) for any given style combination D𝑗 ∈ D is

achieved using the below perturbed noise:

𝜖𝜃 = 𝜖𝜃 (𝑥𝑡 , 𝑡, ∅) + 𝜔
∑
𝑠∈D𝑗

(
𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑠) − 𝜖𝜃 (𝑥𝑡 , 𝑡, ∅)

)
. (8)

The derivation of Eq. (8) is provided in Appendix B. This indicates

that while the diffusion training process primarily focuses on an

individual style, we can flexibly combine these styles during sam-

pling. For instance, consider the combination of D𝑗 = {𝑆1, 𝑆3} in
Fig. 2 (c) and (d). Each element represents a style associated with

the [walking] activity. Eq. (8) can generate new samples with the

[walking] label possesses unique characteristics that fuse these

two styles. This is critical for inter and intra-domain diversity in

domain padding: diffusion can flexibly incorporate class-specific

instance-level styles from different or the same domains to gener-

ate new samples with novel domain distribution. Moreover, given

the existence of sub-domains within each domain, our diffusion

model is capable of synthesizing novel domains, even from sam-

pling instances within the same domain (we verify this later in the

experiments).

5.4 Workflow of DI2SDiff

Finally, we elaborate on the comprehensive workflow of our ap-

proach, whichwe refer to asDiversified Intra- and Inter-domain dis-

tributions via activity Style-fused Diffusion modeling (DI2SDiff).

Architectural design. The diffsuion model 𝜖𝜃 : X̃𝑠 × N ×

Xcond → X̃𝑠 is built upon a UNet architecture [17] with repeated

convolutional residual blocks. To accommodate the characteristics

of time series input, we adapt 2D convolution to 1D temporal convo-

lution. The model incorporates a timestep embedding module and
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a condition embedding module, each of which is a multi-layer per-

ceptron (MLP). The condition embedding module is used to encode

each activity style 𝑠 ∈ S, and in the unconditional case 𝑠 = ∅, we

zero out the entries of 𝑠 . These embeddings are then concatenated

and fed into each block of the UNet.

Training. During the training stage, as shown in Fig. 2 (a) and

(b), the pre-trained style conditioner extracts style features {𝑆𝑖 }
𝑛𝑠
𝑖=1

for the training instances {Xi}
𝑛𝑠
𝑖=1. Each data instance Xi, paired

with its style 𝑆𝑖 and a randomly sampled timestep 𝑡 ∼ U, forms a

tripartite input (Xi, 𝑡, 𝑆𝑖 ). This setup facilitates the optimization of

the model against a loss function defined by Eq. (5).

Sampling. During the sampling stage, we construct the style

combination set D by Eq. (7). As shown in Fig. 2 (c), a specific

style combination D𝑗 ∈ D is then selected to guide the diffusion

process, generating the new sample that fuses the styles inD𝑗 . The

sampling operates under single-condition guidance when the style

combination comprises a single style, i.e., |D𝑗 | = 1. Conversely,

when the style combination comprises multiple styles, i.e., |D𝑗 | > 1,

the sampling proceeds under multiple-condition guidance.

Domain space diversity. Through the iterative execution of

the sampling procedure, we can generate a diverse range of new,

unseen samples that meet domain padding criteria. These synthetic

samples collectively form a synthetic dataset �̃�𝑠 for TSC models’

training. This process involves two hyperparameters 𝜅 and 𝑜 . 𝜅
denotes the proportion of synthetic to original training samples,

effectively managing the volume of synthetic samples. 𝑜 denotes

the maximum number of style features that can be combined in

each style set.

Training TSCmodel. Utilizing the synthetic dataset �̃�𝑠 , we are

able to augment the training dataset to {�̃�𝑠 ∪𝐷𝑠 } = {(X𝑖 , 𝑦𝑖 )}
𝑛𝑠+�̃�𝑠
𝑖=1 .

This augmented dataset can be straightforwardly utilized for stan-

dard TSC task training. To extract more value from the dataset,

we consider the diversity learning strategy from [36] for the TSC

model’s training. The main thought goes beyond just minimizing

not only the standard cross-entropy loss for correct classification.

It also involves minimizing the additional cross-entropy loss to

effectively differentiate between synthetic and original samples.

For more details, please refer to Appendix C and Appendix D.

6 EXPERIMENTS

In this section, we conduct a comprehensive evaluation of DI2SDiff

across various cross-person activity recognition tasks to demon-

strate (1) its ability to achieve domain padding and significantly

diversify the domain space; (2) its outstanding performance in do-

main generalization; (3) a detailed ablation and sensitivity analysis;

and (4) its versatility in boosting existing DG baselines.

6.1 Experimental Setup

Datasets.We assess ourmethod on three widely usedHAR datasets:

UCI Daily and Sports Dataset (DSADS) [2], PAMAP2 dataset [38]

and USC-HAD dataset [63]. We follow the same experimental set-

tings in [36] that provided a generalizable cross-person scenario.

Specifically, the subjects are organized into separate groups for

leave-one-out validation. We assign the data of one group as the

target domain and utilize the remaining subjects’ data as the source

domain. Each subject is treated as an independent task.

(a) DSADS (b) PAMAP2 (c) USC-HAD

Figure 3: T-SNE visualization of DSADS, PAMAP2, USC-HAD

datasets. Each method generates the same amount of syn-

thetic data. The original and synthetic data are represented

by shapes dots and crosses, and each class is denoted by a

color. Best viewed in color and zoom in.

(a) DSADS (b) PAMAP2 (c) USC-HAD

Figure 4: T-SNE visualization of DSADS, PAMAP2, and USC-

HAR datasets. Each method generates the same amount of

synthetic data. Each domain category is represented by a

color, and the target domain is represented by a red dot. The

original and synthetic data are represented by shapes dots

and crosses, respectively. Best viewed in color and zoom in.

Baselines. We compare our approach with a wide range of

closely related, strong baselines adapted to TSC tasks.We first select

Mixup [57], RSC [19], SimCLR [8], Fish [40], and DDLearn [36], given
their outstanding performance in most recent study [36]. Notably,

DDLearn [36] is ranked as the top-performing method. We also

include TS-TCC [9] for its remarkable generalization performance

in self-supervised learning. Additionally, we incorporate DANN [12]

and mDSDI [5], which are designed to address domain-invariant and

domain-specific feature learning, respectively. In our analysis, the

standard data augmentation (DA) techniques [45] are identical to

those employed in [36], such as scaling and jittering.

Architecture and implementation. For fairness, we adopt the

same feature extractor as described in [36], which consists of two
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Table 1: Classification accuracy (%) (± standard deviation) on three public datasets, where each task only comprises 20% of

training data. The best results are marked in bold. "T0-T4" represent different cross-person activity recognition tasks.

Tar Mixup [57] RSC [19] SimCLR [8] Fish [40] DANN [12] mDSDI [5] TS-TCC [9] DDLearn [36] Ours

D
SA

D
S

T0 74.77 (±1.76) 54.32 (±2.19) 72.48 (±3.18) 55.06 (±1.60) 72.49(±3.21) 76.91(±2.34) 80.47(±0.53) 87.88 (±1.92) 89.93 (±2.57)
T1 75.78 (±3.95) 63.62 (±10.56) 76.61 (±2.56) 62.28 (±3.13) 69.61(±1.96) 76.02(±1.56) 79.68(±0.42) 88.80 (±1.11) 90.17 (±0.84)
T2 74.18 (±4.36) 66.48 (±1.80) 78.25 (±0.92) 68.15 (±1.60) 78.97(±4.06) 72.71(±0.98) 84.37(±1.87) 89.21 (±1.23) 91.39 (±1.31)
T3 75.85 (±3.45) 64.29 (±3.37) 76.49 (±0.91) 68.83 (±3.83) 78.54(±2.14) 79.58(±1.29) 82.09(±2.51) 85.63 (±1.13) 88.95 (±1.79)
Avg 75.15 (±2.36) 62.18 (±4.32) 75.96 (±1.25) 63.58 (±0.37) 74.90(±2.63) 76.31(±1.56) 81.65(±1.33) 87.88 (±0.82) 90.11 (±1.63)

PA
M
A
P
2

T0 57.81 (±0.55) 55.99 (±1.29) 63.28 (±3.33) 58.70 (±4.31) 54.02(±3.52) 42.70(±3.14) 64.08(±1.98) 75.55 (±0.79) 79.58 (±2.46)
T1 81.51 (±3.94) 83.08 (±2.42) 81.25 (±1.59) 85.16 (±1.39) 77.21(±3.79) 83.82(±1.62) 86.55(±2.28) 90.07 (±2.40) 94.12 (±1.20)
T2 77.34 (±3.33) 78.65 (±3.99) 78.65 (±1.87) 79.69 (±4.00) 78.80(±1.87) 79.15(±2.72) 80.21(±0.52) 85.51 (±0.76) 89.57 (±2.48)
T3 70.31 (±5.64) 68.10 (±6.27) 71.09 (±1.99) 72.53 (±0.49) 61.96(±2.11) 78.61(±0.49) 77.32(±0.47) 80.67 (±1.78) 84.75 (±3.72)
Avg 71.74 (±1.37) 71.45 (±2.55) 73.57 (±1.21) 72.85 (±0.37) 67.99(±2.66) 75.07(±1.99) 77.04(±1.29) 82.95 (±0.60) 87.01 (±1.94)

U
SC

-H
A
D

T0 68.66 (±4.67) 75.69 (±4.28) 69.36 (±2.34) 73.70 (±3.97) 57.79(±4.73) 59.71 (±1.23) 78.96(±0.79) 79.06 (±2.11) 88.33 (±1.70)
T1 68.75 (±1.29) 72.40 (±2.88) 66.62 (±1.44) 72.05 (±2.93) 64.95(±2.68) 67.35 (±2.46) 79.55(±1.23) 80.15 (±1.11) 81.64 (±0.28)
T2 71.79 (±0.65) 72.83 (±3.62) 76.04 (±1.61) 69.10 (±2.93) 71.97(±3.23) 63.89 (±3.69) 78.15(±2.15) 80.81 (±0.74) 88.37 (±1.46)
T3 61.29 (±3.90) 63.19 (±5.30) 61.24 (±1.06) 58.51 (±3.66) 45.65(±2.18) 63.87 (±4.92) 64.35(±1.58) 70.93 (±1.87) 77.84 (±1.10)
T4 65.63 (±4.55) 66.75 (±3.25) 62.85 (±2.17) 63.72 (±8.31) 54.94(±3.56) 55.95 (±6.15) 70.25(±0.88) 75.87 (±2.99) 83.84 (±0.88)
Avg 67.22 (±2.41) 70.17 (±3.51) 67.22 (±0.39) 67.42 (±3.91) 59.06(±2.65) 62.15 (±3.08) 74.25(±1.16) 77.36 (±0.99) 84.00 (±1.09)

Avg All 71.37 67.93 72.25 67.95 66.68 71.18 77.39 82.73 87.06

blocks for DSADS and PAMAP2, and three blocks for USC-HAD.

Each block includes a convolution layer, a pooling layer, and a

batch normalization layer. All baselines, except TS-TCC [9], employ

this feature extractor. In each experiment, we report the average

performance and standard deviation over three random seeds. For

detailed experimental setups, including dataset details and training

procedures, please refer to Appendix E.

6.2 Domain Padding and Diversity Evaluation

In this part, we demonstrate whether our approach can effectively

diversify the domain space and generate diverse samples that meet

domain padding criteria. To this end, we adopt T-SNE [46] to visual-

ize the latent feature space in terms of class and domain dimensions.

(1) Class-Preserved Generation. Firstly, we evaluate the class

consistency of synthetic data, i.e., the first criterion of domain

padding. We employ a class feature extractor, trained with class

labels, to map both original and synthetic data into a class-specific

latent space. The results of single-condition guidance (|D𝑗 | = 1)

and multiple-condition guidance (|D𝑗 | > 1) are shown in Fig. 3.

It can be observed that all synthetic samples (crosses) are closely

clustered around their corresponding original instances and classes

(dots). This clustering indicates that our method effectively main-

tains class information, avoiding the introduction of class noise; im-

portantly, this holds true under both single and multiple-condition

guidance. Moreover, the use of multiple-condition guidances ap-

pears to enhance class discriminability more than single-condition

guidance in Fig. 3. This enhancement is likely because more guid-

ance signals provide more robust class semantics (akin to ensemble

learning), therefore resulting in a better class alignment.

(2) Intra- and Inter-Domain Diversity. Next, we evaluate

the intra- and inter-domain diversity of the synthetic data, i.e., the

second criterion of domain padding. We train the domain feature

extractor on source domains with domain labels. We then map

source and target data into a domain-specific latent space, and

compare the synthetic data from the standard DA method, single-

condition guidance (|D𝑗 | = 1), and multiple-condition guidance

(|D𝑗 | > 1). The results are shown in Fig. 4.

The findings reveal that the standard DA method generates

tightly clustered samples (crosses) around the original data (dots),

falling short of diversifying the domain space, particularly the inter-

domain space. Our single-condition guidance method offers a par-

tial solution and generates sparse data between different domains

thanks to diffusion’s probabilistic nature. However, relying solely

on a single-style guidance approach has limitations for domain

padding. The introduction of our style combinations in Eq. (7)

makes a substantial improvement: the multiple-condition guidance

excels in “padding” the distributional gaps both within and between

source domains, as demonstrated in Fig. 4.

Moreover, as indicated in Fig. 4, through multiple-condition

guidance, the synthetic samples (crosses) closely resemble the target

domain data (red dots) and demonstrate less dependence on the

specific characteristics of source domains. This demonstrates that

the fusion of multiple style features creates a new style. This is

of importance for the domain generalization in TSC. Given the

significant differences in individual styles and the small-scale nature

of source domain data, our style-fused sampling demonstrates great

potential to simulate various new and unseen distributions, from

which the TSC model can better adapt to the target domains.

In addition, we can observe in Fig. 4 (c) that the USC-HAD

dataset presents an additional challenge of intra-domain gaps due

to its fragmented and sparsely distributed source domains with

distinct sub-domains. These gaps contribute to an increased distri-

bution shift, posing difficulties for existing DG methods to perform

effectively (We show their results in Tab. 1 in later). Through ran-

dom instance-level style fusion, our approach effectively addresses

this sub-domain challenge, enabling the synthesis of new data dis-

tribution within sub-domains. As a result, our method can yield

exceptional performance on the complex tasks like USC-HAD.

6.3 Generalization Performance

Now we conduct a series of experiments to evaluate the generaliza-

tion performance of DI2SDiff against other strong DG baselines.

Overall performance. Tab. 1 presents a comparative analysis

of the classification accuracies achieved by all DG methods across

three datasets, each task of which comprises 20% of the training

data. As we can see, representation learning baselines that focus

solely on learning domain-invariant features, such as DANN [12],
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Table 2: Classification accuracy (%) on three public datasets

with varying percentages (%) of used training data.

Perct. Mixup RSC SimCLR Fish DANN mDSDI TS-TCC DDLearn Ours

D
SA

D
S

20% 75.15 62.18 75.96 63.58 74.90 76.31 81.65 87.88 90.11

40% 82.48 67.70 75.76 65.82 75.45 76.55 82.54 89.71 91.25

60% 82.70 69.98 75.61 67.65 76.55 77.89 83.78 90.43 92.56

80% 81.58 75.37 74.69 66.03 76.89 79.25 84.12 90.97 94.58

100% 83.44 75.58 76.22 69.35 80.52 79.58 86.57 91.95 95.23

Avg 81.07 70.16 75.65 66.49 76.86 77.92 83.73 90.19 92.75

PA
M
A
P
2

20% 71.74 71.45 73.57 72.85 67.99 75.07 77.04 82.95 87.01

40% 76.69 73.73 74.25 77.02 69.85 72.55 78.35 84.34 87.66

60% 77.83 75.72 74.71 76.04 70.88 76.56 80.15 85.03 88.75

80% 78.00 76.17 74.09 75.13 77.82 77.53 81.78 86.67 89.92

100% 79.72 77.96 74.25 75.49 79.56 78.83 83.45 86.31 90.96

Avg 76.80 75.01 74.17 75.31 73.22 76.11 80.15 85.06 89.32

U
SC

-H
A
D

20% 67.22 70.17 67.22 67.42 59.06 62.15 74.25 77.36 84.00

40% 75.30 77.31 69.16 73.54 61.52 68.85 75.32 80.72 84.97

60% 78.14 77.59 71.38 76.09 64.71 76.75 77.84 80.88 87.53

80% 79.76 78.65 71.99 77.21 68.52 77.72 78.91 82.49 89.25

100% 81.27 79.41 72.14 78.92 72.05 78.59 79.15 82.51 91.13

Avg 76.34 76.62 70.38 74.64 65.97 72.81 77.09 80.80 87.38

exhibit suboptimal performance due to the limited diversity of the

training data in HAR. The method mDSDI [5], on the other hand,

achieves improved performance by additionally learning domain-

specific features. However, it does not match the performance of

DDLearn [36], which utilizes data augmentation, underscoring the

importance of training data diversity in enhancing generalization

in HAR. In contrast, our DI2SDiff, leveraging advanced synthesis

of highly diverse data across both intra- and inter-domain space,

markedly surpasses all baseline methods in every task. In addition,

we observe that all baselines, including DDLearn, demonstrate poor

performance on the USC-HAD dataset. As we discussed in Fig. 4

(c), this decline is due to the presence of sub-domains within the

source domain, which poses a highly challenging problem in DG.

Nevertheless, DI2SDiff adeptly addresses this issue by integrating

instance-level style fusion, thereby synthesizing new data distribu-

tions between the sub-domains. As a result, our approach achieves

outstanding performance, outperforming the second-best method

by a clear margin (6.64%) in USC-HAD.

Data proportion analysis. In Tab. 2, we assess DI2SDiff’s per-

formance over a range of data volumes by adjusting the propor-

tion of training data from 20% to 100%. The results demonstrate

DI2SDiff’s consistent superiority over the baseline methods across

various proportions of training data. This highlights the ability

of our approach to efficiently generate informative samples from

varying amounts of available data and effectively learn from them.

As the size of the training sample increases, the advantage of our

method becomes more pronounced. For instance, as we increase

the size from 20% to 100% of USC-HAD, the accuracy improvement

grows from 6.64% to 8.62% compared to the second-best baseline

(DDLearn). This is because the number of style combinations in-

creases exponentially (2𝑘 − 1) with larger training data volumes,

as shown in Eq. (7). Hence, enlarging the training dataset can pro-

vide significant diversity enhancement of data synthesis, leading

to more substantial gains in the model’s generalization ability.

6.4 Ablation and Sensitivity Analysis

In this section, we perform an ablation study that focuses on the

main step of DI2SDiff, i.e., generating diverse time-series data via

Table 3: The results of the ablation study on three datasets

and each task is averaged for an overall assessment.

Variants

DSADS PAMAP2 USC-HAD

20% 100% 20% 100% 20% 100%

Standard DA 75.58 82.57 70.31 86.41 69.14 75.45
Class Label Guidance 76.25 84.67 72.78 88.52 70.85 76.26
Single Style Sampling 86.98 91.12 83.07 89.64 75.27 83.57
Style-Fused Sampling 90.11 95.23 87.01 90.96 84.00 91.13

(a) 𝑜

(b) 𝜅

Figure 5: Hyperparameter sensitivity analysis on 𝑜 and 𝜅.

diffusion for data augmentation. We keep the number of synthetic

samples and the training strategy of TSC models the same for

all variants. Additionally, we conduct a sensitivity analysis that

focuses on its two hyperparameters: 𝜅, which controls the volume

of synthetic data, and 𝑜 , which controls the maximum number of

style features in each style combination.

Ablation on diffusion model. Our findings, as presented in

Table 3, indicate that the standard DA method and class label guid-

ance3 falter in performance. The failure of the class label guidance

sampling suggests that using class labels alone, without instance-

related information, cannot generate high-quality data. In contrast,

the diffusion model that utilizes a single style feature as a condition

achieves better performance, suggesting that leveraging represen-

tation features for instance-specific sampling can boost the quality

of generated data. Moreover, the incorporation of style-fused sam-

pling can further improve generalization by producing samples

with distinct features.

Hyperparameter sensitive analysis. We analyze the sensi-

tivity of our hyperparameters by varying one parameter while

maintaining the others constant. As shown in Fig. 5, increasing the

complexity of style combinations (𝑜) and the volume of synthetic

data (𝜅) generally leads to performance improvement. It becomes

non-sensitive when the value is too large. We find that an 𝑜 value

of 5 for the DSADS and PAMAP2 and an 𝑜 value of 10 for the USC-

HAD sufficiently ensure a diverse range of styles. 𝜅 values of 1 or 2

strike an effective balance between accuracy and training overhead

for all three datasets. By flexibly tuning these hyperparameters, we

can achieve even greater performance improvements for the TSC

model across various tasks while meeting specific needs.

6.5 Benifits to other DG baselines

We demonstrate the versatility of our approach in boosting the

performance of existing DG baselines. The results are shown in Fig.

6. By incorporating our synthetic data into the training datasets

of baselines, we consistently observe performance improvements

3This involves directly using the class labels, rather than the style features, as the
condition to guide diffusion.
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Figure 6: Enhancing the performance of DANN [12], mDSDI

[5] and DDLearn [36] with our data generation (+) on 20%

and 100% training data in three datasets.

across the board, including DANN [12], mDSDI [5]4, and DDLearn

[36]5. This demonstrates the versatility of integrating our method

to provide additional gains, making it a practical solution for im-

mediate application. The diverse synthetic data of DI2SDiff is thus

ready for use, offering a straightforward way to bolster various

baselines without necessitating further data generation.

7 CONCLUSION

In this paper, we tackle the key issue of DG in cross-person ac-

tivity recognition, i.e., the limited diversity in source domain. We

introduce a novel concept called “domain padding” and propose

DI2SDiff to realize this concept. Our approach generates highly

diverse inter- and intra-domain data distributions by utilizing ran-

dom style fusion. Through extensive experimental analyses, we

demonstrate that our generated samples effectively pad domain

gaps. By leveraging these new samples, our DI2SDiff outperforms

advanced DG methods in all HAR tasks. A notable advantage of

our work is its efficient generation of diverse data from a limited

number of labeled samples. This potential enables DI2SDiff to pro-

vide data-driven solutions to various models, thereby reducing the

dependence on costly human data collection.
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A DETAILS OF STYLE CONDITIONER

Our style conditioner is adapted from the contrastive module called

Time-Series representation learning framework via Temporal and

Contextual Contrasting (TS-TCC), proposed in [9]. TS-TCC has

demonstrated robust representation learning capability for the HAR

task, resulting in each output containing both class-maintained

information and unique features of the corresponding time-series

instance. This makes it highly suitable for extracting distinctive

activity styles from each activity sample. We implemented the

model using the official code (https://github.com/emadeldeen24/TS-

TCC/). Here is a brief introduction to the model and how to adjust

it for our tasks.

Architecture. TS-TCC [9] consists of two components: a feature

encoder denoted as 𝑓enc and a Transformer denoted as 𝑓trans. The
feature encoder 𝑓enc is a 3-block convolutional architecture. Each

block comprises a convolutional layer, a batch normalization layer,

and a ReLU activation function. The Transformer 𝑓trans primarily

consists of successive blocks of multi-headed attention (MHA) fol-

lowed by an MLP block. The MHA block employs 8 attention heads,

and the MLP block is composed of two fully-connected layers with

a non-linearity ReLU function and dropout in between. The Trans-

former stacks 𝐿 layers to generate the final features, where 𝐿 is

typically set to 4.

Contrastive learning pipeline . TS-TCC [9] uses strong and

weak data augmentation techniques to enable contrastive learning

of the feature encoder and Transformer. These generate two views

for temporal and contextual contrasting, which minimize distance

and pull views closer together. Thus, the self-supervised loss com-

bines the temporal and contextual contrastive losses to encourage

discriminative representations.

Adaptation for our style conditioner. We adjust the input

channel to match the input channel of our training data and set

the kernel size to 9. Other components remain consistent with the

experimental settings used in the HAR dataset. We maintain the

original training settings, such as setting the epoch to 40 and using

a Adam optimizer with a learning rate of 3e-4. Once the module

is trained, the trained encoder and Transformer are combined to

form our style conditioner. When extracting the style from the

corresponding original data X𝑖 , the style conditioner produces the

representation 𝑍𝑖 = 𝑓𝑒𝑛𝑐 (X𝑖 ) and then outputs the corresponding

context vector 𝑆𝑖 = 𝑓𝑡𝑟𝑎𝑛𝑠 (𝑍𝑖 ) ∈ R
𝐻 , where 𝐻 is its length.

B PROOF

We elaborate on how the conditional diffusion model trained with

single style condition {𝑆𝑖 }
𝑛𝑠
𝑖=1 fuse multiple style conditions. From

the derivations in [29, 42], we have

∇�̃�𝑡 log𝑞(𝑥𝑡 |𝑠) ∝ −𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑠). (9)

Hence, single style conditional data distribution {𝑞(𝑥𝑡 |𝑆𝑖 )}
𝑛𝑠
𝑖=1 can

be modeled with a singular denoising model {𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑆𝑖 )}
𝑛𝑠
𝑖=1 that

conditions on the respective style 𝑆𝑖 .
To integrate multiple styles in a specific sytle combination D𝑗 ∈

D, we aim is to model data distribution 𝑞(𝑥𝑡 |D𝑗 ) = 𝑞(𝑥𝑡 |{𝑆𝑖 }
𝐿
𝑖=1).

Here, for convenience, we use 𝐿 to denote the number of styles

in D𝑗 and use {𝑆𝑖 }
𝐿
𝑖=1 to denote all styles in D𝑗 . We assume that

{𝑆𝑖 }
𝐿
𝑖=1 are conditionally independent given 𝑥𝑡 . Thus, it can be

factorized as follows:

𝑞(𝑥𝑡 |{𝑆𝑖 }
𝐿
𝑖=1) ∝ 𝑞(𝑥𝑡 )

𝐿∏
𝑖=1

𝑞(𝑥𝑡 |𝑆𝑖 )

𝑞(𝑥𝑡 )
(Bayes Rule)

⇒ log𝑞(𝑥𝑡 |{𝑆𝑖 }
𝐿
𝑖=1) ∝ log𝑞(𝑥𝑡 ) +

𝐿∑
𝑖=1

(log𝑞(𝑥𝑡 |𝑆𝑖 ) − log𝑞(𝑥𝑡 ))

⇒ ∇�̃�𝑡 log𝑞(𝑥𝑡 |{𝑆𝑖 }
𝐿
𝑖=1) = ∇�̃�𝑡 log𝑞(𝑥𝑡 )

+

𝐿∑
𝑖=1

(∇�̃�𝑡 log𝑞(𝑥𝑡 |𝑆𝑖 ) − ∇�̃�𝑡 log𝑞(𝑥𝑡 ))

⇒ 𝜖𝜃 (𝑥𝑡 , 𝑡, {𝑆𝑖 }
𝐿
𝑖=1) = 𝜖𝜃 (𝑥𝑡 , 𝑡, ∅) +

𝐿∑
𝑖=1

(
𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑆𝑖 ) − 𝜖𝜃 (𝑥𝑡 , 𝑡, ∅)

)
.

By these equations, we can sample from𝑞(𝑥0 |{𝑆𝑖 }
𝐿
𝑖=1)with classifier-

free guidance using the perturbed noise:

𝜖∗ � 𝜖𝜃 (𝑥𝑡 , 𝑡, ∅) + 𝜔
(
𝜖𝜃 (𝑥𝑡 , 𝑡, {𝑆𝑖 }

𝐿
𝑖=1) − 𝜖𝜃 (𝑥𝑡 , 𝑡, ∅)

)

= 𝜖𝜃 (𝑥𝑡 , 𝑡, ∅) + 𝜔
𝐿∑

𝑠∈D𝑗

(
𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑠) − 𝜖𝜃 (𝑥𝑡 , 𝑡, ∅)

)
.

We borrowed this derivation from [26] to support the complete-

ness of our work. Although the integration of conditioning styles

{𝑆𝑖 }
𝐿
𝑖=1 requires them to be conditionally independent given the

generated sample 𝑥0, it has been observed that this condition does

not strictly need to be strictly met in practice.

C DETAILS OF DIFFUSION MODEL

We present a 1D UNet implementation that includes key compo-

nents such as style embedding layer. During training, the model

takes in a 1D time-series sample, an activity style vector, and a

timestep to produce noise of the same dimension as the input. Dur-

ing sampling, the model uses noise, concatenated activity style

vectors, and a timestep to generate a new time-series sample. Our

diffusion model operates according to these specifications.

C.1 Architecture and Training Details

Architecture. The model begins with an initialization convolution

layer, followed by a series of downsampling blocks. Each down-

sampling block comprises two residual blocks and an attention

layer, executed using a 1D convolutional layer with a kernel size

of 3. The output of each downsampling block is saved in a list,

which is later used in the upsampling process. After the downsam-

pling blocks, the model has a middle block consisting of a residual

block and an attention layer. The upsampling blocks are then ap-

plied in reverse order, with each block consisting of two residual

blocks and an attention layer. The upsampling operation is per-

formed using a transposed convolutional layer with a kernel size

of 3. In addition to the convolutional layers and residual blocks,

the model also includes a time embedding layer, which consists

of a sinusoidal positional embedding and two linear layers with

a channel size of 256. We borrow the code for the 1D UNet from

https://github.com/lucidrains/denoising-diffusion-pytorch. Differ-

ently, we add a style embedding layer, which consists of a linear

layer with a channel size of 100 and a linear layer with a channel

size of 64. Both of these embedding layers are concatenated along
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the channel dimension, resulting in a tensor that is used as the

condition for each residual block in the UNet.

Training details. Our diffusion training settings primarily ad-

here to the guidelines outlined in [16, 17]. The batch size is 64, with

a learning rate of 2× 10−4 using the Adam optimizer. The diffusion

step is set to 𝑇 = 100. We choose the probability of dropping the

conditioning information to be 0.5.

C.2 Sampling Procedure

Once our diffusion is trained, we can use the style-fused sampling

strategy to diversify the condition space for our task. During the

selection of style sets for generating samples, we specify the ratio

𝜅 of new samples to original samples, as well as the maximum

number 𝑜 of styles that can be fused for each new sample and the

number of fused styles is determined by a random variable that

follows a specified distribution.

For example, if we have 1000 training samples and 𝜅 = 1 and

𝑜 = 5, we will generate 1000 training samples. For each new sample,

we can constrain it to be fused with up to 5 styles, and the number

of fused styles is determined by a random variable that follows a

specified distribution. The distribution used to determine the num-

ber of fused styles can be customized based on the specific task and

dataset. For example, we can use a uniform distribution to ensure

an equal probability of fusing any number of styles, or we can use

a Poisson distribution to favor fewer fused styles. In our code, we

have set a default probability distribution for the number of fused

styles. For example, when 𝑜 = 5 , we set the probability distribution

for mixing from 1 to 5 styles to {0.2, 0.2, 0.2, 0.2, 0.2}, with a total

sum of 1. This means that each new sample can be fused with up

to 5 styles, and the number of fused styles is determined randomly

based on this distribution. However, this probability distribution

can be flexibly adjusted to potentially achieve better results. By ad-

justing these hyperparameters, we can control the number of fused

styles for each new sample and explore different combinations of

styles. This could help us generate more diverse and representative

samples for our task.

C.3 Implementation of Generation in TSC
models

To leverage parallel computing for training time series classification

(TSC) models, we simultaneously process a batch of training data

containing 𝐵 samples and generate 𝜅 × 𝐵 new samples. Within

each batch, we select an appropriate number of style sets for each

class in a class-balanced manner and aggregate all 𝜅 × 𝐵 style

sets as conditional inputs. Next, we use our diffusion model to

generate 𝜅 × 𝐵 new samples. Once this batch generation process

is complete, we utilize the generated samples to train the feature

extractor, while the generated data with its class labels are stored.

This generation process is repeated for each batch of training data,

requiring execution only once. The stored data will be directly used

to train the feature extractor in subsequent epochs without the

need for data regeneration.

Budget. Overall, our approach offers a cost-effective solution

to the challenges associated with human activity data collection

in HAR scenarios. For instance, the cost of a three-axis accelerom-

eter typically ranges from several tens of dollars, and collecting
human activity data for 30,000 samples of various activities can

take several weeks and cost approximately $1,000 per participant.

Additionally, manual annotation of the data in subsequent stages

can lead to additional expenses. In contrast, our diffusion model

only uses a GPU like RTX 3090 to create over 30,000 labeled activity

samples in just one hour 6 . These generated samples can provide

significant performance gains for various baselines. Importantly,

our method only requires a one-time expansion without the need

for re-generation. Moreover, the generated samples may simulate

new and unseen users, making the trained deep learning models

more likely to be effectively deployed on new edge devices for

real-world applications.

D DIVERSITY LEARNING STRATEGY

D.1 Details of training TSC models

After generating synthetic dataset �̃�𝑠 , the data space expands to

𝐷𝑠 = {�̃�𝑠 ∪ 𝐷𝑠 } = {(X𝑖 , 𝑦
𝑐
𝑖 )}

𝑛𝑠+�̃�𝑠
𝑖=1

7. To enhance the diversity of

learned features from𝐷𝑠 , we present a simple yet effective diversity

learning strategy that is adapted from the representation learning

method proposed in [36].Our approach involves differentiating

between the origin of each sample, whether it is "synthetic" or

"original," and its corresponding class label. Since our augmented

data is highly diverse, we adopt a simplified learning objective that

removes complex computations, such as measuring the distance and

similarity between synthetic and original data. Instead, we depend

entirely on the cross-entropy loss, where each loss is determined

by different classification criteria. To this end, we employ a multi-

objective method that consists of three sequential steps to train the

classifier on 𝐷𝑠 .

Specifically, there are three fundamental components of a TSC

model: the feature extractor𝐺 𝑓 , the projection layer𝐺proj* , and the

classifier 𝐺𝑦* . The function 𝐺 𝑓 (·) maps the inputs to their respec-

tive representations and is updated throughout all three steps. The

function 𝐺proj* (·) is a fully connected layer that maps the repre-

sentations to vectors of length 𝑍 . The function𝐺𝑦* (·) is a classifier

responsible for predicting the designed label. The superscripts (*)

indicate that these components are utilized in different steps. The

three steps are then described as follows:

(i) Class-origin feature learning. To learn more detailed repre-

sentations, we label each sample based on its origin and class. The

original data is labeled as 𝑦o𝑖 = 1 and the augmented data as 𝑦o𝑖 = 0

. We then combine the origin and class labels to create new labels,

represented as 𝑦co𝑖 = (𝑦c𝑖 + 𝑦o𝑖 × 𝐶) ∈ N. By using the classifier

𝐺𝑦co : R𝑍 → R2×𝐶 , we train the model to predict these new labels

using cross-entropy, which can be expressed as:

Lcls-ori =
1

𝑛𝑠 + �̃�𝑠

𝑛𝑠+�̃�𝑠∑
𝑖=1

ℓ
(
𝐺𝑦co

(
𝐺projco

(
𝐺 𝑓 (X𝑖 )

))
, 𝑦co𝑖

)
. (10)

(ii) Origin-specific feature learning. To further enhance the

distinction between synthetic and original data, we encourage the

model to differentiate between origin labels using the loss function

6Renting a single RTX 3090 GPU for one hour typically costs less than $0.2
7Here, 𝑦𝑐𝑖 denotes the class label, which has the same meaning as 𝑦𝑖 in the paper.
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𝐿ori-spe, which is defined as follows:

Lori-spe =
1

𝑛𝑠 + �̃�𝑠

𝑛𝑠+�̃�𝑠∑
𝑖=1

ℓ
(
𝐺𝑦o

(
𝐺projo

(
𝐺 𝑓 (X𝑖 )

))
, 𝑦o𝑖

)
. (11)

Here, 𝐺𝑦o : R𝑍 → R2 serves as an origin classifier to distinguish

whether the input features originate from a synthetic or an original

sample.

(iii) Class-specific feature learning. The feature extractor

finally undergoes a training process on 𝐷𝑠 to correctly predict

the class labels. This step allows the model to separate clusters

belonging to different classes. We employ a class classifier 𝐺𝑦c :

R
𝑍 → R𝐶 by minimizing the following loss:

Lcls-spe =
1

𝑛𝑠 + �̃�𝑠

𝑛𝑠+�̃�𝑠∑
𝑖=1

ℓ
(
𝐺𝑦c

(
𝐺projc

(
𝐺 𝑓 (X𝑖 )

))
, 𝑦c𝑖

)
. (12)

Overall. During the training process, as Algorithm 1 shows, the

three steps are iteratively repeated in each epoch until termination.

In the inference phase, as Algorithm 2 shows, we only use the

trained feature extractor 𝐺 𝑓 , projection layer 𝐺projc and the class

classifier 𝐺𝑦c from step (iii). They are stacked together to classify

the input time-series samples in the test dataset 𝐷𝑡 .

D.2 Pseudo-code

Algorithm 1 Training Algorithm for Diversity Learning Strategy

1: Initialize: 𝐺 𝑓 (feature extractor), 𝐺projco (projection layer),

𝐺𝑦co (classifier)

2: Input: 𝐷𝑠 .

3: Output: 𝐺 𝑓 , 𝐺projc , 𝐺𝑦c

4: for each epoch do

5: for each batch B𝑖 in training dataset 𝐷𝑠 do

6: if epoch is 0 then

7: Generate 𝐵 × 𝜅 new samples B̃𝑖 .

8: Expand data space 𝐷𝑠 = 𝐷𝑠 ∪ B̃𝑖 and B𝑖 = B𝑖 ∪ B̃𝑖 .

9: end if

10: Predict class-origin label: 𝑦co𝑖 = 𝐺𝑦co (𝐺projco (𝐺 𝑓 (B𝑖 ))).

11: Calculate class-origin loss: Lcls-ori.

12: Update 𝐺 𝑓 , 𝐺projco , and 𝐺𝑦co using Lcls-ori.

13: Predict origin label: 𝑦o𝑖 = 𝐺𝑦o (𝐺projo (𝐺 𝑓 (B𝑖 ))).

14: Calculate original-specific loss: Lori-spe.

15: Update 𝐺 𝑓 , 𝐺projo , and 𝐺𝑦o using Lori-spe.

16: Predict class label: 𝑦c𝑖 = 𝐺𝑦c (𝐺projc (𝐺 𝑓 (B𝑖 ))).

17: Calculate class-specific loss: Lcls-spe.

18: Update 𝐺 𝑓 , 𝐺projc , and 𝐺𝑦c using Lcls-spe.

19: end for

20: end for

Algorithm 2 Inference

1: Input: Trained models 𝐺 𝑓 , 𝐺projc , 𝐺𝑦c ; Input data 𝐷𝑡 .

2: Output: Predicted labels 𝑌 .
3: for each input sample x in 𝐷𝑡 do

4: Predict class label: 𝑦c𝑖 = 𝐺𝑦c (𝐺projc (𝐺 𝑓 (x))).

5: end for

E DETAILS OF EXPERIMENTAL SETUP

E.1 Datasets

To ensure fairness and reproducibility, we conduct our experiments

by the same experimental setup as that provided in [36] to compare

the performance of our method on HAR tasks. Our datasets for

this study include DSADS 8, PAMAP2 9, and USC-HAD 10. We

follow the same processing steps involving the domain split and

randomly choose remaning data used for each dataset, as detailed

in the official code 11. The corresponding processing information

is as follows:

Dataset information and pre-processing. The information de-

tails of the three HAR datasets are presented in Table 4. To segment

the data, we employ a sliding window approach. For DSADS, the

window duration is set to 5 seconds as per [2], while for PAMAP2,

it is set to 5.12 seconds [38]. Similarly, for USC-HAD, a 5-second

window is utilized with a 50% overlap between consecutive win-

dows. Given the sampling rates of each dataset (25Hz for DSADS,

100Hz for PAMAP2, and 100Hz for USC-HAD), the window lengths

are calculated to be 125 readings, 512 readings, and 500 readings, re-

spectively. We normalize the data using normalization and reshape

the 1D time series sample into a 2D format with a height of 1. Each

batch is structured as (𝑏, 𝑐, ℎ,𝑤), where 𝑏 represents the mini-batch

size, 𝑐 denotes the number of channels corresponding to the total

axes of sensors, ℎ signifies the height, and𝑤 denotes the window

length.

Domain split.We implement leave-one-out-validation by divid-

ing subjects into multiple groups. In this approach, we designate

one group of subjects’ data as the target domain, while the remain-

ing subjects’ data serve as the source domain. Each group can be

considered as an individual task. For DSADS and PAMAP2, we di-

vide the 8 subjects into 4 groups. As for USC-HAD, we divide the 14

subjects into 5 groups, with groups 0-3 comprising 3 subjects each,

and the last group consisting of 2 subjects. Subsequently, we parti-

tion the data within each group into training, validation, and test

sets, maintaining a ratio of 6:2:2. To assess the impact of training

data size on model performance, we conduct experiments where we

randomly sample 20% to 100% of the training data with increments

of 20%. This allows us to simulate the small-scale setting. During

testing, we evaluate the trained model on the test set of the target

domain.

E.2 Baselines

We compared our proposed model with several closely related DG

baselines that are also suitable for time series input:

• Mixup [57]: Through appwalking domain mixup at both pixel

and feature levels, it is a data augmentation-based DG method.

• RSC [19]: A training method enhances out-of-domain generaliza-

tion by discarding dominant features in the training data.

• SimCLR [8]: It leverages data augmentation to generate positive

samples and a learnable transformation for contrastive learning.

8https://archive.ics.uci.edu/dataset/256/daily+and+sports+activities
9https://archive.ics.uci.edu/dataset/231/pamap2+physical+activity+monitoring
10https://sipi.usc.edu/had/
11https://github.com/microsoft/robustlearn/tree/main/ddlearn
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Table 4: Summary of information and feature network settings for three HAR datasets

Dataset Task Subjects Activities (𝐶) Sample Shape Kernel Size Network (feature and projection) Output Channel

DSADS 4 8 19 (45, 1, 125) 9
2 Conv1D Layers

1 FC Layer
(16, 32, 64)

PAMAP2 4 9 8 (27, 1, 512) 9
2 Conv1D Layers

1 FC Layer
(16, 32, 64)

USC-HAD 5 14 12 (6, 1, 500) 6
3 Conv1D Layers

1 FC Layer
(16, 32, 64, 128)

• Fish [40]: By maximizing the gradient inner product between

domains, it learns domain-invariant features in DG issues.

• DANN [12]: It uses adversarial training to learn domain-invariant

features from data with accessible target labels.

• mDSDI [5]: It optimizes domain-specific features viameta-learning

from source domains, where the domain labels are known.

• TS-TCC [9]: As a recent self-supervised method, it leverages a

small set of labeled time-series data for model generalization.

• DDLearn [36]: A latest DG method that leverages standard data

augmentation baselines, designed for low-resource scenarios.

In our experiments, we use the same data augmentation techniques

[45] as those used in [36] to ensure a fair comparison. These tech-

niques include rotation, permutation, time-warping, scaling, magni-

tude warping, jittering, and random sampling. For example, jittering

involves applying different types of noise to the samples, which

increases the diversity of data magnitude. Scaling, on the other

hand, rescales the samples to different magnitudes.

E.3 Architecture

All DG baselines use the same network architecture for feature

extraction, except for TS-TCC [9]. Specifically, we adopt an archi-

tecture consisting of a feature extractor, a projection layer, and a

classifier, as described in [36]. The feature extractor is composed

of two or three Conv1D layers, depending on the dataset being

used. For DSADS and PAMAP2, we use two Conv1D layers with a

kernel size of 9, while for USC-HAD, we use three Conv1D layers

with a kernel size of 6. Each Conv1D layer is followed by a ReLU

activation function and a maxpool1d operation. The output is then

connected to a projection layer, which is a fully-connected layer

with output feature dimensions of 64 for DSADS and PAMAP2,

and 128 for USC-HAD. Finally, we employ a fully-connected layer

as the classifier, which takes the extracted features as input and

outputs 𝐶-dimensional logits. By applying a softmax operation,

we obtain prediction probabilities for each class, which sum up to

1. In our diversity learning strategy, we use different projection

layers and classifiers at different training steps, while keeping the

overall architecture of the model the same. Specifically, we use

different projection layers with the same architecture for differ-

ent steps, and classifiers with the same input channel but output

(2 ×𝐶)-dimensional, 2-dimensional, and 𝐶-dimensional logits for

specific classification goals. During the inference phase, we utilize

only a trained feature extractor, a projection layer, and a classifier.

Since TS-TCC is designed for contrastive learning, we retain its

architecture and make slight modifications to adapt it to the input

data channels and lengths for use in HAR tasks.

E.4 Training Details

All methods in our experiments use PyTorch. We utilize Adam

optimization with a scheduler. The batch size is fixed at 64. The

experiments are conducted on one GeForce RTX 3090 Ti GPU. To

ensure its performance, we fine-tune the training configurations

for each baseline. Furthermore, the results for Mixup [57], RSC [19],

SimCLR [8], Fish [40], and DDLearn [36] reported in Tables 1 and

2 are obtained from the paper [36].


