
Towards Efficient Ridesharing via Order-Vehicle
Pre-Matching Using Attention Mechanism

Zhidan Liu†, Jinye Lin§, Zhiyu Xia§, Chao Chen‡, Kaishun Wu†
†Hong Kong University of Science and Technology (Guangzhou), §Shenzhen University, ‡Chongqing University

Emails: {zhidanliu, wuks}@hkust-gz.edu.cn, {linjinye2021, xiazhiyu2022}@email.szu.edu.cn, cschaochen@cqu.edu.cn

Abstract—Dynamic ridesharing has garnered significant at-
tention in recent years due to its numerous benefits. Existing
ridesharing algorithms often employ a “filter-and-refine” frame-
work, where a large set of candidate vehicles is initially selected
for each ride order, followed by computationally intensive route
planning for each candidate. However, this process can lead
to significant response delays and limit system efficiency. To
address this challenge, we propose an order-vehicle pre-matching
recommendation approach (PreMR) that refines the candidate set
before route planning. PreMR leverages spatial-temporal intervals
and a self-attention mechanism to encode diverse order and
vehicle information into uniform and informative representations,
enabling it to accurately identify the most suitable vehicles
for each order. Extensive experiments using real-world datasets
and four representative ridesharing algorithms demonstrate that
PreMR significantly reduces order response time (by 46.78% on
average) while maintaining high service quality, with a slight
trade-off in the order completion rate.

Index Terms—Ridesharing, Order-vehicle pre-matching, Self-
attention mechanism, Spatio-temporal

I. INTRODUCTION

Online ridesharing platforms such as DiDi Chuxing [1]

and Uber [4] facilitate the sharing of a single vehicle among

multiple riders with similar itineraries and time schedules.

As a promising mode of transportation, ridesharing not only

significantly reduces travel costs for riders compared to tradi-

tional taxi services but also effectively complements public

transportation by providing additional capacity, particularly

during rush hours and in areas with inadequate transit services

[16]. With the continuous increase in urban mobility demands,

ridesharing has emerged as a critical strategy for mitigating

traffic congestion and enhancing transportation efficiency.

Different from static carpooling, which addresses pre-known

travel demands [8], dynamic ridesharing is characterized by

the unpredictable nature of riders’ departure locations and re-

quest times. Consequently, a central challenge for ridesharing

platforms is the immediate and irreversible assignments of ride

orders to suitable vehicles. Existing research efforts focused

on optimizing order-vehicle matching in dynamic ridesharing

typically operate within the “filter-and-refine” framework,

which involves two distinct stages. In the filtering stage, a set

of candidate vehicles is initially selected for each incoming

ride order r based on r’s departure location and the current

distribution of available vehicles. In the refinement stage, each

candidate vehicle is then subjected to route planning in order

to determine the most suitable vehicle for fulfilling order r.

The majority of research efforts have concentrated on either

TABLE I: Number of candidates generated by three algorithms

under various vehicle quantities (average of 1000 orders).

# of all vehicles 2000 2500 3000 5000 10000

# of candidates by mTshare 115 155 255 416 984
# of candidates by Prophet 176 216 259 414 822
# of candidates by pGreedyDP 209 269 319 524 1044

enhancing the filtering stage by minimizing the number of

candidate vehicles [12], [16], [26] or optimizing route planning

algorithms to improve the system’s response speed [28], [31],

[34]. Within the “filter-and-refine” framework, the generation

of accurate yet concise candidate sets is paramount. This is

because all candidate vehicles must undergo a rigorous route

planning investigation, which constitutes the most computa-

tionally intensive and time-consuming operation in dynamic

ridesharing systems, particularly when dealing with large road

networks. The larger the number of candidate vehicles for an

order, the longer it takes to process that request.

Despite this, current ridesharing algorithms often generate

relatively large candidate sets, leading to prolonged response

times and diminished system efficiency. Table I presents

statistics on the sizes of candidate sets for three representative

ridesharing algorithms, namely mTshare [16], Prophet [27],

and pGreedyDP [28], across different vehicle quantities using

a real-world dataset (Please refer to Section V-A for details on

the dataset and experimental settings). Table I reveals that all

algorithms produce a substantial number of candidate vehicles

for each order, and the size of the candidate set increases

significantly with an increase in the number of vehicles.

Motivated by the aforementioned observation, in this paper

we introduce an order-vehicle pre-Matching Recommendation

(PreMR) approach. At a high level, PreMR takes as input the

information of a ride order r and its corresponding candidate

set Cr, and recommends the top κ candidate vehicles from Cr
as the most suitable candidates for serving r. By providing a

refined candidate set for each order, PreMR can be integrated

into any ridesharing algorithms based on the “filter-and-refine”

framework, enhancing their computational efficiency without

compromising service quality.

Despite its potential advantages, developing an effective

order-vehicle pre-matching approach faces at least two chal-

lenges: (1) Multi-modal data representation: Ride orders and

candidate vehicles encompass diverse attributes, including

location, time, sequences of pick-up and drop-off events, and

travel routes, which are presented in various data modalities.

Encoding this multi-modal data into a uniform and informative



representation poses a significant challenge. (2) Learning
matching decision patterns: Existing ridesharing algorithms

employ diverse strategies for matching orders and vehicles,

resulting in complex matching decision patterns. Learning

and simulating this decision process is crucial for identifying

suitable vehicles for an order, but it presents a formidable task.

To address the challenges, we design and implement PreMR.

We employ embedding techniques to transform the location

and time information of orders and vehicles into uniform

representations. Furthermore, for each candidate vehicle w,

we introduce a spatial-temporal relation matrix constructed

using the geographic and temporal intervals between pick-up

and drop-off events within w’s schedule. This matrix is then

incorporated into the self-attention mechanism to further en-

hance the representations of orders and vehicles. The rationale

behind is that when inserting an order into a vehicle’s schedule,

the time and distance constraints are primarily determined

by these spatial-temporal intervals. Based on these updated

representations, we compute the matching score between order

r and each candidate vehicle w, which represents the matching

suitability between r and w. After calculating the matching

scores for all candidates, PreMR returns the top κ candidates

with the highest scores as recommendations for serving order

r. To train the PreMR model, we conduct ridesharing simu-

lations using a given ridesharing algorithm A and collect all

execution details as training data. This allows PreMR to learn

the matching strategy employed by algorithm A.

This paper makes the following main contributions:

• We formally define and formulate the problem of order-

vehicle pre-matching in dynamic ridesharing. The study

of this problem has the potential to improve the perfor-

mance of “filter-and-refine” based ridesharing algorithms.

• We introduce PreMR, a novel solution to the pre-matching

problem. By leveraging spatial-temporal intervals and a

self-attention mechanism, PreMR effectively refines the

candidate sets for orders, thereby enhancing the efficiency

of ridesharing algorithms.

• We integrate PreMR with four representative ridesharing

algorithms and conduct extensive experiments using real-

world datasets. The results show that PreMR significantly

reduces order response time, achieving an average reduc-

tion of 46.78% while maintaining high service quality,

with slight trade-off in order completion rate.

The rest of this paper is organized as follows. We discuss

related works in Section II. The problem statement and solu-

tion overview are presented in Section III. We elaborate and

evaluate the design of PreMR in Section IV and Section V,

respectively. Finally, Section VI concludes this paper.

II. RELATED WORK

Ridesharing. Ridesharing has emerged as a promising solu-

tion for sustainable and efficient urban transportation in recent

years [23]. Existing works can be broadly categorized into two

modes based on the timing of ride order processing: static
ridesharing and dynamic ridesharing. Unlike static ridesharing

, also known as carpooling [8], which involves pre-known or-

ders and pre-planned travel routes, dynamic ridesharing aligns

with the requirements of smart mobility by enabling real-time

matching riders’ requests to vehicles are en route [30], [32].

However, due to its NP-hard nature, existing solutions to the

dynamic ridesharing problem generally adopt the “filter-and-
refine” framework, primarily optimizing two stages: candidate
vehicle search [12], [16], [17], [21], [22], [26], [35] and vehicle
routing planning [7], [27], [28], [31], [34]. For example,

Ma et al. [21], [22] introduce Tshare system, which utilizes

spatio-temporal indexing to search for candidate vehicles and

minimizes additional driving costs when inserting trips into

vehicle’s schedule. In addition, Liu et al. [16], [17] propose the

mobility-aware ridesharing algorithm called mTshare, aiming

to efficiently serve both online and offline orders by leveraging

historical mobility data to optimize order-vehicle matching and

address the limitations of previous algorithms by considering

geographic locations and travel directions. Hailem et al. [7]

introduce a model for dynamic order assignments and route

planning, which considers travel demands, pricing, and vehicle

locations to generate optimal routes. To improve the refinement

efficiency, Tong et al. [27], [28], [34] propose several dynamic

programming based insertion operators, i.e., pGreedyDP [28]

and Prophet [27], and new equivalent optimization objectives

to reduce the time complexity of order insertions.

These works, however, still face huge computational over-

heads due to the extensive investigations of a large number of

candidate vehicles for each order. To address this challenge,

we introduce PreMR, which can refine candidate vehicle sets,

thereby accelerating the order-vehicle matching and improving

the efficiency of ridesharing systems.

Attention mechanism. Attention mechanisms empower

models to selectively focus on specific parts of the input data,

enabling them to dynamically weigh different elements or

features [5]. This powerful capability has led to widespread

adoption of attention mechanisms across diverse domains

[14]. Researchers have also leveraged attention mechanisms to

address tasks in intelligent transportation, e.g., travel demand

prediction [33] and vehicle trajectory prediction [13].

Recently, the Transformer network [29] has gained signifi-

cant recognition for its substantial improvements in temporal

modeling through the use of self-attention mechanisms. By

processing dependencies within a sequence, this mechanism

can learn sequence patterns and intrinsic correlations. Numer-

ous works have successfully applied self-attention mechanisms

to analyze spatial and mobility data. For instance, Jiang et
al. [10] propose a framework to learn feature representations

for trajectories based on graph attention networks. MTrajRec
[24] utilizes an attention module to account for global infor-

mation of trajectories, enhancing trajectory recovery.

There are a few works that apply attention mechanisms for

optimizing ridesharing systems. For instance, Shen et al. [25]

propose a gated attention recurrent network for ridesharing

order prediction. Additionally, Huang et al. [9] present a ride-

hailing demand prediction method that combines multi-head

spatial attention and bidirectional attention mechanisms. Our



work distinguishes itself by being the first to leverage the

self-attention mechanism to score the matchings between an

order and its candidate vehicles. This approach enables PreMR

to recommend the most suitable candidate vehicles, thereby

reducing computational costs involved in the refinement stage.

III. PROBLEM STATEMENT AND SOLUTION OVERVIEW

In this section, we introduce some definitions and problem

statement of order-vehicle pre-matching in dynamic rideshar-

ing, and then present the overview of our PreMR solution.

A. Notations and Definitions
Definition 1: (Road Network) A road network is denoted by

a directed graph G(V, E), where each vertex v ∈ V represents
a geo-location (e.g., road intersection), and each edge (u, v) ∈
E represents a road segment, which is associated with a weight
cost(u, v), indicating the travel cost from vertex u to vertex v
on the graph G.

Noting that the travel cost can be measured by either travel

distance or travel time. Since they can be easily converted to

each other when the vehicle’s travel speed is known, we do

not differentiate between them, but use travel cost consistently.
Definition 2: (Ride Order) A ride order is denoted by r =〈

or, t
o
r, dr, t

d
r

〉
, where or ∈ V and dr ∈ V represent the origin

and destination of a trip, respectively. In addition, tor indicates
when the riders release order r, and this order should be
completed before a deadline time tdr by delivering the riders
from origin or to destination dr.

The deadline tdr can be estimated from the trip start time and

travel cost between the origin and destination, complemented

with a detour cost. Following the typical setting in previous

works [16], [27], [28], we set the deadline tdr as

tdr = tor + cost(or, dr)× ρ, (1)

where cost(or, dr) estimates the travel cost for order r, and

ρ is the flexible factor that indicates the acceptable travel cost

by riders compared to the shortest path [6].
The ridesharing platform continuously receives ride orders,

generates a candidate vehicle set for each order r, and then

determines the most suitable one to serve r.
Definition 3: (Candidate Vehicle Set) A candidate vehicle

set Cr for order r contains a set of available vehicles that can
serve r given the information of both r and all vehicles.

In principle, each vehicle w can simultaneously serve at

most cw riders, and should pick-up and deliver assigned orders

following the planned schedule.
Definition 4: (Ridesharing Vehicle) A ridesharing vehicle

w = 〈ow, cw〉 has an initial location ow and a capacity cw.
Definition 5: (Ridesharing Event) A ridesharing event s

represents a combination of location � and time t, indicating
the occurrence of a pick-up or drop-off of riders at a specific
location � during a particular time t.

Definition 6: (Vehicle Schedule) A valid schedule Sw =
(s1, s2, · · · , sm) for ridesharing vehicle w is a sequence of
events, where each event corresponds to pick-up or drop-off
the riders of an order at designated location and time, e.g.,
or or dr of an order r, and or should appear ahead of dr.
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Fig. 1: Ridesharing framework integrated with PreMR.

B. Problem Statement

Definition 7: (Problem of Order-Vehicle Pre-Matching in
Dynamic Ridesharing) Given a road network G = (V, E) and
historical ridesharing travel orders and trajectories, order-
vehicle pre-matching aims to explore spatio-temporal rela-
tionship among the ride orders and candidate vehicles from
massive historical data to derive an abstract function fθ(·)
for optimizing online dynamic ridesharing. Specifically, for
each order r and its corresponding candidate vehicle set Cr,
fθ(·) can return a list of κ ranked candidate vehicles, which
is formally expressed as:

Cκ
r ← fθ(r, Cr), (2)

where Cκ
r contains κ candidate vehicles selected from Cr that

are the most suitable to serve r in the ridesharing scenario.
A solution to the order-vehicle pre-matching problem, such

as our PreMR, can be integrated with any existing “filter-and-
refine” framework based ridesharing algorithms, and signif-

icantly enhance their computational efficiency by providing

accurate and reduced candidate vehicle sets.

Challenges. Despite the promising advantages, realizing a

solution like PreMR faces two non-trivial challenges.

(1) Multi-faceted matching criteria. The matching process

between orders and vehicles in existing ridesharing algorithms

considers a wide range of factors. On one hand, factors

associated with each ride order r, including the riders’ pick-

up and drop-off locations, estimated travel cost, and the

time of order placement, play a crucial role in order-vehicle

matching. On the other hand, the instantaneous location, and

the planned schedule and travel route of each candidate vehicle

are equally pivotal. Consequently, the expected function fθ(·)
must effectively capture the intricate relationships among these

factors by jointly characterizing this information as input.

(2) Learning diverse matching strategies. Considering

the dynamic mobility patterns of both riders and ridesharing

vehicles within a city, existing ridesharing algorithms typically

employ diverse strategies, such as heuristics or optimization

theories, to match orders with suitable vehicles. Therefore, the

function fθ(·) must learn and simulate the decision process

underlying these strategies, given the information of the order

and candidate vehicles. This learning process is crucial for

investigating their matching suitability and enabling efficient

candidate recommendations.
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Fig. 2: The architecture of PreMR that consists of two major components, i.e., Spatio-Temporal Representer and Pre-Matcher.

C. Solution Overview

To address these challenges, we present PreMR as a solution

that realizes the functionality of fθ(·). PreMR can be inte-

grated with any “filter-and-refine” paradigm based ridesharing

algorithm A, enhancing the efficiency by optimizing its initial

candidate vehicle sets. Figure 1 presents the framework of a

representative ridesharing algorithm A integrated with PreMR,

consisting of two stages: offline training and online inference.

Offline training. To learn and capture algorithm A’s order-

vehicle matching strategies, we collect a substantial amount

of training data generated during the execution of A in a

ridesharing scenario. To this end, we conduct ridesharing

simulation by running algorithm A with historical orders and

a road network G. During the simulation, for each ride order

r, we execute A to process r and record all intermediate data

and ridesharing trip data. This includes the order information,

r’s candidate set Cr, the vehicle w assigned to serve r, and w’s

original schedule Sw. All these execution details are stored,

and subsequently used as samples to train PreMR, allowing it

to emulate algorithm A’s strategies for matching orders with

suitable vehicles. Notably, both the ridesharing simulations and

model training are performed offline, with no impact on the

performance of online inference.

Online inference. In this stage, algorithm A collaborates

with PreMR to process real-time orders appearing on the road

network G. Following the “filter-and-refine” paradigm, for

each incoming ride order r, an initial candidate set Cr is

generated by A. Taking both order r and candidate set Cr as

input, PreMR evaluates each possible matching (r, w), where

candidate vehicle w ∈ Cr, and outputs a matching score. Based

on the scores for all candidates in set Cr, a refined candidate

set Cκ
r containing the top κ scoring candidates is fed into the

vehicle routing planning component, which then determines

the most suitable vehicle to serve order r.

IV. DESIGN OF PreMR

Figure 2 depicts the architecture of PreMR, comprising

two key components, namely spatio-temporal representer and

the pre-matcher. Given a ride order r and its corresponding

initial candidate set Cr of N vehicles, provided by algorithm

A, the spatio-temporal representer component encodes the

information of order r and candidate vehicles Cr into sepa-

rate representations. Subsequently, the pre-matcher component

takes these representations as input and recommends a ranked

set of κ candidate vehicles for order r. Next we elaborate on

the design of each component.

A. Spatio-Temporal Representer

As illustrated in Figure 2, spatio-temporal representer com-

prises three modules, i.e., the embedding module, the spatio-
temporal relation matrix, and the self-attention layer.

Embedding module. We design a multi-modal embedding

module to learn latent representations for candidate vehicles

and ride orders. To reduce computational costs and enhance

representational capacity, the embedding module maps scalars

to low-dimensional and dense vectors. Specifically, this mod-

ule separately encodes the information of candidate vehicle

ID, ride order ID, location, and time into basic representations,

denoted as vwid ∈ R
n, vrid ∈ R

n, v� ∈ R
n, and vt ∈ R

n,

respectively, where n represents the embedding dimension.

The embeddings of candidate vehicles and ride orders are then

composed of these basic representations.

• Embedding for candidate vehicles. In the ridesharing

scenario, each candidate vehicle w ∈ Cr is primarily char-

acterized by its schedule Sw, which consists of multiple pick-

up and drop-off events. The output of embedding module

for each event s in schedule Sw is the sum of three basic

representations, i.e., vs = vwid + v� + vt ∈ R
n, where � and

t are the location and time involved in event s. Therefore, the

embedding for candidate vehicle w with m events, i.e., Sw =
(s1, s2, · · · , sm), is E(Sw) = [vs1 ;vs2 ; · · · ;vsm ] ∈ R

m×n.

Considering the variable sequence lengths of candidate

vehicles’ schedules, we set the maximum sequence length to

mmax = 2× cmax + 1, padding shorter sequences with zeros
until they reach mmax. Noting that cmax represents the maxi-

mum capacity of all vehicles, the factor of 2 accounts for each

order having pick-up and drop-off events, and the addition

of 1 accounts for current location of the candidate vehicle.

Consequently, the embedding for all candidate vehicles will

be adjusted to E(Sw) ∈ R
mmax×n.

• Embedding for ride orders. An order r contains one pick-

up event sor and one drop-off event sdr , each of which is en-

coded by the embedding module in the form of vrid+v�+vt ∈



R
n. We obtain vsor and vsdr for the two events respectively.

To derive the order’s representation, we execute element-wise

addition for these two embeddings as vr = vsor +vsdr . We use

E(r) = vr ∈ R
n to denote order r’s representation.

Spatial-temporal relation matrix. To capture the spatio-

temporal characteristics of orders that could share a vehicle,

we construct a spatio-temporal relation matrix by exploiting

the spatio-temporal intervals among events within the schedule

of each candidate vehicle.

Definition 8: (Spatio-Temporal Interval) The spatio-
temporal interval between the i-th and j-th events is denoted
by stij , which consists of the geography interval Δdij and
time interval Δtij .

We model the relationship between any two events within

a vehicle schedule, such as (si, sj) ∈ Sw, using their spatio-

temporal interval stij . Specifically, we define stij = Δdij +
Δtij , where Δtij represents the time difference between event

si and sj , and Δdij = Haversine
(
�si , �sj

)
that calculates the

shortest distance between two locations on a sphere. Given

vehicle schedule Sw with m events, we thus build the spatio-

temporal relation matrix STw for vehicle w as follows:

STw =

⎡
⎢⎢⎢⎣

st11 st12 · · · st1m
st21 st22 · · · st2m

...
...

. . .
...

stm1 stm2 · · · stmm

⎤
⎥⎥⎥⎦ . (3)

We will also generate embeddings for these spatio-temporal

intervals. To mitigate data sparsity issue while enhancing

model generalization capability [11], we first process the time

and geography intervals using a normalization method, similar

to [15], which divides the time and geography intervals into

discrete bins. Based on the pre-defined upper and lower bounds

for time and geography intervals, we then perform linear

interpolation calculations for each type of intervals separately.

These calculations are expressed as follows:

E (Δtij) =
[E(U(Δt)) (U(Δt)−Δtij) + E(L(Δt)) (Δtij − L(Δt))]

[(U(Δt)−Δtij) + (Δtij − L(Δt))]
,

E (Δdij) =
[E(U(Δd)) (U(Δd)−Δdij) + E(L(Δd)) (Δdij − L(Δd))]

[(U(Δd)−Δdij) + (Δdij − L(Δd))]
,

(4)

where U(Δt) and L(Δt) denote the upper and lower bounds

of time differences, and U(Δd) and L(Δd) denote the upper

and lower bounds of the geographical distances. In addition,

E(·) represents the embedding for a given interval. Based on

the pre-processing on time and geography intervals, we obtain

E(stij) = E(Δdij) + E(Δtij) ∈ R
n. Therefore, we have

E(STw) ∈ R
m×m×n. Finally, we average the spatio-temporal

relation matrix representation along the last dimension to

reduce the dimensionality from m×m×n to m×m, that is:

E(STw) = mean(E(STw)) ∈ R
m×m. (5)

Through the averaging operation, we not only integrate

feature information along the depth dimension, but also make

dimensional structure for integration into the attention layer.

In the ridesharing scenario, the essential route planning

involves calculating the temporal and spatial distances between

the pick-up and drop-off locations/times of an order r and

the event sequence of candidate vehicle w’s schedule. Taking

this consideration into account, we model the spatial-temporal

intervals between vehicle w’s events and order r’s pick-up

and drop-off events as their spatio-temporal relations. To this

end, we separately multiply vsor and vsdr with the embedding

E(si) of each event si in vehicle schedule Sw. As a result,

we obtain E(Or
STw

) ∈ R
m×n and E(Dr

STw
) ∈ R

m×n, which

represent the spatial-temporal interval matrices of r’s pick-up

and drop-off events with respect to w’s schedule, respectively.

By summing these two matrices, we derive the overall spatio-

temporal interval matrix for the matching (r, w), that is

E(ODr
STw

) = E(Or
STw

) + E(Dr
STw

) ∈ R
m×n. (6)

Furthermore, we compute the mean of this matrix to obtain

an average spatial-temporal relation between r and w, i.e.,

μODr = mean(mean(E(ODr
STw

))) ∈ R. (7)

By performing the averaging operation, we effectively re-

duce the dimension of the matrix E(ODr
STw

), summarizing

the spatio-temporal relationship between order r and vehicle

w into a single scalar value. This not only simplifies the data

but also retains essential information, making it more suitable

for subsequent processing within the attention layer.

Interval-aware attention layer. Inspired by the successful

applications of self-attention networks in various domains [5],

we propose an extension to the self-attention mechanism that

enhances the representations of both candidate vehicles and

orders by considering the spatio-temporal intervals. As shown

in Figure 2, we incorporate the spatio-temporal relation matrix

into an interval-aware attention layer to capture the proximity

between events of the vehicle schedules, thereby updating the

latent representations of both candidate vehicles and orders.

In particular, we design a masked self-attention module for

enhancing candidate vehicle representation, while applying a

traditional self-attention module for order representation.

• Masked self-attention module. To achieve self-association

between events in a vehicle schedule, this module treats each

event as a simultaneous input for the query, key, and value vec-

tors. Additionally, we explicitly integrate the spatio-temporal

relation matrix into the module, ensuring that the context of

each event includes explicit spatio-temporal positioning cues.

Consequently, this module takes the vehicle representation

E(Sw) and the spatio-temporal relation matrix E(STw) as

input, and produces the updated vehicle representation as

output. To this end, we project E(Sw) into a query matrix Qw,

a key matrix Kw, and a value matrix Vw through three distinct

parameter matrices WQw ,WKw ,WVw ∈ R
n×n, as follows:

Qw = E(Sw)WQw ,Kw = E(Sw)WKw ,Vw = E(Sw)WVw , (8)

where Qw,Kw,Vw ∈ R
m×n. The linear transformations

enhance the model’s expressive capacity for vehicle schedules.

When dealing with schedule sequences of varying lengths,

we employ zero padding to standardize all sequences to the

same length. Consequently, it becomes necessary to construct a



mask matrix to ensure the model disregards padded positions,

which do not contain valid information. To address this, we

construct a mask matrix Mw ∈ R
m×m, with the upper-left

portion is an identity matrix corresponding to the original

length of the schedule Sw, and the remaining elements are

zeros. The masked self-attention module then combines the

attention map with the spatio-temporal relation matrix STw

through element-wise addition as follows:

A(Sw) = Softmax((
QwK

T
w√

n
+ E(STw))Mw)Vw, (9)

where QwKw
T

√
n

∈ R
m×m represents the attention map, and

A(Sw) ∈ R
m×n is the attention result. Subsequently, we

perform the mean pooling on A(Sw) to derive the updated

vehicle representation as:

A
′
(Sw) = mean(A(Sw)). (10)

• Self-attention module. We also update the representation

of order r through self-attention operations to consider spatio-

temporal relations between the pick-up and drop-off events.

Specifically, this module takes the order representation E(r)
and order r’s spatio-temporal intervals as input, and produces

the updated order representation as follows:

A
′
(r) = Softmax

(
E(r)WQr (E(r)WKr )

T

√
n

+ E(Δ)
)
E(r)WVr ,

(11)

where WQr ,WKr ,WVr ∈ R
n×n are the input projection

matrices for a query, key, and value, respectively. In addition,

Δ = Δdod + Δtod represents the spatio-temporal interval

between the pick-up and drop-off events of order r, and

E(Δ) ∈ R
n is its corresponding representation.

By applying these attention operations, we obtain A
′
(Sw) ∈

R
n and A

′
(r) ∈ R

n, which are the updated representations

for candidate vehicle w and order r, respectively.

B. Pre-Matcher

Based on the updated representations of order r and each

candidate vehicle in Cr, the pre-matcher component evaluates

the suitability of each candidate vehicle for serving order r and

recommends the top κ candidates for further investigations in

the route planning stage.

Given the updated representation A
′
(r) for order r, and

A(Cr) = {A′
(Sw1

),A
′
(Sw2

), · · · ,A′
(SwN

)}, where N =
|Cr|, as the set of updated representations for candidate vehi-

cles in Cr, we employ scaled dot-product attention to calculate

the matching score of each candidate vehicle wi ∈ Cr and r by

mapping order representation A
′
(r) and vehicle representation

A
′
(Swi

) into a common attention space through the parameter

matrices WQrw
∈ R

n×n and WKrw
∈ R

n×n, that is:

q = A
′
(r)WQrw

,

ki = A
′
(Swi

)WKrw
,where wi ∈ Cr.

(12)

Subsequently, we compute the matching score zi between

the query vector q and each key vector ki as

zi =
qkT

i√
n

+ μODr , (13)

where μODr is calculated by Eq. (7), indicating the average

spatio-temporal difference between order r and vehicle wi.

Next, we normalize the matching scores using the Softmax
function to obtain a probability distribution {yi}Ni=1 as follows:

yi =
exp (zi)∑N
j=1 exp (zj)

, (14)

where each yi represents the probability that the i-th candidate

vehicle wi in Cr is selected for serving order r.

After calculating the matching probabilities for all candidate

vehicles of order r, PreMR ranks these candidates in descend-

ing order based on their matching probabilities. It then selects

the top-κ candidates, denoted as the set Cκ
r , as the refined

candidate set for serving order r.

Training. Recall that we conduct ridesharing simulations

with a ridesharing algorithm A to generate the training data.

The simulation process records each ride order’s details,

including the order information, the available candidate vehicle

set, the final vehicle selection, and the vehicle schedule and

route. For a given order, the best-matched vehicle suggested

by A is treated as a positive sample, while the unselected

candidate vehicles form the negative samples. We train PreMR

to identify the most suitable candidate vehicle by minimizing

the cross-entropy loss between the predicted matching proba-

bilities and the actual order-vehicle matching results. The loss

is calculated as follows:

loss = −∑
r∈O

[
log(yb) +

∑N
i=1,j �=b log (1− yi)

]
, (15)

where O is the set of ride orders in the historical trip dataset,

b is the label of the best-matched vehicle for order r, and

yi is the matching probability predicted by PreMR model. By

minimizing this loss, the model learns to distinguish the candi-

date vehicles most likely to serve the orders, thereby reducing

candidate vehicles and improving the system efficiency.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Dataset. We conduct data-driven experiments to validate

our PreMR using a real-world anonymized ridesharing dataset

published under the GAIA Project by DiDi Chuxing [2]. This

dataset comprises 7065907 ridesharing transaction records

collected in November 2016 within the downtown area of

Chengdu city, China. Each transaction record includes order

information such as vehicle ID, order ID, pick-up loca-

tion/time, drop-off location/time, and the time when the order

was generated. The location information in these records is

represented by latitude and longitude coordinates.

Since the Didi dataset only contains information about these

successfully served orders, unserved orders are not captured.

To simulate realistic ridesharing services and augment the

experimental data, we employ the method used in [19], [22] to

generate additional synthetic orders that follow the distribution

patterns and travel trends of orders in Didi dataset. To compre-

hensively evaluate the performance of PreMR under different

settings of vehicles and orders, we adopt a growth factor α to



synthesize new orders. Specifically, we use different α values

according to the total number of ridesharing vehicles. When

the number of vehicles is set to 1000, 2000, and 3000, we set

α = 1.0; for 5000 vehicles, we set α = 1.5; and for 10000

vehicles, we set α = 2.0.
Consequently, we employ a hybrid data strategy, incorpo-

rating both synthetic data and the original Didi dataset, for the

experiments. We reserve the data of the last week for testing,

which compares a variety of ridesharing algorithms, while the

remaining data are used for the ridesharing simulations that

generate training data to train the PreMR model.
We construct the road network model G by acquiring road

network data of Chengdu city from OpenStreetMap [3]. After

data cleaning and pre-processing, the road network model G
consists of 214440 vertices and 466330 edges. Additionally,

we divide the road network into 72 uniform grids for indexing

both orders and vehicles.
Baselines. We evaluate the effectiveness and performance of

PreMR by integrating it with the following four representative

“filter-and-refine” based ridesharing algorithms.

• Tshare [21], [22]: This algorithm proposes a bidirectional

search method that filters candidate vehicles for order r
by considering r’s origin/destination and vehicle sched-

ules with a search radius γ. Upon finding a match, the

system promptly returns the result.

• pGreedyDP [28]: This algorithm identifies candidate ve-

hicles within a search radius γ around the origin of order

r. It utilizes dynamic programming for the strategic in-

sertion of r into the vehicle schedule, thereby improving

computation efficiency of the refinement stage.

• Prophet [27]: This algorithm integrates both real-time or-

ders and future orders, which are predicted by analyzing

historical data, into route planning. It further enhances the

order insertion operation to improve system efficiency.

• mTshare [16], [17]: This algorithm utilizes dual-layer

partitions and mobility clusters to index orders and ve-

hicles. Thus, it can effectively filter candidates for order

r through geographical locations and travel directions. It

optimizes the route planing by leveraging the partitions.

For each baseline algorithm A, we integrate it with PreMR,

and the derived algorithm is denoted as P-A. Consequently, we

have four variant algorithms, namely P-Tshare, P-pGreedyDP,

P-Prophet, and P-mTshare.
Performance metrics. We assess all algorithms using four

widely used performance metrics, i.e., order completion rate,

average response time, average waiting time, and average
detour time. Specifically, the order completion rate refers to

the ratio of the number of served orders to the total number of

orders. The response time is the time taken to process an order.

The waiting time is the interval between the release time and

pick-up time of an order, and the detour time is the additional

time added compared to serving an order without ridesharing.

In addition, we evaluate the prediction performance of the

PreMR model using the top-κ accuracy, denoted as acc@κ,

which refers to the percentage of testing cases where the best

matching vehicle is among the top κ recommendations.

1000 1500 2000 3000 5000 10000
0

20

40

60

80

100

# of Vehicles

P
er

ce
n

ta
g

e 
(%

)

 Tshare
 P-Tshare

(a) Tshare vs. P-Tshare

1000 1500 2000 3000 5000 10000
0

20

40

60

80

100

# of Vehicles

P
er

ce
n

ta
g

e
(%

)

pGreedyDP
P-pGreedyDP

(b) pGreedyDP vs. P-pGreedyDP

1000 1500 2000 3000 5000 10000
0

20

40

60

80

100

# of Vehicles

P
er

ce
n

ta
g

e
(%

)

Prophet
P-Prophet

(c) Prophet vs. P-Prophet

1000 1500 2000 3000 5000 10000
0

20

40

60

80

100

# of Vehicles

P
er

ce
n

ta
g

e
(%

)

mTshare
P-mTshare

(d) mTshare vs. P-mTshare

Fig. 3: The order completion rates of different algorithms.

Implementation. We implement PreMR and all baselines

using Python. For each ride order r, its origin and destination

are mapped to the nearest vertices in graph G. We use the

original release time of r, and set its deadline time tdr following

Eq. (1). By default, we set flexible factor ρ = 1.3 to simulate

a realistic ridesharing scenario. The initial location ow for ve-

hicle w is randomly assigned as any vertex in graph G, and the

capacity cw is set to be 4. Similar to previous works [16], [22],

[28], we fix the traveling speed of all vehicles at 15 km/h.

Although we assume stable traffic conditions, our method can

easily extend to run with real-time traffic conditions if such

information can be derived from transportation agencies or

be inferred by advanced traffic estimation methods [18], [20].

Additionally, we fix the search radius γ = 2.5 km, equivalent

to a maximum waiting time of 10 minutes.

To accelerate route planning, we precompute and store in

memory the shortest paths between any two vertices in graph

G. Consequently the travel cost between any two vertices can

be easily retrieved by all algorithms. To train the PreMR model,

we use the Adam optimizer with a learning rate of 0.001, with

a training cycle of 64 epochs. By default, we set the embedding

dimension n as 64 and set κ = 35, which implies that at most

35 candidate vehicles are recommended for each order.

All experiments are conducted on a server equipped with

an Intel Core i9-9900K CPU@3.60GHz, NAVIDA GeForce

RTX 2080 Ti GPU, and 32GB of memory. Each configuration

is repeated 10 times, and the average results are reported.

B. Effectiveness of PreMR

We validate the effectiveness of PreMR by comparing the

performance between each baseline A and its variant P-A that

integrates with PreMR under different quantities of vehicles.

Comparisons of order completion rate. We report the

order completion rates of different algorithms under various

amount of vehicles in Figure 3. From these results, we observe
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Fig. 4: The average response time of different algorithms.

two key trends. Firstly, with an increase in the number of

vehicles, the number of orders served by each algorithm also

increases. We observe that Prophet and mTshare consistently

outperform Tshare and pGreedyDP by completing more orders

with a given amount of available vehicles. Secondly, the vari-

ants generally serve slightly fewer orders than their respective

original algorithms. This is because PreMR attempts to learn

the order-vehicle matching strategy of each algorithm A and

then accelerates the overall matching process (see the results

in Figure 4 later). In fact, we find that PreMR actually performs

quite well by simulating the matching patterns of each original

algorithm. The order completion rate gap between each orig-

inal algorithm A and its variant P-A is quite small. Simply

put, each variant P-A can successfully fulfill about 90.78% of

the orders served by the original algorithm A.

Comparisons of response time. We vary the total number

of vehicles and compare the response time of all algorithms.

From Figure 4, we observe that PreMR accelerates the response

speed of baselines more significantly in cases with a larger

number of vehicles. This is attributed to the increased can-

didate sets for orders due to more available vehicles, leading

to a substantial increase in the time taken to find the optimal

vehicle. It is noteworthy that for all ridesharing algorithms,

larger candidate sizes pose greater challenges, highlighting

the advantage of utilizing PreMR. We also find that P-Tshare
and P-mTshare respond a bit slower than the original Tshare
and mTshare in the case of ≤ 2000 vehicles and ≤ 3000
vehicles, respectively. This is because these two algorithms

have simple heuristic filtering rules that work well with a small

number of vehicles, while PreMR requires considerable time

to execute the deep learning model for inferences. However,

with the increase in available vehicles, the variants integrated

with PreMR respond to requests much faster than the baselines.

For the cases of ≥ 3000 vehicles, PreMR helps to reduce the

response time by 46.78% on average across all baselines.

TABLE II: Comparisons of the total running time (in minutes)

required by pGreedyDP and its variant P-pGreedyDP for

processing different amounts of orders.

Amount of orders pGreedyDP P-pGreedyDP

3 hours 324.32 38.03
6 hours 893.23 87.75
12 hours 1337.54 173.57
18 hours > 2 days 250.66
24 hours > 3 days 376.57

The acceleration in order response is even more pronounced

for pGreedyDP. In particular, PreMR makes P-pGreedyDP 10

times faster than the original pGreedyDP. To better understand

PreMR’s advantage, we conduct experiments to compare the

overall running time of pGreedyDP and P-pGreedyDP on

processing orders collected within different hours. The results

are presented in Table II, where more hours indicate more

orders to be processed. For the order amounts of 3-6 hours,

P-pGreedyDP runs nearly an order of magnitude faster than

pGreedyDP. When the order amounts increase to 18 and 24

hours, pGreedyDP cannot process the orders within a reason-

able time, while P-pGreedyDP can still effectively handle such

a large amount of orders. It only takes 376.57 minutes for P-

pGreedyDP to process orders of one day, demonstrating a clear

advantage of PreMR in handling large-scale orders.

Comparisons of waiting time and detour time. Table

III presents the average waiting time of all algorithms under

various vehicle quantities. As the number of vehicles increases,

the average waiting time for all algorithms generally decreases.

This trend can be attributed to the increased availability of

vehicles, allowing both original and variant algorithms to find

nearby matches for each order efficiently, thereby reducing

riders’ waiting time. Table IV compares the average detour

time of all algorithms. We observe similar detour performance

between each original algorithm and its variant. Since PreMR

is mainly designed to refine candidate sets without altering

matching rules, it does not affect the performance of rideshar-

ing algorithms in terms of waiting time and detour time.

These experimental results demonstrate that PreMR can sig-

nificantly improve the response speed of existing ridesharing

algorithms, while maintaining the high service quality, with a

slight trade-off in the order completion rate.

C. Detailed Study

We conduct additional experiments to study the impacts of

the spatio-temporal relation matrix and embedding dimension

by employing mTshare and its variant P-mTshare.

Impact of spatio-temporal relation matrix. To enhance

the representation of vehicle schedules and orders, we incor-

porate spatio-temporal intervals. We perform ablation exper-

iments to explore the design effectiveness. Specifically, we

remove the spatial information (i.e., geography interval Δd)

and temporal information (i.e., time interval Δt) from the

spatial-temporal relation matrix. This results in two variants,

denoted as PreMR -w/o S. and PreMR -w/o T., respectively.

Additionally, we remove all spatial-temporal information to

obtain the variant PreMR -w/o ST.. We evaluate these three



TABLE III: Comparisons of the average waiting time (in minutes) for all algorithms, where Δw represents the difference in

average waiting time between algorithms P-A and A. A blue Δw indicates performance improvement achieved by PreMR.

# vehicles Tshare P-Tshare Δw pGreedyDP P-pGreedyDP Δw Prophet P-Prophet Δw mTshare P-mTshare Δw

1000 2.34 2.29 -0.05 3.90 3.89 -0.01 3.95 3.91 -0.04 3.85 3.93 0.08
1500 2.23 2.19 -0.04 3.59 3.66 0.07 3.63 3.70 0.07 3.55 3.94 0.39
2000 2.11 2.09 -0.02 3.22 3.27 0.05 3.25 3.21 -0.03 3.20 3.13 -0.06
3000 1.84 1.81 -0.03 2.54 2.59 0.04 2.51 2.50 -0.01 2.58 2.38 -0.20
5000 1.56 1.53 -0.03 1.78 1.77 -0.01 1.82 1.80 -0.02 1.75 1.82 0.07

10000 0.95 0.94 -0.01 1.10 1.11 0.01 1.32 1.36 0.04 0.87 0.84 -0.03

TABLE IV: Comparisons of the average detour time (in minutes) for all algorithms, where Δd represents the difference in

average detour time between algorithms P-A and A. A blue Δd indicates performance improvement achieved by PreMR.

# vehicles Tshare P-Tshare Δd pGreedyDP P-pGreedyDP Δd Prophet P-Prophet Δd mTshare P-mTshare Δd

1000 0.53 0.51 -0.02 0.80 0.79 -0.01 1.07 1.08 0.01 0.54 0.54 0.00
1500 0.48 0.46 -0.02 0.88 0.87 -0.01 1.16 1.15 -0.01 0.49 0.46 -0.03
2000 0.59 0.56 -0.03 0.95 0.95 0.00 1.27 1.25 -0.02 0.59 0.58 -0.01
3000 0.36 0.35 -0.01 1.11 1.10 -0.01 1.48 1.47 -0.01 0.37 0.38 0.01
5000 0.30 0.29 -0.01 1.29 1.27 -0.02 1.71 1.73 0.02 0.30 0.31 0.01

10000 0.27 0.26 -0.01 1.51 1.40 -0.11 1.88 1.86 -0.02 0.27 0.27 0.00
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Fig. 5: Impact of spatial and temporal

intervals on ridesharing performance.
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Fig. 7: Impact of embedding dimensions

on ridesharing performance.

TABLE V: Impact of spatial and temporal intervals on pre-

diction accuracy of the PreMR model.

Model acc@1 acc@5 acc@10 acc@20 acc@35

PreMR 76.11% 93.26% 95.04% 98.21% 98.43%

– w/o S. 69.45% 89.46% 91.99% 94.26% 95.86%
– w/o T. 53.59% 72.99% 79.39% 87.32% 94.19%

– w/o ST. 1.41% 7.27% 14.50% 28.55% 47.81%

variant models along with the complete PreMR model using the

acc@κ metric and other ridesharing metrics when integrating

each of them into mTshare.

Table V presents the prediction accuracy results for PreMR

model and its three variants. We find that the absence of time

intervals has a more significant impact than the absence of

spatial intervals, as evidenced by a larger drop in accuracy

compared to the complete model. This is because, in the

ridesharing scenario, time factors – such as estimated travel

time and delivery deadline – play a crucial role in determining

the matching between orders and vehicles. Additionally, Ta-

ble V indicates that spatial-temporal intervals are extremely

important for representation learning. Without the spatial-

temporal intervals, PreMR -w/o ST. exhibits a sharp decrease

in accuracy, e.g., the acc@1 metric drops from 76.11% to

1.41%, and the acc@35 metric drops from 98.43% to 47.81%.

Ridesharing services are subject to strict spatio-temporal con-

straints, such as riders’ expected departure and arrival times

and the acceptable detour costs during the trip. Consequently,

these spatio-temporal constraints directly impact the feasibility

assessment of candidate vehicles. Therefore, explicitly rep-

resenting temporal and spatial information can significantly

enhance model performance.

Figure 5 shows the experimental results for the metrics of

order completion rate and average response time for mTshare
and its variants. When omitting the spatial and temporal

intervals, there are approximately 3.54% and 4.74% reductions

in the order completion rate for the variants compared to the

complete model, respectively. The order completion rate even

decreases to 33.43% when both intervals are excluded. This

substantial decline underscores the critical role of the spatial-

temporal relation matrix in the PreMR model. Additionally,

Figure 5 also shows that the absence of spatial or temporal

intervals affects the response time, though the impact is slight.

Impact of embedding dimension. We investigate the im-

pact of embedding dimension n on PreMR’s performance by

varying n from 8 to 128 and studying its effects on prediction

accuracy and ridesharing performance. The acc@κ results

in Figure 6 reveal that increasing the embedding dimension

n significantly improves the prediction performance of the

PreMR model. Notably, when the embedding dimension is



increased from 8 to 16, there is a substantial enhancement

across different acc@κ metrics. This is because a larger

embedding dimension can capture more useful information.

However, as the embedding dimension expands further beyond

64, the accuracy tends to stabilize. Therefore, we find that

an embedding dimension of n = 64 is sufficient to capture

the necessary information from ride orders, vehicle schedules,

and the spatial-temporal relation matrix. We observe similar

experimental results on the ridesharing performance in Figure

7, where an embedding dimension of size n = 64 yields

optimal results in the metrics of order completion rate and

average response time.

VI. CONCLUSION

This paper introduces PreMR, a novel framework that lever-

ages spatial-temporal interval information and self-attention

mechanisms to learn intricate matching patterns from existing

ridesharing algorithms. PreMR can refine candidate sets for

orders, significantly accelerating response time while main-

taining high service quality. Extensive experiments on real-

world datasets demonstrate the effectiveness of PreMR, partic-

ularly in handling large-scale order volumes, showcasing its

potential to enhance efficiency and scalability of ridesharing

platforms. Future research will focus on incorporating dynamic

factors such as traffic conditions and user preferences to further

optimize PreMR’s performance.
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