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Abstract—Characterizing human driver’s driving behaviors from global positioning system (GPS) trajectories is an important yet

challenging trajectory mining task. Previousworks heavily rely on high-quality GPS data to learn such driving style representations

through deep neural networks. However, they have overlooked the driving contexts that greatly govern drivers’ driving activities and the

data sparsity issue of practical GPS trajectories collected at a low-sampling rate. Besides, existing works omit the cold start problem,

where the newly joined drivers usually have insufficient data to learn accurate driving style representations. To address these limitations,

we present an adversarial driving style representation learning approach, named Radar. In addition to summarizing statistic features from

rawGPS data, Radar also extracts contextual features from three aspects of road condition, geographic semantic, and traffic condition.

We exploit the advanced semi-supervised generative adversarial networks to construct our learningmodel. By jointly considering statistic

features and contextual features, the trainedmodel is able to efficiently learn driving style representations from practical GPS trajectory

data. Furthermore, we enhance Radar’s representation learning for drivers owning limited training data with some basic data

augmentation strategies and a novel auxiliary driver based data augmentationmethod. Experiments on two benchmark applications, i.e.,

driver identification and driver number estimation, with a large real-world GPS trajectory dataset demonstrate that Radar can outperform

the state-of-the-art approaches by learningmore effective and accurate driving style representations.

Index Terms—GPS trajectory, multi-source data, driving style representation, generative adversarial networks, data augmentation

Ç

1 INTRODUCTION

THE advances of global positioning system (GPS) andwire-
less communication techniques have enhanced the ability

of various systems in collecting the spatio-temporal vehicular
trajectories. The massive GPS trajectories stimulate a number
of trajectory mining tasks for better understanding human
mobility patterns andbehaviors [65], amongwhich character-
izing human driver’s driving behaviors is an important yet
challenging task. Similar as the bio-metrics, it is believed that
each driver also has a distinguishable pattern of driving,
which is referred as driving style [34]. Specifically, driving
style reflects a driver’s fine-grained behavioral habits of

steering and speed control and their temporal combinations
[13]. Learning drivers’ driving style representations from
their trajectories can benefit many intelligent applications,
e.g., driving assessment and assistance [55], driver-vehicle
interaction [34], autonomous driving [31], and etc. In addi-
tion, auto insurance companies have been interested in utiliz-
ing the driving style information for risk assessments and
personalized insurance pricing [16], [27]. For example, a
good driving style representation can be used to identify the
true driver of a trip for claim fraud detection [13].

In the literature, some valuable efforts have been made
to derive the driving style representations. Traditional
approaches heavily rely on the data collected from automo-
bile sensors (e.g., controller area network buses) [16], [19],
[42], [49] or dedicated sensors (e.g., high-definition cameras)
[23], [25], [46] for driving style learning. However, it is diffi-
cult to retrieve data from automobile sensors while dedicated
devices will incur installation costs. Recent studies [7], [13],
[30], [66] turn to leverage deep learning models to process
GPS trajectories for learning the driving style representations.
Compared to automobile and dedicated sensors, GPS sensor
data are often easier to access and thus are more popular in
the large-scale study [13], [65]. These works, however, require
high-frequency rate of GPS data collections, which may be
prohibited due to concerns of privacy and energy consump-
tion [36]. Furthermore, these works merely focus on the fea-
ture extractions from GPS data, but have overlooked the
instant driving context information, such as road conditions
and traffic conditions. As a result, they are inadequate to
acquire accurate driving style representations.

Despite these research efforts, it is still non-trivial to effi-
ciently learn driving style representation from GPS trajecto-
ries, mainly due to following challenges. First, practical GPS
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trajectory data are usually collected at a low-sampling rate,
e.g., 1 sample per 30 seconds [36], and are probably sparse,
i.e., their qualitymay not meet the rigid requirements of some
deep learning models [30]. Second, driving is essentially a
complex activity and the resultant driving style will be influ-
enced by many factors. The GPS trajectory data themselves
cannot capture the complete view of a driver’s driving style,
and hence the external context information should be taken
into account. However, how to properly integrate the features
from GPS trajectory data and context information into one
model needs to be well designed and thus is challenging.
Third, some drivers, e.g., the newly joined drivers, may not
have sufficient data, and their driving style representations,
especially those learned by the deep learning models that
require a large amount of training data, would be under-fit-
ting, which cannot effectively support upper applications.

In this paper, we present an adversarial driving style
representation learning approach, named Radar, which
extracts comprehensive features from multi-source data and
builds a semi-supervised generative adversarial networks
(SGAN) based model to learn driving style representations
from these extracted features. To better describe a driver’s
driving behaviors, Radar not only transforms rawGPS trajec-
tory data to fine-grained statistic features about driver’s hab-
its of steering and speed control, but also additionally
considers each GPS trajectory’s contextual features, which
are captured by three aspects of road condition, geographic
semantic, and traffic condition. In particular, different from
specific GPS locations, geographic semantic could encode
high-level geographic features of a trajectory by mapping it
to the whole city area. We aggregate the three kinds of con-
textual features as the driving context representation, which
greatly governs a driver’s driving activity and thus is impor-
tant for accurately learning a driver’s driving style. To tackle
the data sparsity issue, Radar makes use of SGAN to con-
struct the learning model, which equally treats statistic fea-
tures and contextual features as the input to learn the driving
style representations. Our learning model consists of three
different components: generator, discriminator, and classi-
fier, which work together to not only classify drivers from
inputted trajectories but also generate fake samples close to
the training data. As a result, Radar’ learning model can
achieve better generalization ability through both data aug-
mentation and the competition between generator and dis-
criminator. To help drivers with insufficient data learn
accurate driving style representations, we propose a series of
basic data augmentation strategies to enrich their training
data. Furthermore, we exploit the novel concept of triplet
loss [50] to constrain the representation learning process of
drivers who have limited data through some well-selected
auxiliary drivers’ driving style representations. These strate-
gies can effectively enhance the learning capability of Radar.

Our key contributions are summarized as follows:

� To the best of our knowledge, we are the first to con-
sider the problem of context-aware driving style
representation learning from practical GPS trajectory
data, which improves existing works by comprehen-
sively considering the driving contexts.

� We propose an adversarial driving style representa-
tion learning approach – Radar, which exploits multi-

source data and a SGAN based learningmodel to effi-
ciently learn driving style representations from GPS
trajectory data.

� Wepresent a series of data augmentation strategies to
enrich a driver’s training data. In addition, we pro-
pose an auxiliary driver based data augmentation
strategy for the drivers with insufficient training data
to effectively learn driving style representations.

� We conduct extensive experiments with two bench-
mark applications, namely driver identification and
driver number estimation, based on a large real-world
trajectory dataset. Experimental results demonstrate
that Radar outperforms state-of-the-art approaches,
e.g., on average improving the accuracy of driver
number estimation and driver identification by 9.6%
and 5.6%, respectively. The effectiveness of our data
augmentation strategies has also been validated by
extensive experiments.

The remainder of the paper is organized as follows. We
review related works in Section 2. The problem statement is
presented in Section 3. We elaborate the design of Radar in
Section 4, and present the data augmentation strategies in
Section 5. We conduct experiments to evaluate Radar in Sec-
tion 6, and present the discussions in Section 7. Finally, Sec-
tion 8 concludes this paper.

2 RELATED WORK

The related works can be classified into three categories:
mobility pattern analysis, driving behavior analysis, and driving
style learning. We review these related works as follows.

2.1 Mobility Pattern Analysis

Nowadays, trajectory data can be collected by various devi-
ces and location-based services, e.g., GPS sensors [13], [30],
cellular base stations [28], [51], and check-in Apps [62], [67].
Such trajectory data contain implicit information about peo-
ple’s movements within a city [65], and thus have inspired a
wide range of applications, e.g., urban traffic estimation [39]
and prediction [37], personalized recommender systems
[22], [64], ridesharing [35], package delivery [9], anomaly
detection [8], and social relationship inference [32], [33]. To
enable those novel applications, a plethora of research
works have been conducted to uncover human mobility
patterns from trajectory data [6], [58], [65].

Among these studies, trajectory-user linking [66], which
links trajectories to users who produce them, is quite relevant
to our work. The high-level idea of solving this problem is to
capture people’s mobility patterns across different applica-
tion domains by exploiting representation learning models.
Instead of relying on some statistical models [28], most of
recent worksmainly analyzemobility trajectories by building
various deep learning models to learn the semantic trajectory
representations [17], [41], [47], [51], [62], [66], [67]. For exam-
ple, Feng et al. present a deep learning framework to link het-
erogeneous mobility data, which are collected from different
check-in services, to the users [17]. Ren et al. build a spatio-
temporal Siamese network model to predict whether an
incoming set of trajectories belong to a certain agent based on
historical trajectory data [47]. In addition, Miao et al. utilize
recurrent networks with attention mechanism to solve the
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trajectory-user linking problem [41]. Song et al. presentHER-
MAS to learn mobility representations from large-scale cellu-
lar signaling data [51]. Furthermore, Zhou et al. firstly
introduce deep meta-learning to improve the generality of
mobility prediction and classification models trained based
on both labeled and unlabeled trajectories [67]. Different
from those works, we aim to learn drivers’ driving style rep-
resentations from real-world GPS trajectory data, which
involves of capturing more complicated human driving
behaviors from noisy and sparse trajectory data.

2.2 Driving Behavior Analysis

Driving behavior analysis aims to study the relationship
between the driver’s behaviors (e.g., accelerating or steer-
ing) and current driving state (e.g., the vehicle’s speed, driv-
ing direction, and operating reactions) [5], [7]. Extensive
studies have been conducted by utilizing different data as
the input. Previous works primarily rely on the explicit data
collected from automobile sensors, e.g., on-board diagnostic
(OBD) systems [14], [16], [27], controller area network
(CAN) buses [19], [42], [44], [49], and dedicated devices [2],
[15], [25], [63], to analyze drivers’ driving behaviors. For
example, Ezzini et al. utilize OBD data to realize driver
identification and fingerprinting [14]. He et al. propose the
PPP framework that fuses both OBD data and insurance
data to profile driver behaviors and customize the insurance
pricing model [27]. Based on the same types of data, Fang
et al. present MoCha to model and predict a user’s driving
patterns in terms of three key metrics, i.e., distance, time,
and speed, for the usage-based insurance [16]. Rich driving
maneuver data can be derived from the CAN buses, and
thus researches have built different deep learning models,
e.g., long short-term memory [49] and convolutional recur-
rent neural network [42], to analyze driving behaviors. By
deploying high-definition dash-cameras in the vehicles,
video frames about the driving environment can be cap-
tured. Combined with other driving signals, a variety of
computer vision techniques are proposed to not only recog-
nize some basic driving actions, but also identify the driv-
er’s visual attention [2], [15] or even intention [25]. In
particular, Zhang et al. study the multi-vehicle interaction
patterns in the lane change scenarios by analyzing lane-
change video frames [63]. However, it is relatively difficult
to collect data from these automobile sensors, while dedi-
cated devices like cameras bring installation costs. These
constraints greatly limit their usability.

Compared to the in-vehicle sensors, GPS sensor data are
much easier to collect, and thus GPS trajectory data based
driving behavior analysis has attracted much attention [55],
[60]. For example, Yang et al. analyze GPS traces of peer
vehicles to proactively alter drivers of the vehicles with dan-
gerous behaviors nearby [60]. By jointly modeling the peer
and temporal dependencies of driving trajectories, Wang
et al. enable the applications of driving score prediction and
risk area detection [55]. Recently, many works [3], [4], [23],
[46], [59], [61] resort to collect driving data using the internal
sensors of smartphones and analyze such data for monitor-
ing drivers’ behaviors. These works mainly utilize sensing
data collected by smartphone sensors (e.g., accelerometer,
gyroscope, microphone, and speaker) to detect the driver’s
maneuver [4], [46], [61] and predict possible driving risks

[3], [23], [59]. In particular, Chan et al. have summarized the
recent smartphone sensing based driver behavior analysis
works [5], and interested readers can refer to this survey.
These works, however, mainly concern about driving
safety, rather than learning a driver’s latent driving style.

2.3 Driving Style Learning

Different from driving behavior analysis, the driving style
learning generally aims to obtain the latent representation
of a driver’s fine-grained driving habits [34]. The learned
driving style representation acts as the “driver DNA” [20],
which can be used to support intelligent transport applica-
tions [31], [52], [55]. For example, Sun et al. combine drivers’
driving style information to provide personalized estimated
time of arrival for users, who may spend different time to
travel the same route due to their diverse driving styles [52].

Earlier works usually build conventional machine learn-
ing models, e.g., rule based classifier [26] and random forest
model [54], to learn driving style representations from CAN
bus data, and make use of such representations to identify
drivers for the given trajectories. Chowdhury et al. also
build random forest models for driver identification based
on the hand-crafted features extracted from GPS trajectories
[10]. However, these works suffer from either the difficulty
of retrieving CAN bus data or the limited representation
ability of conventional machine learning models.

Due to the superior representation ability of deep learn-
ing techniques [37], recent works usually utilize various
deep learning models to learn driving style representations
from trajectory data [7], [12], [13], [30]. For example, Chen
et al. propose a multi-task learning framework that consists
of graph representation learning and semi-supervised learn-
ing to identify driving styles from GPS trajectory data in the
temporal dimension [7]. This work, however, does not con-
sider the problem of representation learning for drivers
with limited historical data. In addition, Dong et al. propose
an autoencoder regularized deep neural network and a trip
encoding framework to learn drivers’ driving styles directly
from GPS trajectories [12], [13]. Besides, Kieu et al. propose
a trajectory-to-image representation framework that enco-
des both geographic features and driving behaviors of tra-
jectories into multi-channel images [30].

Although existing works on driving style learning could
achieve remarkable performances, they are still not suffi-
ciently efficient and practical. First, they require high-qual-
ity GPS trajectories that are collected at a high-sampling
rate such as 1Hz, while most practical GPS trajectories are
collected at a low frequency, e.g., 1 sample per 30 seconds,
due to the concerns of energy consumption and privacy
[36]. Second, they merely extract features from GPS data
while overlooking the driving contexts, within which a tra-
jectory has been generated. Third, they do not consider the
cold-start problem for newly joined drivers, who have insuffi-
cient historical data to learn a good driving style representa-
tion. Different from prior researches, we utilize multi-source
data to construct comprehensive driving contexts and
exploit the advanced SGAN modeling [45] to learn more
effective and accurate driving style representations. Fur-
thermore, we improve the concept of triple loss [50] by
selecting suitable auxiliary drivers to constrain the repre-
sentation learning for drivers with limited training data.
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Compared with the earlier version of Radar [38], we
further improve the design by addressing the cold start prob-
lem. Specifically, we enhance Radar’s driving style represen-
tation learning for drivers who own limited training data
with some basic data augmentation strategies and a novel
auxiliary driver-based data augmentation method. In addi-
tion, we review more related works and perform extra
experiments to validate the effectiveness of the proposed
data augmentation strategies and the enhanced design of
Radar. We discuss the design choices and privacy protec-
tions of Radar, whichmay inspire future studies.

3 PROBLEM STATEMENT

In this section, we introduce some important definitions and
notations, and then formally define the context-aware driv-
ing style representation learning problem.

3.1 Definitions and Notations

The GPS trajectory data are collected when a set of drivers
U ¼ fu1; � � � ; ujUjg drive their vehicles, which have been
equipped with GPS sensors, on a road network. The GPS tra-
jectory set Tui generated by driver ui implicitly encodes ui’s
driving style. Accurately learning the driving style represen-
tation can benefitmany potential applications, such as driving
assessment and assistance [2], [55], driver-vehicle interaction
[34], [63], autonomous driving [31], and so on.

Definition 1. (GPS trajectory) Let T i
j 2 Tui denotes the j-th

trajectory generated by driver ui. Specifically, T i
j ¼ ½g1; � � � ;

gjT i
jj
� is a time-ordered sequence of GPS records, where each

GPS record is a tuple < ts; lat; lng; v; dir >, indicating that
ui’s vehicle located at latitude lat and longitude lng at time
ts, with instant travel speed v in direction dir.

Due to GPS localization errors, we have to map raw GPS
locations to their actual locations on the roads through map
matching techniques [43]. Therefore, a trajectory T j

1 could
be mapped to a travel routeRj on the road networkG.

Definition 2. (Road network) A road network is modelled as
graphG ¼ fV;Eg, where V represents the set of road intersec-
tions and E represents the set of road segments in a city. In
addition, each road segment has following attributes: ID of road
segment, road type, number of lanes, and one-way indicator.

Definition 3. (Travel route) The travel route Rj for a GPS tra-
jectory T j is denoted by a sequence of road segments, i.e., Rj ¼
½e1; � � � ; ejRjj�, on road network G, where ei 2 E is a road seg-
ment in route Rj and jRjj is the number of all traveled road
segments. Note that end point of ei is the start point of eiþ1.

3.2 Problem Statement

We define the problem we consider in this paper as follows.

Definition 4. (Context-aware driving style representation
learning) Given a set of GPS trajectory data generated by driv-
ers in U, we aim to learn driving style representations for driv-
ers in U by exploiting both the trajectories and some necessary
context information that govern the driving activity, so as to

support intelligent applications like driver identification and
driver number estimation.

Different from previous works [7], [10], [12], [13], [30]
that heavily rely on high-quality GPS trajectory data, we
should devise an approach that works well for practical tra-
jectory data and incorporates contextual information for
much better driving style representation learning. To that
end, we have to address the following challenges.

(1) GPS data sparsity. This challenge is raised from two
aspects. On the one hand, in practice GPS data are usually
collected at a low-sampling rate, e.g., 0.1Hz. On the other
hand, trajectories are of different lengths and may contain
deficient driving behavior information, resulting in insuffi-
cient qualified trajectories. These factors together lead to
low-quality data for training deep learning models, and
thus impair their performances.

(2) Balanced integration of features from GPS data and contex-
tual information. Although driving contexts would benefit
driving style representation learning, how to efficiently
encode these contextual information and further gracefully
integrate features extracted from raw GPS data and driving
contexts should be wisely designed. The driving contexts
involve various information, and the resultant feature vec-
tors may be of different dimensions.

(3) The cold-start problem for drivers with limited historical
data. Recent advances usually prefer to build deep learning
models to learn driving style representations from massive
data [5], [7], [12], [13], [30], while some drivers, especially
the newly joined drivers, do not have sufficient trajectory
data for the model training, resulting in the under-fitting
representations. How to improve the driving style represen-
tation learning of such drivers is necessary yet challenging.

4 DESIGN OF Radar

In this section, we present the overview of Radar, and then
describe the detailed design of each module.

4.1 Overview

Fig. 1 illustrates the architecture of our approach Radar,
which consists of three major modules: GPS data transforma-
tion, driving context representation, and learning model. At
high-level, Radar takes raw GPS trajectories and road map
as the input, and exploits the modules of GPS data transfor-
mation and driving context representation to extract features
from a GPS trajectory and the corresponding contexts. The
integrated feature tensors are then fed into learning model to
compute the driving style representation, which can sup-
port many intelligent applications, e.g., driver number esti-
mation and driver identification.

Specifically, the GPS data transformation module utilizes a
sliding window to calculate various statistics of the GPS
data, which finally form the statistic feature matrix. For the
driving context representation module, it firstly applies map
matching technique to transform each GPS trajectory to an
actual travel route. With this route, Radar derives context
information from three aspects of road conditions, geo-
graphic semantic (i.e., geographical distribution of the route
over the area of interest), and traffic conditions. These con-
text information are fused to form a contextual feature1. We omit the upper-script if the context is clear.
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matrix. Lastly, both statistic feature matrix and contextual
feature matrix are integrated as the input for the learning
model module. In particular, we adopt the emerging semi-
supervised generative adversarial network architecture [45]
to construct our learning model for deriving effective and
accurate driving style representations.

4.2 GPS Data Transformation

Instead of inputting raw GPS data to deep learning models,
we will transform each GPS trajectory into more stable sta-
tistic features. Similar as previous work [12], [13], we divide
a GPS trajectory into segments of a fixed length Ls, with a
shift of Ls

2 to avoid much information loss between any two
adjacent segments. We employ five basic features to capture
the instantaneous vehicular movement features, namely
speed norm, difference of speed norm, acceleration norm, differ-
ence of acceleration norm, and angular speed. To reduce the
possible impact of outliers, we further divide a segment
into frames of a fixed size Lf , with a shift

Lf

2 . For each frame,
we calculate seven statistics for each basic feature, including
mean, minimum, maximum, 25%, 50% and 75% quartiles,
and standard deviation. For each trajectory T j consisting of
a sequence of time-ordered GPS records in the form of gi ¼
< ts; lat; lng; v; dir > , we can easily calculate speed statis-
tics using travel speed v, acceleration statistics with location
ðlat; lngÞ, and angular statistics with travel direction dir,
respectively. As a result, we can derive a set of statistic feature

matrices, each of which consists of 5� 7 ¼ 35 rows and 2�
bLs
Lf
c columns. A statistic feature matrix encodes the driving

behavior information of a trajectory segment, and serves as
partial input to the learningmodel with its class label (i.e., the
driver identifier) as the original trajectory T j.

In our implementation, we set Ls ¼ 195 and Lf ¼ 6 for
the best performance. Therefore, we can obtain a set of sta-
tistic feature matrices of size 35� 64 for each trajectory. In
particular, if a trajectory segment is shorter than Ls, we will
pad zeros into the matrix, so that to unify the size of all sta-
tistic feature matrices. In principle, long trajectories contain
more information about the driving behaviors, and thus are
more preferable for the model training.

4.3 Driving Context Representation

Since driving activities will be implicitly governed by the sur-
rounding driving environment, thus Radar also takes driving
context information into consideration to let machines deeply
“understand” drivers’ behaviors especially under certain cir-
cumstances. In the design of Radar, we particularly consider
the three contexts of road conditions, geographic semantic,
and traffic conditions.

Fig. 2 illustrates how Radar processes each raw GPS tra-
jectory to generate the contextual features. For each GPS tra-
jectory T j, we firstly recover the travel route Rj through
map matching techniques [43]. Since GPS data transforma-
tion module outputs one statistic feature matrix for each

Fig. 1. The architecture of our approach Radar, which takes the input of GPS trajectory data and road map, and computes the driving style represen-
tations through three modules, i.e., GPS data transformation, driving context representation, and learning model. The final driving style representa-
tions learned by Radar can effectively support various intelligent applications like driver number estimation and driver identification.

Fig. 2. The driving context representation module can capture driving contexts of road conditions, geographic semantic, and traffic conditions.
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trajectory segment, thus the driving context representation
module will operate on trajectory segment and its associ-
ated travel route segment as well, and accordingly produces
one contextual feature matrix. Based on road network G,
the s-th trajectory segment T js and its travel route segment
Rjs, we derive each context representation as follows.

Road Condition. We utilize static road attributes of road
type, number of lanes, and one-way indicator to character-
ize road conditions. Let nt, n‘, and no to represent the num-
bers of possible values in the three types of categorical
attributes, we thus employ three attribute vectors of length
nt, n‘, and no, respectively, to encode the attributes of each
road segment, respectively. Specifically, one-hot encoding is
adopted to generate the attribute vectors. Given a travel
route Rjs, we derive road type vectors of road segments
covered byRjs, and sequentially connect them into one vec-
tor, which describes the road types a vehicle had traveled
when generating trajectory T js. In addition, we adopt an
embedding layer to reduce the dimensionality of the sparse
attribute vector. Similarly, we apply the same operations to
the attributes of road lanes and one-way, and derive their
attribute vectors for route Rjs, respectively. Finally, we con-
catenate the three embedding vectors into one vector of size
195� 1, which represents the context of road conditions.

Geographic Semantic. The GPS data only reflect the instan-
taneous driving statuses, but not capture the high-level geo-
graphic semantic of a trajectory, e.g., origin, destination, and
traveled regions. Thus, Radar maps each GPS trajectory seg-
ment to the whole city area to derive its geographic semantic
representation, which is formally defined as follows.

Definition 5. (Geographic semantic representation) We par-
tition the city area into N �N grids. For each trajectory T j,
we compute a geographic semantic representation matrix Mj,
where we set Mj½a; b� ¼ 1 if the travel routeRj of T j intersects
with the grid ½a; b�; otherwiseMj½a; b� ¼ 0.

As shown in Fig. 2, we further flatten the matrix Mj as a
vector, which is fed into a linear layer for reducing the
dimensionality. In our design, we set the final geographic
semantic vector of size 195� 1. Noting that we generate
such a vector for each trajectory segment T js as well.

Traffic Condition. In addition to road conditions, another
factor that has great impact on driving activities is the real-
time traffic condition. Considering both vehicle’s instanta-
neous movements and surrounding traffic conditions can
better define a driver’s driving behaviors. Therefore, we use
relative speed, which is calculated as the ratio between vehi-
cle’s travel speed and average travel speed of the vehicle’s
locating road segment, to represent traffic condition context.

To that end, we make use of all available GPS data to esti-
mate the real-time traffic conditions. For each road segment,
its traffic condition can be approximated as the average
travel speed of all vehicles passing by within a time slot Dt.
Therefore, we classify all GPS records to road segments
according to their map matching results. For a given road
segment, we calculate its average travel speed of a specific
time slot using the GPS records falling into that time slot.
Due to data sparsity, we may not derive a complete traffic
conditions of the whole road network G over all time slots.
For simplicity, we directly apply temporal-spatial interpola-
tions to infer the traffic conditions of uncovered road seg-
ments by leveraging the inherent traffic correlations among
roads. In fact, some advanced traffic estimation methods
[36] can be adopted to compute the complete real-time traf-
fic conditions. Once we obtain the traffic conditions of all
road segments, we calculate relative speeds for road seg-
ments covered by travel route Rjs of a trajectory segment
T js. These relative speeds then form T js’s traffic condition
representation.

As shown in Fig. 2, when the three representations of
driving contexts are ready, Radar concatenates them into
one vector, which is then fed into a dense layer to derive a
vector of size 2240� 1. To be compatible with the statistic
feature matrix, we reshape it into a contextual feature
matrix of size 35� 64� 1.

4.4 Learning Model

To tackle the poor data quality issue, we employ generative
adversarial networks (GAN) [24] to construct the learning
model. Essentially, GAN operates by training two neural
networks that play a min-max game: a discriminator is
trained to discriminate real samples from fake ones, while a
generator tries to generate fake training data to fool the dis-
criminator. Therefore, GAN is able to generate samples
very similar to the real GPS trajectory data and thus
improves the generalization ability of the derived model.

In particular, we adopt the emerging semi-supervised
GAN (SGAN) architecture [45] to build our learning model,
which mainly consists of a generator G and a discriminator
D, as shown in Fig. 3. In SGAN, discriminator D can also act
as a classifier C to classify each input sample into one of the
predefined ðkþ 1Þ classes, where k is the number of classes
and the additional class label is added for a new “fake” class.
The competition and interaction (via reward) between gener-
ator and discriminator will improve the quality of resultant
driving style representations. Therefore, our model can not
only classify drivers according to the learned driving styles,
but also for a given class c generates corresponding fake

Fig. 3. The design of learning model, which consists of the generator G, the discriminator D, and the classifier C.
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driving style features, which are similar to training samples
belonging to class c. To achieve this goal, the model training
involves both traditional unsupervised GAN task and super-
vised classification task simultaneously. Training in unsuper-
vised mode allows our model to learn useful feature
extraction capabilities fromunlabeled samples,whereas train-
ing in supervised mode allows the model to use extracted
features and apply classifications. Therefore, SGAN can out-
perform traditional GANs on efficiently generating higher
quality samples [11].

Discriminator D (and classifier C). As shown in Fig. 3, dis-
criminator takes either real samples, generated from GPS
data and context information, or fake samples, produced by
generator G, as the input, which is further processed by a
neural network to derive driving style representations. Dis-
criminator D is trained in both unsupervised mode and
supervised mode.

� Unsupervised mode. In this mode, discriminator D,
with parameter ud, predicts whether a sample is true
(sampled from real trajectory data) or fake (gener-
ated by the generator G) by calculating the probabil-
ity score DðxjudÞ that the sample x is true. We train
our learning model like traditional GANs by maxi-
mizing the score for real samples and minimizing it
for fake ones. We achieve this objective by minimiz-
ing LðDÞ, which is defined as follows.

LðDÞ ¼ �½Ex�prðxÞlogDðxjudÞ þEx�Glog ð1�DðxjudÞÞ�;
(1)

where prðxÞ represents the distribution of real sam-
ples from trajectory data.

� Supervised mode. In this mode, discriminator D acts as
classifier C to complete a multi-class classification
problem. For each sample, classifier C, with parame-
ter uc, predicts if the sample belongs to one of the
predefined ðkþ 1Þ classes. Because the label of driv-
ing style features generated by the generator G is
known, classifier C can also utilize the labels of fake
samples for training. Thus the generalization ability
of the model could be improved. In addition, classi-
fier C’s classification on both real and fake samples
can be used as feedback (via reward) to improve
generator G, i.e., higher classification accuracy will
bring more returns. To train the classifier C, we aim
to minimize the classifier loss LðCÞ, i.e., the cross
entropy loss on true labeled samples that is com-
puted using the overall classifier score.

LðCÞ ¼ �Epðxc;cÞ½log Cðcjxc; ucÞ�; (2)

where x is a sample of class c, and C should correctly
classify it as class c.

We implement above two modes in one unified frame-
work, as shown in Fig. 3. Discriminator D and classifier C
share the same feature extraction layers, but have different
output layers. Specifically, we use a stack of convolution
layers with LeakyReLu to process each input sample. After
a series of convolutions, we get a feature tensor that is flat-
ten and inputted to a dense layer to derive the driving style
representation vector. For traditional GAN task, the vector

is fed into tanh to discriminate real samples and fake ones.
For classifier C, the vector is fed into softmax to obtain clas-
sification probabilities of the ðkþ 1Þ classes.

Generator G. Given the distribution prðxÞ of real samples
and k class labels from real training data, generator G aims
to find the parameterized conditional distribution Gðz; c; ugÞ
that is close to the real distribution prðxÞ. The generated
fake samples are conditioned on the network parameters ug,
noise vector z, and class label c, which are sampled from
prior distribution pz and pc, respectively. Label c of a fake
sample y can be known when the generator G generates y,
so that the actual classification label of each generated sam-
ple is retained for training classifier C. Following the feature
matching technique proposed to addresses the instability of
GANs [48], we train G by minimizing loss LðGÞ expressed as:

LðGÞ ¼ jjEx�prðxÞfðx; ufÞ �Ez�pzfðGðz; c; ugÞ; ufÞjj
2
2; (3)

where fð�Þ denotes activation on an intermediate layer (e.g.,
the stack of convolution layers) of discriminator D, uf is the
parameter subset of ud corresponding to the intermediate
layer of discriminator D, and c is the class label of real sam-
ple x. The objective of generator training is thus to minimize
the discrepancy between real and generated data distribu-
tions in the feature space.

As shown in Fig. 3, generator G is implemented with four
deconvolution layers, which transform noise vector z into
fake driving style features. In particular, each deconvolution
layer is followed by a nonlinear activation based on batch
normalization and rectified linear unit (ReLU). z is a 128
dimensional vector sampled from a uniform distribution pz,
and it is processed by the dense and reshape layers before
inputting to the deconvolution layers. Finally, generator G
outputs a 35� 64� 2 feature tensor as the same size of real
feature tensors. The values of tensor items are shapely
squashed within ½�1; 1� through the tanh function.

5 DATA AUGMENTATION STRATEGIES

The superior performance of deep learning models, includ-
ing GANs, heavily rely on a large number of training data to
avoid over-fitting [56]. However, some drivers, especially
the newly joined drivers, usually have insufficient historical
trajectory data, and as a result Radar cannot effectively learn
their driving style representations. To tackle this cold-start
problem, data augmentation is a crucial technique to
increase the amount of training data for such drivers. In this
section, we propose a series of data augmentation strategies,
which include four basic strategies adapted from time series
data augmentationmethods [29] and a novel auxiliary driver
based data augmentation strategy.

5.1 Basic Data Augmentation

GPS trajectory data are time series data as well, and thus
existing time series data augmentation methods can be eas-
ily adapted to enhance the size of training data for driving
style representation learning. Basic time series data aug-
mentation methods directly manipulate the original GPS
trajectory T by slightly modifying T in either time domain
or frequency domain [29], [56]. Given an input trajectory
T ¼ ½g1; � � � ; gjT j� and its map matched travel route R, the
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label (i.e., the map matched road segment) of any GPS
record in T is stored in R. Then we explain each basic data
augmentation strategy in detail as follows.

1) Slicing. The general idea of slicing is that the data can
be augmented by slicing the time stamps of GPS
records off the ends of input trajectory T . Generally,
a sub-trajectory T sub sliced from input T with a win-
dow of sizeW can be represented as:

T sub ¼ ½gi; giþ1; � � � ; giþW �; (4)

where i is a random integer such that 1 � i �
jT j �W . Slicing can produce multiple shorter trajec-
tories from a long input trajectory, and increases the
amount of training data. Fig. 4a illustrates the slicing

based data augmentation, where a long trajectory is
sliced into two shorter trajectories with a window of
sizeW ¼ 4.

2) Down-sampling. We down-sample the original GPS
records of input trajectory T with a specific down-
sampling rate t to obtain a shorter GPS record series
of length bjT j

t
c. The label series is also down-sampled

at the same rate k as theGPS record series.We do such
down-sampling operations for t times, and thus will
derive t shorter trajectories. Then we copy and join t

of thse shorter trajectories to form a long and new tra-
jectory of the same length as the input T . However,
this strategy may not work well, because the join
points usually have large jumps and the resultant tra-
jectory breaks the temporal dependence of GPS
records. Fig. 4b shows an example of down-sampling
based data augmentation on the original trajectory.

3) Permutation. The GPS records of input trajectory T
are partitioned into m segments of equal length bjT j

m
c,

and these segments can be permuted to produce
new patterns. The label for each GPS record will be
retained accordingly. A variant of permutation is
random shuffling that rearranges individual GPS
records rather than the segments. Although permu-
tation can produce many synthetic trajectories from
one single input, it cannot preserve the temporal
dependency within original trajectory T any more.
Fig. 4c illustrates the permutation based data aug-
mentation, where the original trajectory is parti-
tioned into three segments and these segments are
randomly arranged into a new trajectory.

4) Perturbations in frequency domain. Different from above
strategies that work in time domain, Gao et al. [21]
recently propose to investigate data augmentation
from frequency domain by utilizing perturbations in
both amplitude spectrum and phase spectrum. Specif-
ically, given an input time series x1; x2; � � � ; xm, its fre-
quency spectrum F ðviÞ can be calculated via Fourier
transform as:

F ðviÞ ¼
1

m

Xm�1

t¼1

xte
�Jvit ¼ AðviÞexp½JuðviÞ�; (5)

where J is the imaginary unit of Fourier transform, vi ¼
2pi
m , i ¼ 0; 1; � � � ;m� 1, is the angular frequency, AðviÞ and
uðviÞ are amplitude spectrum and phase spectrum, respec-
tively. As a result, random perturbations can be applied to
AðviÞ and uðviÞ separately for data augmentation in the fre-
quency domain. Specifically, for perturbations in AðviÞ, the
amplitudes of randomly selected GPS records are replaced
with Gaussian noises, which are sampled from a distribu-
tion considering original mean and variance in the input
T ’s amplitude spectrum. For perturbations in uðviÞ, the
phases of randomly selected GPS records are added by extra
zero-mean Gaussian noses in the phase spectrum.

In our implementation, we set W ¼ 195 for the slicing
strategy, t ¼ 5 for the down-sampling strategy, m ¼ 10 for
the permutation strategy, and m ¼ 195 for the strategy of
perturbations in frequency domain. These settings are tuned
based on extensive experiments on real trajectory data.

Fig. 4. Illustration of three basic data augmentation strategies.
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5.2 Auxiliary Driver Based Data Augmentation

The basic data augmentation strategies enrich training data
by manipulating existing trajectories of a driver, however,
the derived data are still far from adequacy. In addition, the
augmented data cover only partial input space (e.g., existing
trajectories of a driver only cover certain driving contexts),
while other part of the input space should also be explored
to better characterize a driver’s driving style under different
driving contexts.

To this end, we propose an auxiliary driver based data
augmentation strategy, which indirectly enhances the
representation learning for the drivers with limited train-
ing data. The key idea is that for a given driver u, we select
some auxiliary drivers and exploit the concept of triplet
loss [50] to constrain u’s driving style representation learn-
ing with these auxiliary drivers’ driving style representa-
tions. Next, we will elaborate how to select auxiliary
drivers and then make use of their driving style represen-
tations to enhance the learning process of drivers with
insufficient data.

5.2.1 Auxiliary Driver Selection

Triplet loss is initially proposed to derive a unified
embedding for face recognition [50], and has been widely
used as a novel loss function for deep learning models,
where the distance between the anchor sample and a posi-
tive sample is minimized while the distance from the
anchor sample to a negative sample is maximized. The
three samples of anchor, positive, and negative form a
triplet. In our problem, we treat driver ua with insufficient
training data as the anchor, and both positive drivers and
negative drivers as the auxiliary drivers to help ua’s driv-
ing style representation learning. Specifically, with respect
to driver ua, a positive driver up should share similar driv-
ing style as ua, while a negative driver un will have a dis-
tinct driving style from ua. It is worthy to note that both
positive and negative drivers should have sufficient his-
torical trajectory data for their own driving style represen-
tation learning.

Due to insufficient training data, however, we cannot
learn a reliable representation for driver ua. As a result, we
have to seek an alternative indicator to measure the driving
style similarity between drivers. The average driving speed
has been frequently used as an important metric to reflect
one’s personalized driving style [16], [52], we thus make
use of this metric to distinguish positive and negative driv-
ers for a given anchor driver.

Specifically, for each driver u we calculate an average
driving speed vector vu in an offline manner. Each item viu
of vu indicates the average driving speed on the i-th
(1 � i � nt) road type, where nt is the total number of road
types in the road network. Based on driver u’s historical tra-
jectory data and the corresponding map matched travel
routes, we can easily obtain the sum Li

u of travel distance
and the sum T i

u of travel time on roads of the i-th road type.

Thus, viu is calculated as
Li
u

T i
u
. If a driver has no data on the

i-th road type, we use the average of all other drivers’ driv-
ing speed on such roads as a placeholder. We will replace
this value with real average driving speed, once the driver
has data on roads of the i-th road type.

For the given anchor driver ua, we randomly select two
other drivers, and assign one driver as the positive driver up

while the other as the negative driver un. The three drivers
should satisfy the following constraint:

jjvua � vup jj
2
2 þ " � jjvua � vun jj

2
2; (6)

where " is a pre-defined margin that is enforced between
positive and negative drivers [50]. Equation (6) means that
on the metric of average driving speed, anchor driver ua is
closer to positive driver up than to negative driver un. Fig. 5
further illustrates the idea of applying triplet loss for trajec-
tory data augmentation.

5.2.2 Triplet Loss Improved Representation Learning

We assume that drivers with similar driving styles should
have closer representations as well. Therefore, driving style
representations of driver ua, up, and un should also satisfy a
distance constraint as follows:

jjfua � fup jj
2
2 þ a � jjfua � fun jj

2
2; (7)

where a is a hyper-parameter serving as the margin, while
fua , fup , and fun represent driving style representations that
are learned from trajectory samples of driver ua, up, and un,
respectively. Thus, we make use of triplet loss [50] to define
an auxiliary loss Laux to further constrain the representation
learning of driver ua, i.e.,:

Laux ¼ 1

M

XM
i¼0

jjfiua � fi
up
jj22 � jjfi

ua
� fi

un
jj22 þ a

h i
þ
; (8)

where the operator ½x�þ ¼ maxð0; xÞ, and M is the total
number of possible triplets in the training dataset.

Therefore, the driving style representation learning pro-
cess of driver ua with insufficient training data is not only
guided by the general loss Lgen that is defined in Equa-
tion (9), but also by the auxiliary loss Laux.

Lgen ¼ LðDÞ þ LðCÞ þ LðGÞ (9)

On the one hand, the general loss Lgen ensembles the losses
defined in Equations (1)�(3), and controls the learning
from driver ua’s own data. On the other hand, the auxiliary
loss Laux makes driver ua to be closer to positive drivers
while to be far from negative drivers in the embedding
space.

Fig. 6 illustrates the complete workflow of auxiliary
driver based data augmentation for drivers with insufficient

Fig. 5. Illustration of triplet loss, which aims to minimize the distance
between an anchor driver and a positive driver, which share similar driv-
ing styles, while maximizing the distance between an anchor driver and
a negative driver, which have distinct driving styles.

7078 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 12, DECEMBER 2023

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on November 12,2023 at 04:35:38 UTC from IEEE Xplore.  Restrictions apply. 



training data. In practice, we compute the average driving
speed vectors for all drivers based on their historical trajec-
tory data in an offline manner before the model training.
During the model training, for a given driver ua, we firstly
build a mini-batch of auxiliary drivers, which include both
positive drivers and negative drivers. Instead of selecting
driver triples from the whole dataset that may be computa-
tionally infeasible, mini-batch of auxiliary drivers can accel-
erate the training. Within the driver batch, we randomly
generate a driver triplet ½ua; up; un� that should satisfy the
distance constraint in Equation (6). A driver triplet that
does not meet the condition will be discarded. Next, we ran-
domly extract one trajectory from the three drivers’ histori-
cal trajectory datasets, respectively, to construct a trajectory
triplet ½T ua ; T up ; T un �. We utilize the Radar model to learn
driving style representation fua , fup , and fun for anchor
driver ua, positive driver up and negative driver un based on
their trajectory data, respectively. Based on the three repre-
sentations, we calculate auxiliary loss Laux and general loss
Lgen using Equations (8) and (9), respectively. Furthermore,
we use a hyper-parameter b, 0 � b � 1, to balance the trade-
off between Lgen and Laux. Therefore, the objective function
for driver ua is defined as:

L ¼ b � Lgen þ ð1� bÞ � Laux: (10)

With the help of auxiliary drivers, the model parameters
for drivers with insufficient training data can be optimized
under the comprehensive loss in Equation (10). In practice,
we can integrate some basic data augmentation strategies
with the auxiliary driver based data augmentation strategy
to achieve better representation learning performance. In
our implementation, we set the margin " ¼ 5 and a ¼ 0:1,
build a random driver batch of size 100, and set b ¼ 0:8 to
balance Lgen and Laux.

6 PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evalu-
ate the effectiveness of Radar on learning accurate driving
style representations with two applications.

6.1 Experimental Setup

Dataset. We use a large real-wold anonymized GPS trajec-
tory dataset2 for the experiments. This dataset contains 1.3
billions GPS records that are collected from 10000 drivers in
Shanghai city, China, during a six-month period in 2015.
These GPS records are collected at a low-sampling rate as
0.1Hz (i.e., one sample per ten seconds). Each GPS record
includes the driver identifier, a timestamp, the location with
longitude and latitude, travel speed, and travel direction.

Furthermore, we download the road network of the city
area covered by GPS records from OpenStreetMap (OSM)3,
and model it as a graph GðV;EÞ, which has 159386 vertices
and 30336 edges (i.e., road segments) in total. In addition,
we obtain road attributes from OSM as well. After map
matching, we derive the actual travel route for each trajec-
tory. By analyzing all travel routes and the road attributes
specified by the OSM file [1], we find that the trajectory data
mainly cover five kinds of roads, i.e., primary, secondary,
tertiary, residential and service roads. These roads are
paved with asphalt or concrete. Table 1 shows the distribu-
tion of road types covered by the drivers’ travel routes. We
find that most of the GPS trajectories were generated within
urban area, as ride-hailing services are more popular there.
In addition, we analyze the driving activities of all drivers,
and summarize the statistic results in Fig. 7. The statistics
show that 80% drivers have completed 500 trajectories with
data collection duration of 550 hours. On average, we have
430 trajectories for each driver in the dataset.

Baseline Approaches. We compare Radar with the follow-
ing baseline approaches, which can also learn driving style
representations from GPS trajectories.

� ARNetis one of state-of-the-art approaches. ARNet-
proposes an autoencoder regularized neural net-
work for the driving style representation learning,
merely from raw GPS data [13].

� T2INETis one of state-of-the-art approaches as well.
T2INETrepresents one GPS trajectory as the multi-
channel images that capture both geographic and
driving behavior features using a sequence of convo-
lution layers [30].

� Radar-Cserves as one variant of our Radar by dis-
abling the driving context representation module. As
a result, Radar-Conly takes the statistic features
extracted from GPS records as input for the learning
model to compute driving style representations.

Fig. 6. The workflow of auxiliary driver based data augmentation.

TABLE 1
Distribution of Road Types Covered by GPS Trajectory Data

Road Type primary secondary tertiary residential service

Percent 24.51% 12.55% 6.85% 27.54% 28.55%

2. The dataset is provided by a ride-hailing company that manages a
fleet of vehicles to provide on-demand mobility services. With the driv-
ers’ consent, all vehicles’ location and status information were transmit-
ted back to a centralized platform for the safety and management
purposes. To protect drivers’ privacy, the trajectory data have been
anonymized, where each driver is randomly assigned with an ID and
each driver’s trajectories are identified by this unique ID.

3. OpenStreetMap: https://www.openstreetmap.org/
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Implementation. We implement Radar and all baseline
approaches in Python 3.7.3 with Keras4 2.3.1 and TensorFlow5

2.2.0 for building various machine/deep learning models. In
addition, we set Radar’s parameters as follows. We set Ls ¼
195 and Lf ¼ 6 for GPS data transformation. The city area is
partitioned into 80� 80 grids for geographic semantic repre-
sentation. In graph G, we have nt ¼ 5 road types, maximum
number of lanes n‘ ¼ 6, and no ¼ 2 for indicating one-way or
not. We estimate traffic conditions with time slot Dt ¼ 30
minutes. For the learningmodel, we use Adadelta as the opti-
mizer, and set learning rates for generator G anddiscriminator
D as 0.0001 and 0.0004, respectively. We set batch size as 128
and the epochs as 5000. Besides, we directly adopt the imple-
mentations of ARNet [13] and T2INET [30], which are pro-
vided by the authors respectively, and tune their parameters
with our data to achieve their best performances.

We evaluate these approaches with two benchmark
applications, i.e., driver identification and driver number esti-
mation, on a server, which is equipped with Intel Core i9-
9900K CPU@3.60GHz, NAVIDA GeForce RTX 2080 Ti GPU,
and 32GB memory.

6.2 Driver Identification

The driver identification problem aims to identify the driver
of a given unlabeled trajectory, which belongs to the super-
vised multi-class classification problem.

6.2.1 Extra Experimental Settings

In addition to the basic experimental setup, we have extra
settings for the application of driver identification.

Training and Testing. In each experiment, we randomly
select 10 drivers and use their GPS trajectories for the model
training and testing. Specifically, 70% of the trajectory data
are used for training, 10% for validation, and the remaining
20% for testing. The models of all approaches are trained
with labeled trajectories, and for a testing trajectory the mod-
els should predict its driver identifier.

Performance Metric. We employ the top-n accuracy
(denoted by acc@n) to evaluate the prediction performances
of all approaches. In particular, acc@n is calculated as the
percentage of testing trajectories for which the ground truth
drivers are in the top n predictions. For a testing trajectory,

we rank the predicted driver identifiers in the descending
order of probability values.

6.2.2 Experimental Results

Overall Results. In addition to the aforementioned three
baselines, we also include two typical supervised learning
models, i.e., support vector machines (SVM) [57] and gradi-
ent boosting decision trees (GBDT) [40], for performance
comparisons. Specifically, SVM and GBDT take the statistic
features produced by Radar as input for the predictions,
while SVM+ and GBDT+ make use of both statistic and con-
textual features generated by Radar for the predictions. Fur-
thermore, we partition drivers’ trajectories into two sets:
long trajectories (with duration more than 1950 seconds) and
short trajectories (with duration less than 1950 seconds). We
conduct experiments on each set of trajectories separately,
and present the results in Figs. 8 and 9, respectively.

As shown in Fig. 8, the top-n accuracy of each approach
becomes higher when n increases. Our approach achieves
the highest acc@5 accuracy as 81.3%. These deep learning
models, i.e., ARNet, T2INET, Radar-Cand Radar, always
have better predictions than traditional supervised learning
models, i.e., SVM and GBDT and their variants, with the
largest performance gap as 36.6% on acc@2. It implies that
deep learning models are indeed powerful at representation
learning. By comparing the performances of traditional
models, we find that SVM+/GBDT+ outperform SVM/
GBDT, e.g., with acc@1 accuracy improvement by 1.2% and
3.6%, respectively. Therefore, it is necessary to include con-
textual features for better modeling. Compared to state-of-
the-art ARNetand T2INET, Radar achieves more accurate
predictions, e.g., averagely improving them by 2.6%, 4.2%,
and 2.4% for acc@1, acc@2, and acc@5, respectively.

Fig. 7. Statistics about the drivers’ driving activities.

Fig. 8. Performance comparisons on Top-n accuracy with the long
trajectories.

Fig. 9. Performance comparisons on Top-n accuracy with the short
trajectories.

4. Keras: https://keras.io/
5. TensorFlow: https://www.tensorflow.org/
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The prediction results on the short trajectory set are plot-
ted in Fig. 9. Since short trajectories contain less information,
and thus the prediction performances of all approaches have
been seriously deteriorated. However, we find that the per-
formance gap between ARNet/T2INETand our approach
becomes even larger, i.e., on average Radar improves the two
advanced approaches by 7.1%, 12.0%, and 5.2% for acc@1,
acc@2, and acc@5, respectively. These comparisons reflect
that Radar is able to extractmore useful and accurate features
from low-quality trajectory data, and thus can still achieve
reasonably high prediction accuracy.

Effectiveness of Data Augmentation. We conduct experi-
ments to investigate various data augmentation strategies
by varying the amount of available training data for testing
drivers as one week data, two week data, and one month data.

First, we combine Radar with different data augmenta-
tion strategies, i.e., no data augmentation and the four basic
data augmentation strategies presented in Section 5.1, to
learn driving styles for the drivers with insufficient training
data. For simplicity, we only present the results on the met-
ric of acc@1 in Table 2. When we increase the data amount,
the accuracy of each combination increases as more training
data generally benefit the representation learning accuracy.
However, the performances of time domain based data aug-
mentation strategies, i.e., slicing, down-sampling, and permu-
tation, are not stable, since their accuracy results change
around the ones of Radar with no data augmentation (i.e.,
None in Table 2). This is because these strategies manipulate
existing trajectories in the temporal dimension, and inevita-
bly break the original temporal dependency among GPS
records. In contrast, we see that the strategy of perturba-
tions in frequency domain (PFD for short) has the best accu-
racy in the three scenarios. The PFD strategy attempts to
maintain the temporal dependency of trajectory data, while
varying the GPS records from both amplitude spectrum
and phase spectrum to produce synthetic data.

Then, we evaluate our novel auxiliary driver based data
augmentation (AD for short) strategy, and present the results
in Fig. 10. In this experiment, auxiliary drivers have been
assigned with sufficient training data. From Fig. 10, we see
that Radar with AD strategy improves the variant of Radar
with PFD strategy, with an average improvement by 1.6%.
Both variants outperform Radar without data augmentation,
which implies that effective data augmentation strategies
indeed improve model accuracy. More importantly, we find
the two strategies, PFD and AD, are compatible, and can
be adopted together to greatly improve the representation

learning of drivers with limited data. According to these
results, we find that the variant of Radar integrated with
two strategies significantly outperforms state-of-the-art
approaches, e.g., averagely improving ARNetand T2INETby
8.2% and 6.3%, respectively.

6.3 Driver Number Estimation

This application aims to estimate the number of drivers
from a set of anonymous trajectories. To solve this problem,
we train the driving style representation learning models
with a set of labeled trajectories (i.e., with known driver
identifiers), and exploit trained models to represent each
testing trajectory as a driving style representation vector.
Then, we employ the affinity propagation clustering algo-
rithm [18] to classify all representation vectors into clusters.
In theory, a desired model should effectively learn drivers’
driving styles, and would classify the testing trajectories
generated by a specific driver into the same cluster. Finally,
the number of clusters is regarded as the number of drivers.

6.3.1 Extra Experimental Settings

In addition to the basic experimental setup, we have extra
settings for the application of driver number estimation.

Training and Testing. We randomly select 10 drivers from
the driver set U and take their labeled trajectories as train-
ing data. In addition, we randomly select k drivers from
remaining drivers, who are absent in the training data, to
form a group, denoted by Group k. We vary k from 1 to 10.
For each group, we randomly sample 50 trajectories from
the k drivers, and use these trajectories as testing data. We
repeat 10 runs for each k value, and report average results.

Performance Metrics.We compare different approaches on
the following two performance metrics: (1) the mean abso-
lute error (MAE), which is the difference between the
ground truth of driver number and the estimation; (2) the
adjusted mutual information score (AMI) [53] that measures
the clustering quality. The AMI values fall in the range of
[0,1], and larger AMI values are preferable.

6.3.2 Experimental Results

Overall Results. Table 3 shows the MAE results and devia-
tions, where the best result of each group is marked in bold.
When k increases, the driver number estimation problem
becomes harder, and thus the MAE will be larger. Among
all experiments, we see that our approach (Radar and
Radar-C) wins 7 best results (i.e., the smallest MAE) out of

TABLE 2
Performance Comparisons on Acc@1 for Basic Data

Augmentation Strategies With Different Amount of Training
Data, Where NoneMeans No Data Augmentation
Strategy and PFD Represents the Strategy of

Perturbations in Frequency Domain

Strategy One week Two weeks One month

None 15.6% 17.8% 22.5%
Slicing 12.5% 18.5% 20.3%
Down-sampling 15.8% 17.6% 23.5%
Permutation 15.3% 20.3% 21.7%
PFD 17.8% 21.6% 25.3% Fig. 10. Performance comparisons on acc@1 for various data augmenta-

tion strategies.
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ten tests. For the three lost cases, our approach falls behind
with marginal differences, e.g., 0.14 at most. As shown by
the average experiment results in the last row of Table 3,
Radar-Cachieves slightly better performance than the state-
of-the-art approaches, i.e., ARNetand T2INET. It implies
that our learning model is more effective on capturing driv-
ing style features from raw GPS data. By incorporating the
driving context information, Radar further improves
Radar-Cby reducing average MAE from 1.234 to 1.168. Over-
all, our approach Radar can improve ARNetand T2INETon
the performance metric of MAE by 10.7% and 8.5%,
respectively.

Table 4 presents the AMI results and deviations, where
we also mark the best AMI of each group in bold. Similarly,
we find that Radar outperforms other two baselines in most
cases, with six wins out of ten tests. The results in Table 4
are in accordance with the results in Table 3. In general, a
better clustering quality (i.e., a larger AMI) potentially leads
to a better estimation of driver number (i.e., a smaller
MAE). The average AMI values of the four approaches are
0.212, 0.234, 0.225, and 0.239, respectively. The results in
both Tables 3 and 4 demonstrate that Radar is capable of
learning more effective and accurate driving style represen-
tations, which thus well support the application of driver
number estimation, with smaller MAE and larger AMI.

Effectiveness of Data Augmentation.We also conduct experi-
ments to investigate our data augmentation strategies by
comparing with state-of-the-art approaches under different

amount of training data. In particular, we enhance Radar

with two data augmentation strategies, i.e., PFD and AD.
Similarly, the testing drivers are assigned with limited train-
ing data, while auxiliary drivers have sufficient data for
training. In this experiment, we repeat 10 runs for each k

value, and report the average results of all k settings.
Fig. 11 compares MAE results of different approaches for

the testing drivers with varied amount of training data.
With insufficient training data, the MAE results of all
approaches are relatively large, while Radar enhanced with
effective data augmentation can largely reduce the estima-
tion errors. For example, Radar integrated with PFD and
AD outperforms ARNetand T2INETby reducing MAE by
33% and 20%, respectively, when testing drivers have only
one week of training data. Compared to Radar without data
augmentation, we find that Radar integrated with PFD or
AD could improve the MAE performance by introducing
more training data.

We observe similar experimental results on the metric of
AMI, as shown in Fig. 12. With the effective data augmenta-
tion strategies like PFD and AD, Radar can learn more
robust and accurate driving style representations for drivers
with limited data, and thus achieve better clustering perfor-
mance based on their representations. From Fig. 12, we see
that Radar with PFD+AD has the highest AMI score among
all the four approaches.

7 DISCUSSION

In this section, we discuss some design choices and privacy
protections of Radar.

TABLE 3
PerformanceComparisons onMAE for Driver Number Estimation

Group k ARNet T2INET Radar-C Radar

1 0.64 	 0.60 0.70 	 0.68 0.80 	 0.64 0.78 	 0.65
2 0.82 	 0.80 0.88 	 0.74 0.92 	 1.20 0.84 	 0.97
3 1.08 	 1.26 1.22 	 1.48 1.02 	 1.24 0.98 	 1.24
4 1.18 	 1.40 1.04 	 1.46 0.92 	 1.02 1.02 	 1.07
5 0.98 	 1.24 0.88 	 1.56 1.20 	 0.90 1.02 	 0.88
6 1.24 	 0.98 1.24 	 0.96 1.04 	 1.24 1.04 	 1.06
7 1.60 	 1.24 1.42 	 1.64 1.42 	 1.44 1.24 	 1.12
8 1.48 	 1.46 1.46 	 1.45 1.46 	 1.50 1.38 	 1.24
9 1.74 	 1.48 1.82 	 1.46 1.62 	 1.42 1.56 	 1.48
10 2.32 	 1.50 2.10 	 1.68 1.94 	 1.54 1.82 	 1.46

Average 1.308 1.276 1.234 1.168

TABLE 4
Performance Comparisons onAMI for Driver Number Estimation

Group k ARNet T2INET Radar-C Radar

1 0.34 	 0.06 0.32 	 0.12 0.27 	 0.06 0.25 	 0.09
2 0.37 	 0.08 0.36 	 0.07 0.25 	 0.08 0.28 	 0.03
3 0.21 	 0.04 0.21 	 0.08 0.26 	 0.08 0.27 	 0.03
4 0.16 	 0.08 0.24 	 0.05 0.22 	 0.05 0.25 	 0.04
5 0.19 	 0.06 0.23 	 0.08 0.19 	 0.08 0.18 	 0.06
6 0.18 	 0.05 0.22 	 0.04 0.26 	 0.06 0.26 	 0.07
7 0.17 	 0.07 0.17 	 0.05 0.20 	 0.08 0.23 	 0.02
8 0.19 	 0.06 0.19 	 0.06 0.14 	 0.05 0.18 	 0.04
9 0.15 	 0.08 0.14 	 0.08 0.20 	 0.04 0.22 	 0.08
10 0.16 	 0.07 0.26 	 0.04 0.26 	 0.05 0.27 	 0.04

Average 0.212 0.234 0.225 0.239

Fig. 11. Comparisons on MAE with different amount of training data.

Fig. 12. Comparisons on AMI with different amount of training data.
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Influence of Driver’s Driving Speeds. Radar exploits the
driver’s driving speeds, which are calculated from the GPS
trajectory data, to estimate road traffic conditions and select
auxiliary drivers. The involvement of drivers into Radar

may have an impact on the context inference due to the var-
iances of drivers’ driving styles. To diminish the impact, we
compute average travel speed of a road segment from suffi-
cient number, e.g., 
 10, of vehicles passing by the road seg-
ment within a time slot. If there are insufficient vehicles, we
apply temporal-spatial interpolations to infer the traffic con-
ditions of uncovered road segments. Furthermore, we calcu-
late the relative speeds to represent the traffic conditions
while learning a driver’s driving style representation (see
Section 4.3). In the future, we may import traffic speeds
from an independent data source, e.g., transport agency, to
avoid the involvement of drivers for traffic estimations.

In Section 5.2,we calculate an average driving speed vector
vu, which is a vector of five dimensions to represent driver u’s
average driving speeds on five typical road types, and make
use of these vectors for auxiliary driver selection. The vector
vu omits the varying speeds of drivers across time of the day,
and thuswe conduct experiments to investigate whether such
a vector design is sufficient for our auxiliary driver based data
augmentation. To this end, we divide time of the day into two
categories, i.e., rush hours (e.g., 6:00-9:00AM and 17:00PM-
20:00PM) and non-rush hours (the remaining hours of the day),
and calculate a vector of ten dimensions to represent a driv-
er’s average driving speeds on the five road types and two
time categories. We compare their performance with the
application of driver identification, and present the accuracy
results on acc@1 in Table 5. We find that the two vector types
achieve similar accuracy results, with minimal differences. It
implies that the original average driving speed vector design
is adequate for selecting the suitable auxiliary drivers. Fur-
thermore, considering that the data sparsity issue would be
even worse if we use finer segmentation on time of the day,
we thus adopt the original average driving speed vector
design for the auxiliary driver based data augmentation,
which is proved to be simple yet effective.

Accuracy of Driver Identification With More Drivers. We
also examine the effectiveness of Radar when the number of
drivers to be identified becomes larger. Specifically, we con-
duct an extra experiment on the application of driver identi-
fication with 30 randomly selected drivers. The accuracy
results on acc@1 are shown in Table 6, where we see that
the identification accuracy of all the three methods is
slightly decreased when there are more drivers to be identi-
fied. Compared to ARNet [13] and T2INET [30], Radar still
achieves the highest accuracy. When the number of to-be-
identified drivers becomes larger, there are more drivers
who may share quite similar driving styles and thus the
identification performances of the three methods drop. To

further improve the identification accuracy, we could
include more features, e.g., types of vehicles that generate
the GPS trajectories, into the process of driving style repre-
sentation learning to enhance the distinguishability of driv-
ing style representations. We leave this as a future work.

Privacy Protections. Radar has several mechanisms to pro-
tect drivers’ privacy. During the model training phase, Radar
will map GPS trajectories of the same driver into the same
anonymized ID, and remove the beginning and ending parts
of eachGPS trajectory to avoid possible personal privacy leak-
age on the trip origin and destination, which may be inferred
as the driver’s home or workplace. Once the learningmodel is
well trained, the user (e.g., an insurance company) can utilize
the model to learn the driving style representation from a
given anonymized GPS trajectory. The derived driving style
representation is the high-level abstract of the driver’s driving
behavior and driving habits, which does not contain any hint
about a driver’s sensitive location information.

8 CONCLUSION

In this article, we present an adversarial driving style repre-
sentation learning approach – Radar. Different from previous
works, Radar not only extracts statistic features from rawGPS
trajectory data, but also builds contextual features by jointly
considering road conditions, geographic semantics, and traf-
fic conditions. We further exploit an advanced semi-super-
vised GAN architecture to construct the learning model to
computemore effective and accurate driving style representa-
tions. To address the cold-start problem, we propose several
basic data augmentation strategies and an advanced auxiliary
driver based data augmentation strategy, which can help
drivers with insufficient training data to accurately learn their
driving style representations. Experiment results from a large
GPS trajectory dataset demonstrate that Radar outperforms
state-of-the-art approaches on two benchmark applications.
Moreover, the effectiveness of our data augmentation strate-
gies has also been validatedwith extensive experiments.
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