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Towards Hierarchical Clustered Federated
Learning with Model Stability on Mobile Devices

Biyao Gong, Tianzhang Xing*, Zhidan Liu*, Wei Xi and Xiaojiang Chen

Abstract—Clustered federated learning (CFL) has proved to be an effective way to alleviate the non-IID (not independently and
identically distributed) data challenge, which severely restricts the wider application of federated learning. However, existing
approaches either lack adaptability, i.e., they require an additional number of clusters as a guide when clustering, or lack effectiveness
in terms of communication. In this paper, we explore the differences in the ability of different layers in a model to represent non-IID
data, and propose a hierarchical CFL approach, named HiCFL, which considers both adaptivity and communication efficiency. The
improvement of communication efficiency is due to our proposed novel concept of model stability, which characterizes the variation of
model weights during training. Based on model stability, HiCFL can find the proper time to bi-partition the clusters of mobile devices in
a hierarchical manner more quickly. We conduct extensive experiments based on popular datasets with various non-IID data settings.
The results show that HiCFL achieves excellent performance effectiveness and efficiency. Compared to state-of-the-art approaches,
HiCFL can improve the model accuracy by 2.0% ∼ 9.0%, while reducing the communication overheads by 27.3% ∼ 80.6%.

Index Terms—Federated learning, clustered federated learning, communication efficiency, hierarchical clustering, model stability.
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1 INTRODUCTION

TO leverage the massive amount of data generated on
mobile devices, e.g., smartphones, to train machine

learning models while protecting data privacy, federated
learning (FL) has emerged as a promising distributed ma-
chine learning paradigm [1]. In the FL setting, mobile de-
vices as the clients only need to upload local models or
just the model updates, rather than the raw data, to a
central server to train a globally shared model. Recently,
FL has been applied to a wide range of domains that raise
imperative concerns on data privacy, such as recommender
systems [2, 3], finance [4, 5], health care [6, 7, 8], and vehicle
networks [9, 10].

A typical FL approach, e.g., the most famous FedAvg [1],
aggregates model weights from all mobile clients iteratively
until converging to a stationary model. However, such a
single model learning paradigm suffers poor performance
in practical applications, e.g., image recognition [11], due
to unbalanced and non-IID (not independently and identi-
cally distributed) data distributions among mobile clients.
Heterogeneous data commonly exists in many application
scenarios because the users, who produce the data, may
have different physical environments and diverse usage
habits [11, 12, 13]. The non-IID data generally requires
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more communication overheads between the server and
mobile clients to reach the converged model, which largely
increases the burden on mobile clients [14, 15], while the
accuracy of the learned model may be severely degraded
[16, 17]. As a result, the non-IID data issue greatly hinders
the uses of FL in real-world applications.

In the literature, many efforts have been devoted to miti-
gating the impact of non-IID data. Previous works primarily
train one single global model from some well selected par-
ticipating clients (e.g., [18, 19]) or even partial high-quality
data of each client (e.g., [16, 20, 21]). These approaches, how-
ever, are still ineffective because a single model cannot well
reflect the underlying data distributions, resulting in poor
model accuracy. Recently, a novel framework, as known as
clustered federation learning (CFL) [22], is proposed to attack
the non-IID challenge. The key idea of CFL is that mobile
clients can be classified into different clusters according to
the similarity of their data distributions, and clients belong-
ing to the same cluster collaborate to train a shared model.
As a result, multiple global models exist and the impact of
data heterogeneity will be largely reduced. CFL has inspired
a number of follow-up works [22, 23, 24, 25, 26, 27]. Most
existing CFL approaches [23, 24, 25, 26] require inputting
the number κ of clusters in advance, while it is difficult or
even impossible to determine the optimal κ with no prior
knowledge of clients’ data distributions in the FL setting.
A few works [22] implement CFL without pre-specifying
κ by iteratively separating clients into clusters. However,
they separate a cluster only when all local models have
been converged, leading to huge communication costs, since
convergence of all local models requires a large number of
communication rounds between the server and clients. In
addition, when there are a large number of clients involved
in FL, these CFL approaches will also incur non-negligible
computation costs for client clustering [28].

In this paper, we present HiCFL, a Hierarchical Clustered
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Federated Learning approach, to advance the existing CFL
approaches. Without pre-specifying the cluster number κ,
HiCFL can still effectively and efficiently classify all clients
into a suitable number of clusters. The key idea of HiCFL
derives from one important observation. Existing literatures
have investigated the differences between the different lay-
ers in the model [29, 30, 31], e.g., the higher level weights
are more task-related compared to the lower level weights.
We further experimentally observe that different layers of
a local model show diverse capabilities for describing the
data distribution in FL, and the cosine similarity among
layer-wise model updates of different clients demonstrates
a clear clustering effect. In particular, we find that some
layers may possess such a capability much earlier and
meanwhile stronger than others. Inspired by this observa-
tion, we propose the concept of model stability to measure
the convergence state for the weights of each model layer,
and exploit model stability to guide the process of client
clustering. Specifically, HiCFL continuously calculates the
model stability for each client using a sliding window.
Once a stable state is reached for an identical layer in
all local models, HiCFL bi-partitions clients of a cluster
into two sub-clusters according to the similarity values of
the layers reaching stability. HiCFL separates clients into
proper clusters in a hierarchical manner, and terminates the
clustering until no cluster separation. As a result, HiCFL can
intelligently group clients, even without the input of cluster
number κ. Moreover, HiCFL incorporates a model weight
selection mechanism to retain only updates of unstable
model weights for the model stability calculations.

The main contributions of this paper are as follows:

• We observe that different layers of a client’s model
have diverse capabilities on describing the underly-
ing data distribution, and for the first time propose
a novel indicator named model stability to measure
the state of model updates at the layer level.

• We present HiCFL that exploits model stability to
effectively guide the client clustering in FL. Specif-
ically, we propose a reference-based bi-partitioning
strategy to separate mobile clients into proper sub-
clusters in a hierarchical manner, and devise a model
weight selection mechanism to further optimize the
calculations of model stability.

• We conduct extensive experiments with three popu-
lar datasets under various non-IID data settings. The
experimental results demonstrate the effectiveness
and efficiency of HiCFL. Compared to state-of-the-art
approaches, HiCFL can reduce communication costs
by 27.3% ∼ 80.6%, while improving model accuracy
by 2.0% ∼ 9.0%.

The rest of this paper is organized as follows. Section 2
presents the preliminary. Section 3 introduces the concept
of model stability. HiCFL is elaborated and evaluated in
Section 4 and Section 5, respectively. The related works are
reviewed in Section 6. Section 7 concludes this paper.

2 PRELIMINARIES

2.1 Federated Learning
Mobile devices generate massive amounts of data at the
edge of the network, and centralizing this data in a single

server to train deep learning models is often impractical due
to data privacy concerns. Federated learning (FL) enables
distributed mobile devices to collaboratively train a shared
model without exposing their raw data. FedAvg [1] is so
far the most commonly used algorithm for implementing
the idea of FL. Specifically, FedAvg trains a globally shared
model through a plenty of rounds of communication be-
tween the central server and distributed clients. At the
beginning of each communication round, the server dis-
tributes the current global model to the clients, who will pro-
ceed to train this model with their own data. Once the local
training is completed, the model updates are synchronously
uploaded to the server for aggregating a new global model.
These operations are repeated until the global model has
been converged.

We take the multi-classification problem as a vehicle to
explain FedAvg in detail. In this problem, the feature space
is X and the label space is Y . Without loss of generality,
we assume that there are C classes in total, i.e., |Y| = C .
Let (x, y|x ∈ X , y ∈ Y) denotes a labeled sample, and
f(·) is defined as the prediction function. For the multi-
classification task, loss function L(·) is usually defined as
the cross entropy loss. Thus, the learning objective is

minω

{
L(ω) � −

C∑
a=1

p(y = a)Ex|y=a [log(fa(x, ω))]

}
,

(1)
where ω is the weight vector, and fa represents the proba-
bility of predicting sample x as the class a.

In the FL setting, assume that there are m clients, de-
noted by C = {c1, c2, · · · , cm}, and a central server. Each
client ci locally stores ni samples that obey a data distri-
bution of Pci , i.e., client ci’s local dataset Dci ∼ Pci . The
objective of FedAvg is thus defined as:

min
ω

{
F (ω) �

m∑
i=1

ni

N
Fci(ω)

}
, (2)

where Fci(ω) denotes the loss of client ci, i.e., Lci(ω), and∑m
i=1 ni = N is the total number of samples from m clients.

In each communication round t of FedAvg, the clients
download current global model ωt−1 from the server and
conduct stochastic gradient descent (SGD) [32] locally:
ω
(ci)
t = ωt−1 − η∇Lci(ωt−1)

= ωt−1 − η
C∑

a=1

p(y = a)∇ωEx|y=a [log(fa(x, ωt−1))]

(3)
where η is the learning rate when client ci performs SGD
locally. After each client ci has obtained ω

(ci)
t , the clients

synchronously upload model updates, i.e., the difference
between local model weights Δ

(ci)
t � ω

(ci)
t − ω

(ci)
t−1, to

the server. Once the server receives all model updates, it
performs aggregation to update the global model:

Δt =
m∑
i=1

niΔ
(ci)
t

N
,

ωt ← ωt−1 +Δt.

(4)

FedAvg repeats above operations until the training pro-
cess is converged (e.g., Δt is sufficiently small), and the final
global model will be transmitted to all clients for use.
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2.2 FL Challenges on Mobile Devices

In reality, the data of different users often exhibit a high
level of heterogeneity, resulting in non-IID training data for
FL. As an example, users may active in different physical
environments and own diverse biological features, thus
their data for human activity recognition will exhibit high
heterogeneity, which leads to poor model accuracy[11]. The
shared model learned via FedAvg has demonstrated good
performance when the training data from different clients
are IID. However, more and more studies report that Fe-
dAvg may be unstable or even ineffective when the data of
different clients is non-IID, i.e., Pci � Pcj (i �= j), even with
severe model accuracy drops as large as 51% [16].

The objective of each client ci’s local execution of SGD
is to minimize the empirical loss on local dataset Dci , and
thus different data distributions of clients make their objec-
tives diverge. As a result, local objectives cannot reliably
approximate the global objective from the perspective of
expectation, i.e.,

E

[
Fci(ω

(ci))
]
�= F (ω). (5)

If we keep on training local models on such non-IID data,
the divergences between local model weights ω(ci) accumu-
late and the conflicts at model aggregation on the server
will increase accordingly, resulting in degraded training
performance or even failing to derive a converged model.

Therefore, many research efforts [16, 18, 20, 21, 33] have
been made to mitigate the negative effects of non-IID data
for FL. For example, Zhao et al. [16] propose to use a globally
shared dataset among clients to reduce the differences be-
tween local models. FedProx[21] improves FedAvg by allow-
ing model aggregation based on partial information. Li et
al. [20] propose a data selection strategy at the sample level,
which only utilizes high-quality training samples for model
training. Moreover, Wang et al. [18] exploit reinforcement
learning to select clients for each round of model training,
so as to balance the biases caused by non-IID data. These
works primarily train a single global model from some well
selected participating clients or even partial high-quality
data of each client. The trained single model, however, is
usually inadequate to capture the heterogeneous data of all
clients, and thus cannot achieve high accuracy in practical
applications [11].

In addition to the challenge of non-IID data, mobile
devices participating in FL encounter various obstacles,
including limited computational power, communication ca-
pacity, storage capacity, and device heterogeneity. Among
these challenges, communication resource limitations rep-
resent the primary barrier preventing mobile devices from
participating effectively in FL, since communication in the
network can be many orders of magnitude slower than local
computation [34]. Therefore, reducing communication costs
is a crucial aspect of realizing FL on mobile devices.

2.3 Clustered Federated Learning

Recently, a promising framework named clustered federated
learning (CFL) [22] has been proposed to attack the non-
IID challenge. In general, CFL divides all clients into a
number κ of clusters, i.e., G = {G1, G2, · · · , Gκ}, according
to their data distributions, and trains a global model for

clients of each cluster, respectively. To indirectly measure
the data distribution similarity among clients, existing CFL
works calculate the model similarity between clients based
on their model updates or gradients. Specifically, each client
sends its model updates or gradients to the server, and the
server computes the cosine similarity of model updates or
gradients for any two clients. Based on the model similarity
results, the server divides the clients into clusters. It is
worthy to noting that CFL groups the clients according to
their model similarity, while the data among clients of the
same cluster may not be strict IID. However, the impact of
non-IID data for FL-based model training is largely reduced.

Compared to training one single model for all clients
with heterogeneous data, multiple models may be easily ne-
gotiated once the clients with similar data distributions have
been correctly distinguished. Such a strategy is equivalent to
decomposing the global objective of the former FL problem
into multiple (i.e., κ) sub-objectives, such that these sub-
objectives can be well approximated by the local objectives
of clients from the perspective of expectation:

E

[
F k
ci(ω

(ci))
]
= F k(ωk), k = 1, 2, · · · , κ, (6)

where F k is the global sub-objective for cluster Gk, F k
ci is

the objective of client ci in Gk, and ωk is the model of Gk.
Next we will briefly analyze the feasibility of clustering

clients. For simplicity, assume that all m clients are grouped
into two clusters, i.e., G1 and G2, and their local data are
sampled from two different distributions PG1

and PG2
, i.e.,

DG1
∼ PG1

and DG2
∼ PG2

. Each client ci (from either G1

or G2) has an empirical risk loss function defined as:

F k
ci(ω

ci) � 1∣∣∣Di
Gk

∣∣∣
∑

(x,y)∼DGk

L(y;x, ωci), k = 1 or 2. (7)

Then Equation (2) can be rewritten as:

F (ω) �
m∑
i=1

ni

N
Fci(ω)

=

|G1|∑
a=1

na

NG1

F 1
ca(ω) +

|G2|∑
b=1

nb

NG2

F 2
cb
(ω),

(8)

where NG1
=

∑|G1|
i=1 ni and NG2

=
∑|G2|

i=1 ni. If the FL
training converges to a stationary point ω∗ of FL’s objective,
i.e., F (ω∗) = min(F (ω)), then we have:

0 = ∇F (ω∗)

=

|G1|∑
a=1

na

NG1

∇F 1
ca(ω

∗) +
|G2|∑
b=1

nb

NG2

∇F 2
cb
(ω∗).

(9)

To simplify above equation, we assume that the empir-
ical losses of clients in the same cluster to be the same,
i.e., FG1

(ω) = F 1
ca∈[G1]

(ω) and FG2
(ω) = F 2

cb∈[G2]
(ω). Let

ρ1 =
∑|G1|

a=1
na

NG1
and ρ2 =

∑|G2|
b=1

nb

NG2
. To satisfy Equa-

tion (9), there exists two such cases, one is:
∇FG1(ω

∗) = ∇FG2(ω
∗) = 0, (10)

while the other is:
∇FG1

(ω∗) = −ρ2
ρ1

∇FG2
(ω∗) �= 0 (11)

For the latter case, in practice, we often have no control
over ρ1 and ρ2. For the former case, it usually does not hold
because the data distributions PG1 and PG2 are different.
As a result, we cannot find one unified model ω∗ for all
clients. In order to minimize the objective of FL, clustering
clients with similar data distributions is thus a necessary
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and effective way to alleviate the impact of non-IID data.
There exist several remarkable works that have practiced

the idea of CFL [22, 23, 24, 25, 26], and they have demon-
strated that CFL is effective on alleviating the impact of non-
IID data. In general, existing CFL approaches can be classi-
fied into two categories, according to whether the number κ
of clusters needs to be specified in advance. For example,
these works in [23, 24, 25, 26] require knowing κ before
clustering clients. However, it is difficult or even impossible
to determine the optimal κ with no prior knowledge of the
clients’ data distributions. Although Sattler et al. [22] imple-
ment CFL through multiple rounds of bipartite separation,
without inputting κ, their approach separates a cluster only
when the local models of all clients have been converged,
resulting in great latency and huge communication costs.

Therefore, we are motivated to further advance the CFL
idea by devising an approach that can effectively group
all clients into proper clusters without specifying κ in a
communication-efficient manner. However, it is non-trivial
to achieve this goal due to the following major challenges:

• Without knowledge about clients’ data. FL is ini-
tially proposed for privacy-preserved machine learn-
ing, and thus it is prohibited for the server to access
to clients’ raw data. As a result, we should implicitly
measure the similarity of clients’ data distributions,
without compromising the data privacy.

• Hard to determine the optimal κ. Previous studies
show that the number κ of clusters is highly relative
to the final model accuracy [24, 25], while without
knowledge about the exact data distributions of all
clients, it is quite difficult to determine the optimal κ,
which can best reflect underlying data distributions
and lead to accurate models.

• Huge communication overheads. FL normally in-
volves many communications between the server
and clients to train a global model, while CFL may
need more extra communication costs to negotiate
the clustering of clients. In particular for mobile
clients, communications will not only prolong the
whole training process, but also largely consume
precious battery energy and network traffics. Thus,
an efficient communication mechanism is desired for
the new CFL approach.

3 MODEL STABILITY

In this section, we experimentally study the characteristics
of FL-based model training over non-IID data, and intro-
duce the concept of model stability to motivate our design.

3.1 FL-based Model Training over Non-IID Data
To better understand the impact of non-IID data on FL, we
conduct a simple motivating experiment by training a CNN
model for m = 10 clients, i.e., C = {c1, c2, · · · , c10}, with FL
over the CIFAR10 dataset [35]. Specifically, the CNN model
consists of two convolutional layers (denoted by Conv1 and
Conv2) and a fully connected layer (denoted by FC) (Please
see details about the datasets and models in Section 5.1).
To simulate the non-IID data distributions among clients,
we artificially divide all ten clients into two clusters, where

(a) Conv1@1st round (b) Conv2@1st round (c) FC@1st round

(d) Conv1@10th round (e) Conv2@10th round (f) FC@10th round
Fig. 1. The cosine similarity between model updates of different model
layers for all clients at the 1st and 10th communication rounds in the first
non-IID data setting .

(a) Conv1@1st round (b) Conv2@1st round (c) FC@1st round

(d) Conv1@10th round (e) Conv2@10th round (f) FC@10th round
Fig. 2. The cosine similarity between model updates of different model
layers for all clients at the 1st and 10th communication rounds in the
second non-IID data setting .
client c1 ∼ c5 form a cluster and the rest clients form the
other cluster. We use two different methods to generate
non-IID data. The first one assigns samples with the same
feature space but different label space for the clients, while
the second one assigns samples with the same label space
but different feature space for the clients. In addition, the
local data for clients of each cluster are sampled from the
CIFAR10 dataset according to the Dirichlet distribution with
its scaling parameter α = 1. We execute FedAvg[1] to learn
the global model, and constantly observe the local model
updating on each client. For any two clients, we use the
cosine similarity to measure the similarity between their
layer-wise model updates.

For the first non-IID data setting, Figure 1 plots the layer-
wise similarity for all clients after round 1 and round 10,
where the darker is the more similar between the model
updates of clients would be. After the first round, the sim-
ilarity distributions for layer Conv1 and Conv2 are random
and cannot well reflect the cluster-relation between clients,
while we see the clear gathering phenomenon in Figure 1(c),
which implies that model updates of layer FC are capable of
distinguishing clients with similar data distributions. After
the ten-th round, we find that model updates of each layer
have better capability on distinguishing whether any two
clients own the similar data distributions or not. We see two
distinct clusters from Figure 1(e) and 1(f).
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For the second non-IID data setting, the results as shown
in Figure 2 are different from Figure 1. We see that after
the first round, only layer Conv2 can show the gathering
phenomenon as shown in Figure 2(b). After the ten-th
round, two convolutional layers, i.e., Conv1 and Conv2, can
show the gathering phenomenon as shown in Figure 2(d)
and Figure 2(e), while layer FC still cannot.

In summary, we have the following two key observations
based on the above experiments.

• Observation 1: different layers in a model have varied
capability on describing the underlying data distribution.
We find that the FC layer can well distinguish clients
of different clusters when the clients’ data differ in
the label space, while the convolutional layers are
better at capturing data distribution difference in the
feature space. This is because from a functional point
of view, the convolutional layer is used to extract
local features of the data, and its output is a feature
map containing lots of local features. While the FC
layer aims to globally perceive and transform the
feature map to the label space for classifying the
samples.

• Observation 2: Each layer’s capability on describing the
underlying data distribution becomes stronger along with
more rounds. With more rounds of FL-based training,
a client’s local model becomes more stable and the
updates of each layer fit the underlying data better.
By comparing Figure 1(c) and (f) (or Figure 2(a) and
(d)), we see that the model similarity among clients
in the early stage e.g., the first round, is not stable
and the gathering phenomenon is unclear, while
their model similarity becomes more stable and the
clustering effect is more obvious in the ten-th round.

Previous works [18, 22] demonstrate that the weights of
a local model can indirectly reflect a client’s data distribu-
tion, while we further observe that the model updates of
different layers and at different training phases have the
unequal capability on describing a client’s data distribution.
Therefore, we could calculate the model similarity between
clients by exploiting only partial “valuable” model updates
(e.g., the model updates of the FC layer as shown in Figure
1(f)), rather than all model weights/updates and start client
clustering at some proper time. These insights motivate us
to devise a brand-new CFL solution to attack the non-IID
challenge.

3.2 Model Stability

Existing works [22] mainly exploit model updates of clients’
converged models to calculate their model similarity. In FL,
it usually requires many communication rounds between
the server and clients to make the model converge due to
non-IID data. According to the experiment results in Figure
1 and Figure 2, we find that after certain rounds, although
the models are not converged yet, model updates of some
layers can be used to well distinguish clients. In fact, model
convergence indicates the state in which the training process
should be terminated, while the model updates may be in a
stable status much earlier than the convergence. Therefore,
we should have a better view of the model updating trends

t-2 t-1 tClient

Fig. 3. Illustration of the model stability computation process.

for accurate and steady client clustering earlier. To this end,
we propose the concept of model stability that measures
how much the local model changes over several consecutive
communication rounds, so as to represent the dynamic state
of a local model updating.

We explain model stability using Figure 3 that illustrates
three rounds of communication between client ci and the
server. As shown in the figure, there are three rounds of
model training, which generates three consecutive model
updates accordingly, i.e., Δ(ci)

t−2,Δ
(ci)
t−1,Δ

(ci)
t , t ≥ 3. For any

two consecutive model updates, we calculate model update
trend T

(ci)
t at round t as:

T
(ci)
t =

〈
Δ

(ci)
t−1,Δ

(ci)
t

〉
∥∥∥Δ(ci)

t−1

∥∥∥ ·
∥∥∥Δ(ci)

t

∥∥∥ . (12)

In addition, for the first and last model updates, we calculate
model update trend T

(ci)
t−2∼t at round t as:

T
(ci)
t−2∼t =

〈
Δ

(ci)
t−2,Δ

(ci)
t

〉
∥∥∥Δ(ci)

t−2

∥∥∥ ·
∥∥∥Δ(ci)

t

∥∥∥ . (13)

We thus define model stability for client ci at round t as:

S
(ci)
t �

∣∣∣∣∣T
(ci)
t + T

(ci)
t−1

2
− T

(ci)
t−2∼t

∣∣∣∣∣ . (14)

The model update trends T (ci)
t and T

(ci)
t−2∼t are calculated

as the cosine similarity of two model updates. In general, a
smaller S(ci)

t indicates the higher stability of client ci’s local
model, which implies that the local model tends to be con-
verged. It is worthy to noting that the computations of both
T

(ci)
t , T (ci)

t−2∼t and S
(ci)
t are performed at the server side,

and thus no additional computation cost will be introduced
to the clients.

From Equation (14), we see that model stability measures
the changing trend of the client’s local model during the
training process. If model stability reaches a stable state,
it means the model updates tend to be stable only with
slight changes. In this case, if the model stability values of
clients to be clustered become stable, their model updates
are sufficiently stable and less influenced by other models,
which can accurately demonstrate the cluster structure. Fur-
thermore, compared to the converged state, model stability
can quickly reflect whether the client’s model is in a stable
state or not. When the model stability is small, it implies that
the local model becomes more stable and may be converged
later. If the model stability is large, it means the client’s
model is still dramatically varying on its model weights.

To investigate the advantage of model stability, we con-
duct experiments to compare the changes of model loss and
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(a) Non-IID-1 (b) Non-IID-2 (c) Non-IID-3
Fig. 4. Comparisons of model loss and model stability during the FL-based model training.
model stability when training the clients’ local models with
FL. In practice, when the model loss does not change or
is smaller than a predefined threshold, we say the model
has converged. In the experiments, we perform the clients’
model training over the CIFAR10 dataset in the Non-IID-
1, Non-IID-2 and Non-IID-3 data settings and record the
average model loss and average model stability during the
model training (Please find more details about the data
settings in Section 5.1.). The results in Figure 4 show that
model stability can reach a steady state much earlier than
the model loss. For example, model stability becomes stable
after 12 rounds, while model loss becomes stable (i.e., model
convergence) around 40-th rounds for all data settings.

4 DESIGN OF HiCFL
In this section, we present the workflow of HiCFL, and then
introduce the key designs involved in the client clustering.

4.1 Workflow
Similar to existing CFL methods [22, 24], we also consider
a typical FL setting, where the clients are geographically
distributed with good network connections and assume all
clients will join the FL-based model training process to
achieve better modeling results. Figure 5 illustrates how
HiCFL performs FL by separating clients into clusters based
on their model stability. In general, HiCFL works like exist-
ing FL algorithms that use synchronous model aggregation
strategy, and has the major steps as follows:

Step 1: All m eligible clients check in with the FL server,
which initially treats all clients as one cluster and
broadcasts current global model to all clients.

Step 2: Each client ci performs local SGD training on
the downloaded model using its own data. The
training times may vary among clients, depend-
ing on the data amount on each client.

Step 3: Each client ci calculates the model updates that
are then transferred to the server.

Step 4: The server receives model updates from all
clients, and then updates the global model for
each cluster Gk by aggregating with model up-
dates of clients belonging to cluster Gk. Later,
the server broadcasts the newly updated global
models to the clients of each cluster, respectively.

Step 5: For every W consecutive rounds of communica-
tion, e.g., at round t, the server calculates model
stability S

(ci)
t for each client ci using received

model updates.
Step 6: If possible, the server will separate the clients of

a cluster into two smaller clusters.

…

…

Select weights

…

Compute stability 

Aggregate 

Aggregate 

Aggregate 

…

Compute stability 

Aggregate 

… }

[ ]

}

…

1
2

3 4

Bi-partition

y 5

6

*

Fig. 5. The workflow of HiCFL.

Similar as FedAvg, each client in HiCFL needs to down-
load a global model from the server, trains the model using
its own data, and then transfers the model updates to the
server for aggregating a new global model. Different from
FedAvg, HiCFL will bi-partition a cluster Gk into two clusters
according to the model stability of clients in Gk. Instead of
training only one single global model for all clients, HiCFL
will train one model for clients of each cluster respectively.
HiCFL repeats Step 2-6 until no cluster will be separated. By
constantly detecting the model stability of clients, HiCFL bi-
partitions clusters and groups all clients into proper clusters
in a hierarchical manner, which gets rid of the requirement
of pre-specifying the number of clusters. Finally, κ clusters
are formed, and clients of each cluster will collaboratively
train their “private” global model.

Similar to existing FL works [1, 11], we adopt the syn-
chronous learning strategy. However, HiCFL can speedup
the whole FL training process. First, HiCFL exploits model
stability to find the right timing of client clustering, which is
earlier than previous CFL works and can reduce the number
of communication rounds required for model similarity
calculations. Second, compared to the conventional FL that
involves many clients to train one single model, different
client clusters train their respective shared models in an
asynchronous manner that is quicker. Although the clients
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in each cluster still train their model in a synchronous man-
ner, the number of clients in each cluster is much smaller,
and thus the total model training time can be reduced.

Next we detail two key designs of HiCFL, namely client
clustering guided by model stability and weight selection for
model stability calculation.

4.2 Client Clustering Guided by Model Stability
At the beginning of FL, HiCFL treats all m clients as one
cluster, and then hierarchically separates the cluster into
more sub-clusters. Therefore, it is important to know when
HiCFL should bi-partition a cluster and how HiCFL separates
the clients of a cluster into two groups.

Timing of bi-partitioning a cluster. Intuitively, when
the local model of client ci becomes converged, it means
that the local data of ci has been well exploited and the
resultant model can well represent ci’s underlying data.
Thus previous works [22] use the weights of converged local
models for client clustering. However, it may take many
rounds for a local model to be converged, and thus greatly
prolong the clustering process. As discussed in Section 3.1,
we observe that some layers of a local model may become
stable (or converged) much earlier than the whole model.
Therefore, HiCFL utilizes the model stability of clients to
detect whether it is an opportune time to bi-partition a
cluster. Specifically, HiCFL adopts a sliding window with
size W to measure the model stability of each client’s
local model. The sliding window size W is the number of
communication rounds between the clients and the server.
Instead of relying on one single model stability value, we
will calculate the average model stability within the sliding
window, and thus can find a more accurate time to bi-
partition the clients. In general, the larger W can reduce the
randomness of model stability calculations, and thus derive
more stable and accurate client clustering results.

Assuming the model to be trained has a total of L
layers, at round t, if the following condition expressed in
Equation (15) is satisfied for any client ci ∈ Gk, then cluster
Gk can be bi-partitioned into two smaller clusters.

S
(ci,l)
t < ε, ∀ci ∈ Gk & ∃l ∈ {0, 1, · · · , L− 1}. (15)

In Equation (15), we can properly set ε given the learning
rate η in local SGD, since the model stability of a client is
only related with η as well, which is proved as the following.

For the lth layer of client ci’s local model, its model
stability at tth round is expressed as:

S
(ci,l)
t =

∣∣∣∣∣T
(ci)
t + T

(ci)
t−1

2
− T

(ci)
t−2∼t

∣∣∣∣∣

=

∣∣∣∣∣
〈
Δ

(ci,l)
t ,Δ

(ci,l)
t−1

〉
∥∥∥Δ(ci,l)

t

∥∥∥·
∥∥∥Δ(ci,l)

t−1

∥∥∥
+

〈
Δ

(ci,l)
t−1 ,Δ

(ci,l)
t−2

〉
∥∥∥Δ(ci,l)

t−1

∥∥∥·
∥∥∥Δ(ci,l)

t−2

∥∥∥
2

−
〈
Δ

(ci,l)
t ,Δ

(ci,l)
t−2

〉
∥∥∥Δ(ci,l)

t

∥∥∥ ·
∥∥∥Δ(ci,l)

t−2

∥∥∥
∣∣∣∣∣.

(16)

Interestingly, we find that the model stability of a client
is only determined by the learning rate η when the other
hyperparameters e.g., batchsize, and training optimization
methods have been fixed. Please see Appendix A for a
detailed discussion about this property.

(a) At round t− 1 (b) At round t

Fig. 6. The unstable model weights in each layer of the local model are
relatively fixed between communication rounds.

Separation of a cluster. Once the time to separate a
cluster Gk is determined, HiCFL needs to bi-partition the
clients of Gk into two groups. Given a cluster of clients,
existing CFL approaches [22, 23, 25, 26] extensively calculate
the similarity between any two clients’ model weights, and
separate them into two clusters according to their model
similarity values. Such a strategy will introduce huge com-
putations, since numerous clients may be involved in FL.

Therefore, we propose a reference based cluster bi-
partitioning strategy. For a cluster Gk to be bi-partitioned,
we select the client cr ∈ Gk, which has the smallest model
stability in cluster Gk, as the reference.

Assume that in cluster Gk, the lth layer of all local
models reaches stable firstly at the tth round, i.e., satisfying
the condition in Equation (15), then the reference cr of
cluster Gk is selected as:

cr = arg min
Δ

(ci,l)
t

(S
(ci,l)
t ), ci ∈ Gk. (17)

Then, we calculate the cosine similarity of model updates
between any other client cj ∈ Gk and the reference client cr .
The clients with positive similarity values are classified into
one sub-cluster, while the rest are gathered into another sub-
cluster. Specifically, the cosine similarity of model updates
between cj and cr is calculated as:

Sim(cj , cr) =

〈
Δ

(cr,l)
t ,Δ

(cj ,l)
t

〉
∥∥∥Δ(cr,l)

t

∥∥∥ ·
∥∥∥Δ(cj ,l)

t

∥∥∥ . (18)

HiCFL will bi-partition a cluster Gk once the member
clients of Gk meet the condition expressed in Equation (15).
With such a strategy, the server computes a 1 × m simi-
larity vector instead of an m × m similarity matrix in bi-
partitioning, i.e., reducing the computational cost of similar-
ity between models from O(m2 |ω|2) to O(m |ω|2), which
greatly reduces the computation overheads. However, the
cluster bi-partitioning process should be terminated when
clients with similar data distributions have been properly
grouped. Similar as [22], for all clients we calculate the av-
erage model update norm Δave =

∥∥∥∑m
i=1

ni

N Δ(ci)
∥∥∥ and the

maximum model update norm Δmax = max
i=1,··· ,m

∥∥∥Δ(ci)
∥∥∥.

HiCFL will terminate the cluster bi-partitioning process if
both Δave and Δmax are consistent.

4.3 Weight Selection for Model Stability Calculation

The server has to periodically calculate each client’s model
stability every W rounds for possibly bi-partitioning clients
into smaller clusters. Due to the large number of parameters
involved in machine learning (especially deep learning)
models, however, the model stability calculations will in-
troduce huge computation overheads.
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In the HiCFL design, we thus adopt a simple yet effective
weight selection mechanism to reduce the number of model
updates used for model stability calculations. We observe
that local model weights affect model stability with varying
degrees. Specifically, the unstable model weights are rela-
tively fixed between different FL training rounds. As shown
in Figure 6, we plot two consecutive rounds of weights’
magnitude variations for a client’s local model, which is a
CNN model trained on FashionMNIST dataset under Non-
IID-2 data setting, as detailed in Section 5.1. By comparing
the results in Figure 6(a) and Figure 6(b), we see that the
model weights with indexes ranging from 0 to 1200 are
relatively unstable, while other weights seem to be more
stable with small changes on their magnitudes. Intuitively,
these stable model weights will have a negligible impact on
the model stability calculation. Therefore, we can only use
the model updates, whose model weights are unstable, for
model stability calculation, so as to reduce the computation
costs. For each layer l of client ci’s local model, we select
model weights as:

arg
[d]

(Δ(ci,l,d)
new −Δ

(ci,l,d)
old ) > ξ, (19)

where d is the index of a model weight in the lth layer
of ci’s local model, and ξ is a pre-defined threshold. After
obtaining the indexes of model weights, which satisfy the
above condition, for each client ci, the server will only use
model updates indicated by indexes ds for calculating ci’s
model stability using Equations (12) and (14). For each client
ci, the weight selection process is only performed at the FL
initialization phase or after ci’s cluster is bi-partitioned.

4.4 Theoretical Analysis
Computational complexity analysis. About the computa-
tional complexity of HiCFL, we have the following theorem.

Theorem 1. The computational complexity of HiCFL is
O(mT |ω′|2 +mT + κ|G∗||ω|2).
Proof. HiCFL mainly involves two parts of calculations,
namely model stability calculation for each client and model
similarity calculation between clients for clustering.

For the first part, we select a small number of key
parameters ω′ to calculate model stability for each client. To
calculate the model stability of a client at the given round,
HiCFL needs to calculate model update trend between any
two rounds (i.e., Equation (12) and (13)), which involves
O(|ω′|2) computations, and then computes the model sta-
bility (i.e., Equations (14)) that involves only O(1) computa-
tion. Assume that the clients and the server communicate for
T rounds, the computational complexity for model stability
calculations is O(mT |ω′|2+mT ), where m is the number of
clients in the FL training process.

For the second part, for each cluster Gk, we select a client
with the least model stability as the reference, and then com-
pute model similarity between the reference client and any
other client in the cluster. Based on their model similarity
values, we bi-partition this cluster into two smaller clusters.
Specifically, we calculate the consine similarity of model
updates between two clients as their model similarity, which
involves O(|ω|2) computations, where |ω| is the number of
a client’s model parameters. The computational complexity

for bi-partitioning cluster Gk is O(|Gk||ω|2). Assume there
are κ clusters, and the total computational complexity for
client clustering will be O(κ|G∗||ω|2), where |G∗| is the
average number of clients in a cluster.

Therefore, the overall computation complexity of HiCFL
is O(mT |ω′|2 +mT + κ|Gk||ω|2).

Convergence analysis. Rather than training one single
global model for all clients, HiCFL divides all clients into
different clusters and individually trains a shared model for
the clients of each cluster. Therefore, we use cluster Gk as an
example to analyze the convergence of HiCFL. We assume
that there exists an optimal solution ω∗

k for cluster Gk, i.e.,
FGk

(ω∗
k) = min(FGk

(ω)) and ∇FGk
(ω∗

k) = 0.
Before analyzing the convergence bound of HiCFL, we

first state some assumptions by referring to [17].

Assumption 1. The loss function Fci of client ci is μ-strongly
convex where μ ≥ 0, for ∀x, y:

Fci(y)− Fci(x) ≥ 〈∇Fci(x), y − x〉+ μ
2 ‖y − x‖2.

Assumption 2. The loss function Fci of client ci is L-smooth
where L > 0, for ∀x, y:

Fci(y)− Fci(x) ≤ 〈∇Fci(x), y − x〉+ L
2 ‖y − x‖2.

Assumption 3. Assuming the variance of the stochastic gradient
of each client ci ∈ Gk is bounded, i.e.,:

E‖∇Fci(y
(ci)
t ;x

(ci)
t , ω

(ci)
t )−∇Fci(ω

ci
t )‖2 ≤ σ2.

Assumption 4. Assuming the expected squared norm of stochas-
tic gradients of each client ci is uniformly bounded, i.e.,:

E‖∇Fci(y
(ci)
t ;x

(ci)
t , ω

(ci)
t )‖2 ≤ Q2,

where (x
(ci)
t , y

(ci)
t ) ∈ Dci . Then we have the conver-

gence bound of HiCFL as the following theorem.

Theorem 2. The convergence bound of HiCFL is:
E[FGk

(ωT )− FGk
(ω∗

k)] ≤ τ
γ+t (

2B
μ + μγ+μ

2 E ‖ω1 − ω∗
k‖2),

where τ = L
μ , γ = max(8τ, E), and B =∑|Gk|

i=1 (
ni

NDk
σ)2 + 6LΓGk

+ 8(E − 1)2Q2. In addition, E is
the number of local iterations as defined in [1], Γ is used to
measure the non-IID degree of the client’s data as defined in
[17], ΓGk

denotes the non-IID degree of the data in cluster
Gk, and ΓGk

= FGk
(ω∗

k)−
∑|Gk|

i=1
ni

NDk
Fci(ω

(ci, ∗)).
According to Theorem 2, we find that the convergence

for cluster Gk’s model is bounded. We can accelerate the
convergence speed by reducing the non-IID degree of clus-
ter Gk when compared to FedAvg [1] that trains only one
single model, i.e., E[ΓGk

] ≤ Γ, k = 1, . . . , κ. Therefore, by
properly dividing clients with similar data distribution, i.e.,
reducing the non-IID degree of clients’ data, into the same
cluster, the model of each cluster derived by HiCFL can be
converged quickly. Please see Appendix B for the detailed
proof of Theorem 2.

4.5 Discussions
In this subsection, we discuss some issues about HiCFL’s
robustness and design choices.

Selection of an improper reference model for cluster
bi-partitioning. In HiCFL, we select a client as the reference
to separate the clients of a cluster into two sub-clusters. If
a client, whose model temporarily gets stuck in a locally
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optimal solution, is selected as the reference, it will lead
to incorrect client clustering results because the reference’s
model does not reflect the data distribution correctly. Such
a case happens only when the following conditions are
satisfied: (i) The model of a client ci temporarily gets stuck
in a locally optimal solution, and is mistakenly considered
to have reached a stable state, i.e., its model stability is
sufficiently small; (ii) The cluster Gk where client ci belongs
to should be bi-partitioned; and (iii) The client ci is selected
as the reference for bi-partitioning cluster Gk.

Due to the unique design of HiCFL, this case can be
avoided with a high probability, due to the following rea-
sons. First, we calculate the model stability of a client using
the model updates of multiple consecutive communication
rounds, and we calculate the average model stability within
a large window W to determine the right timing of client
clustering. Second, bi-partitioning one cluster requires that
all local models of clients in the same cluster have reached
a stable state. Therefore, the clustering mechanism of HiCFL
can avoid the influence of a client’s model that gets stuck in
locally optimal solution as much as possible. Even though
the special case happens, the cluster formed by the improper
reference would be bi-partitioned later since clients of that
cluster essentially have different data distribution. As a
result, the influence can be further eliminated.

Re-organizing clusters vs fine-grained clustering. Re-
organizing the clusters after certain communication rounds
seems to be an effective solution to utilize the information
from clients with similar data distribution. However, this
design choice has two major limitations. First, the model
training among different clusters is asynchronous in the CFL
setting, and thus how to re-organize the clusters that are in
different training phases is challenging, which inevitably in-
troduces extra communication and computation overheads.
Second, from the perspective of model accuracy, we find
that re-organizing clusters cannot derive higher model ac-
curacy when compared to fine-grained clustering, i.e., bi-
partitioning clients into smaller sub-clusters as our current
design. We experimentally compare the two design choices
in Section 5.3. Therefore, we find that fine-grained clustering
is a better design choice than re-organizing clusters.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

We compare the performance of HiCFL with four baseline
approaches by training CNN models on three popular pub-
licly available datasets under different non-IID data settings.

Baseline approaches. We compare HiCFL with the fol-
lowing four baselines: (1) Centralized collects raw data from
all clients to the server for centrally training a global model,
which works without FL. (2) FedAvg [1], the most commonly
used approach in FL, coordinates all clients to collabora-
tively train a global shared model. (3) MTCFL (Multitask
Clustered Federated Learning) [22], a state-of-the-art CFL
approach, exploits multi-task learning to group clients into
clusters by exploiting the geometric properties of clients’
FL loss surface. (4) IFCA (Iterative Federated Clustering
Algorithm) [24], another state-of-the-art CFL approach, al-
ternatively estimates the cluster identities of clients and

TABLE 1
Statistics of the CNN model weights for three datasets.

Model # of total weights # of weights per layer

MNIST-CNN 33500 500 / 25000 / 8000
FmnistMNIST-CNN 18320 400 / 12800 / 5120
CIFAR10-CNN 6850 450 / 2400 / 4000

optimizes the weights of each cluster’s global model in an
iterative manner.

Noting that Centralized and FedAvg only train one model,
while MTCFL and IFCA will train multiple, i.e., as the num-
ber κ of clusters, models. Besides, MTCFL groups clients
without knowing κ, but IFCA needs to know κ in advance.
Therefore, we set the optimal κ as an input for IFCA in the
experiments.

Datasets and models. We exploit FL to train various
CNN models over different datasets for totally m = 20
clients. The datasets and models are described as follows.

• MNIST [36] contains 10 classes of handwritten dig-
its, where the size of each sample is 28× 28. Models
related to MNIST consist of two 5 × 5 convolutional
layers and one fully connected layer. The first convo-
lutional layer has 20 output channels and the second
has 50, with each layer followed by a 2 × 2 max
pooling layer.

• FashionMNIST [37] contains 10 classes of images,
where the size of each sample is 28 × 28. Models
related to FashionMNIST consist of two 5 × 5 con-
volutional layers and one fully connected layer. The
first convolutional layer has 16 output channels and
the second has 32, with each layer followed by a 2×2
max pooling layer.

• CIFAR10 [35] contains 10 classes of RGB images,
where the size of each sample is 28 × 28. Models
related to CIFAR10 consist of two 5 × 5 convolu-
tional layers and one fully connected layer. The first
convolutional layer has 6 output channels and the
second has 16, with each layer followed by a 2 × 2
max pooling layer.

Table 1 shows the statistics on the three models’ weights.
In addition, we chose Resnet18 [38] and VGG11 [39] to
evaluate HiCFL in handling complex models.

To further evaluate the performance of different methods
on more realistic datasets, we conduct experiments using
the USC-HAD dataset [40]. USC-HAD is a dataset for well-
defined low-level daily activity recognition, which contains
IMU data for 12 simple activities (e.g., walking, running,
jumping, and so on) from 14 volunteers. Each volunteer
repeats each action five times, with each movement lasting
about 24 seconds. The readings of the 3-axis accelerometer
and 3-axis gyroscope of a MotionNode instrument placed
around the volunteers’ waists are collected under a sam-
pling frequency of 100Hz. The HAR model contains three
convolutional layers and two fully connected layers. The
batch size is 16, and the learning rate is 0.001.

Non-IID data settings. Considering the joint distribution
of data x and label y, i.e., p(x, y) = p(y)p(x|y), which is
jointly determined by p(y) and p(x|y). We thus generate
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non-IID data from two different aspects of label space and
feature space. For p(x) we set label distribution on clients to
be different. For p(x|y) we set label distribution on clients
to be the same, while changing the original samples.

• Non-IID in label space. We set up two types of non-
IID label distributions. (1) Non-IID-1: All clients are
equally divided into four clusters, and the clients of
each cluster are assigned with samples of the same
labels. Specifically, label indexes for the four clusters
are 0 − 3, 3 − 6, 4 − 9, and 0 − 9, respectively. (2)
Non-IID-2: Similar to the data setting in [18], we
use parameter β to indicate the non-IID level, e.g.,
β = 0.7 means that 70% of the samples in each client
belong to the same label, while the remaining sam-
ples belong to other labels. All clients are grouped
into four clusters as well.

• Non-IID in feature space. We let each client own the
same labels, and then generate non-IID data by ran-
domly selecting a fraction of clients and rotating their
samples. For MNIST and FashionMNIST, we rotate
half of the clients’ samples by 180◦, and for CIFAR10
we equally divide all clients into four clusters, and
rotate the samples of each cluster with angles of 0◦,
90◦, 180◦, and 270◦, respectively. We denote this data
setting as Non-IID-3.

To make non-IID data generations more realistic, each
client samples data from a dataset following Dirichlet dis-
tribution with α = 1.0, and the number of samples on each
client is different. For different non-IID data settings, the
learning rate η and batch size (BS) are set accordingly, i.e.,
1) Non-IID-1: η = 0.1, BS = 128; 2) Non-IID-2: η = 0.01
for MNIST and FashionMNIST, η = 0.001 for CIFAR10, and
BS = 256; 3) Non-IID-3: η = 0.1, BS = 128. Moreover,
to generate natural data distribution, we assign samples to
clients using the Latent Dirichlet allocation method [33, 41],
which is commonly used for simulating non-IID data.
Specifically, we set parameter α of Dirichlet distribution to
0.3 and 0.5, respectively, where a smaller value indicates a
higher degree of non-IID. Besides, the batch size for VGG11
and Resnet18 is 16 and 32, respectively, and the learning
rate is 0.01.

Implementation. We have implemented HiCFL using
PyTorch and properly set the thresholds. Threshold ε for
cluster bi-partitioning in Equation (14) is set as 0.5η, and
threshold ξ for weight selection in Equation (19) is set as
0.05η. In addition, we carefully tune the parameters for the
baselines to achieve their best performances.

We adopt the number of communication rounds and model
accuracy as the performance metrics to evaluate all ap-
proaches. Each experiment setting is repeated five times,
and the average results are reported. In particular, the model
accuracy shown in the experimental results represents the
average of model accuracy of all clusters. All experiments
are performed on a server equipped with an RTX 3090 GPU
and an AMD 3800X CPU.

5.2 Performance Comparison

We run different approaches on the three datasets to train
CNN models under various non-IID data settings for 50

TABLE 2
Comparisons on the average model accuracy in different non-IID

settings. For each experiment setting, the best result is marked in bold,
and the second best result is marked with underline. Besides, F-MNIST

denotes the FashionMNIST dataset.

/ Dataset Centralized FedAvg MTCFL IFCA HiCFL

Non-IID-1
MNIST 97.01% 94.23% 96.62% 96.22% 97.46%

F-MNIST 93.64% 84.94% 90.16% 91.97% 93.34%
CIFAR10 57.16% 44.03% 62.84% 58.13% 64.56%

Non-IID-2
MNIST 99.81% 97.50% 97.77% 97.74% 98.86%

F-MNIST 97.77% 90.67% 93.97% 94.81% 95.97%
CIFAR10 74.65% 49.86% 71.79% 75.42% 76.54%

Non-IID-3
MNIST 93.11% 85.58% 91.06% 92.23% 93.41%

F-MNIST 84.60% 85.76% 82.89% 84.44% 87.53%
CIFAR10 38.44% 34.62% 40.47% 39.33% 40.92%

rounds of communication, and then compare their average
model accuracy results at the 50th round in Table 2.

Overall, HiCFL performs much better than the baselines,
with six best results out of the nine experiment settings.
Even for the cases where HiCFL does not take the first
place, it still achieves the second highest model accuracy,
which is quite close to the best one. Both Centralized and
FedAvg train only one single global model, and we see that
Centralized outperforms FedAvg by deriving higher model
accuracy in most cases. This is because Centralized gathers
all clients’ data for model training, however, it violates data
privacy and may not be applicable in practice. Even so,
Centralized cannot always achieve the best model accuracy.
This is because the clients’ data do not exactly match the
FL’s IID data assumption. As a result, one single model,
even trained on the raw data in a centralized manner, is
inadequate to well model the heterogeneous data that are
too complex for a given target model structures, e.g., the
CNN model in our experiments.

On the other hand, the CFL approaches, i.e., MTCFL,
IFCA, and HiCFL, generally have higher model accuracy
than FedAvg, which implies that multiple models are better
than one single model on describing the non-IID data.
Compared to the frequently used FedAvg and the two state-
of-the-art MTCFL and IFCA, on average HiCFL improves the
model accuracy by 9.0%, 2.3% and 2.0%, respectively.

Since Non-IID-3 data setting produces more heteroge-
neous data for clients in the CIFAR10 dataset, all approaches
cannot well handle the non-IID data, and as a result obtain
low accuracy, i.e., about 40%.

These results reflect the phenomenon that HiCFL im-
proves Non-IID data due to differences in label space Y
more significantly than Non-IID data due to differences in
feature space X . This is because HiCFL bi-partitions the
client clusters by the similarity between the client’s model
updates, which are more sensitive to data with different
label spaces than data with different feature spaces.

Among all approaches, only MTCFL and HiCFL can
group clients without knowing the cluster number κ. How-
ever, they pay different communication costs to achieve
the clustering results. For each experiment setting, we
record the time when client clustering is converged, i.e.,
the clustering results are the same as the final clusters in
the 50th round. Table 3 shows that HiCFL requires much
fewer rounds than MTCFL, i.e., reducing the communica-
tion costs by 27.3% ∼ 80.6%. Therefore, HiCFL is more
communication-efficient than MTCFL on clustering clients,
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(a) MNIST (b) FashionMNIST (c) CIFAR10
Fig. 7. The training curves of CNN models under the Non-IID-2 data setting with different η and batch size (BS) on different datasets.

(a) MNIST (b) FashionMNIST (c) CIFAR10
Fig. 8. The effect of non-IID levels on different datasets under the Non-IID-2 data setting.

TABLE 3
Comparisons on the number of communication rounds required to

complete client clustering between MTCFL and HiCFL.

/ Approach MNIST CIFAR10 FashionMNIST

Non-IID-1
HiCFL 9 14 13
MTCFL 36 37 22

Non-IID-2
HiCFL 9 7 11
MTCFL 24 36 33

Non-IID-3
HiCFL 12 16 15
MTCFL 28 22 24

especially in the scenarios where mobile clients are con-
strained by energy and bandwidth.

5.3 Detailed Evaluation

In this subsection, we conduct some benchmark experi-
ments to evaluate the performance of HiCFL.

Effect of learning rate η. In section 4.2, we find that the
threshold ε on determining the timing of cluster separation
is only related to learning rate η. We conduct additional
experiments to examine whether η really affects the perfor-
mance of HiCFL. Figure 7 shows the training curves of CNN
models on different datasets under Non-IID-2 data setting
when η takes different values. For the MNIST dataset, HiCFL
works well and the model training can converge properly
in different settings of η, as shown in Figure 7(a). For the
FashionMNIST dataset, as shown in Figure 7(b), HiCFL can
make the training converge only when η = 0.01, while when
η = 0.1 the derived models have poor accuracy. The reason
may be that a larger η = 0.1 impacts the training process
and degrades the model accuracy. We observe similar results
on the CIFAR10 dataset. As shown in Figure 7(c), HiCFL
works well when η = 0.001, but fails on a larger η = 0.01.
However, when we increase the batch size from 256 to 512,
HiCFL becomes feasible again. According to Figure 7, we
conclude that a proper η is important for HiCFL to achieve

(a) Non-IID-1

(b) Non-IID-2

(c) Non-IID-3
Fig. 9. Impact of ξ on different datasets under various non-IID settings.

good clustering results, and sometimes we could increase
the batch size of SGD to help HiCFL work well.

Effect of different Non-IID levels. We study the perfor-
mance of HiCFL under different non-IID levels by varying
parameter β in Non-IID-2 data setting. As shown in Figure
8, HiCFL can always properly complete client clustering
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TABLE 4
Average model accuracy of bi-partitioning cluster before and after

stable model stability.

Setting Before After

Non-IID-1 87.14% 100.00%

Non-IID-2 β = 0.5 78.19% 98.89%

Non-IID-2 β = 0.7 76.00% 98.00%

Non-IID-3 56.67% 100.00%

TABLE 5
Comparisons on model accuracy and required communication rounds

of client clustering for MTCFL with converged models or model stability.

Setting
MTCFL MTCFL with model stability

Accuracy Comm. rounds Accuracy Comm. rounds

Non-IID-1 62.84% 37 61.63% 18

Non-IID-2 71.79% 36 72.06% 11

Non-IID-3 40.47% 22 41.18% 19

within 10 communication rounds. Across different non-IID
levels, HiCFL achieves stable clustering results with similar
rounds, with the largest difference as 4 rounds that is
observed on CIFAR10. Experiment results in Figure 8 imply
that HiCFL is robust to different non-IID data distributions.

Effect of threshold ξ. We introduce threshold ξ in Equa-
tion (19) to retain only important weight updates for com-
puting clients’ model stability. We thus perform experiments
to study the impact of ξ on HiCFL, and plot the results in
Figure 9, where the values of different colored bars indicate
the multiplicative relationship between ξ and learning rate
η, e.g., “0.1” means ξ = 0.1η. In addition, “W.C.” means
“without compression”, since all weight updates are retained.

Intuitively, a larger ξ leads to much fewer selected model
weight updates, and thus saves more computation costs.
However, HiCFL may not well bi-partition a cluster since
the model stability of each client is only calculated based
on partial model updates. Experimental results in Figure 9
are in accordance with our analysis. Furthermore, Figure 9
suggests that ξ = 0.05η can make a good tradeoff between
the number of communication rounds and the amount of
used updates. This setting requires almost the same number
of rounds as “W.C.”, while only using 36% ∼ 55% of model
weights for the model stability calculations.

Validity of model stability. We experimentally compare
the average accuracy of bi-partitioning client clusters before
and after the timing when model stability becomes stable.
In this experiment, we put 20 clients that should belong to
two clusters into the same cluster. We perform HiCFL over
CIFAR10 dataset under four different data settings, i.e., Non-
IID-1, Non-IID-2 β = 0.5, Non-IID-2 β = 0.7 and Non-IID-3.

In each data setting, we train the model with FL for to-
tally T = 20 communication rounds, and for each round we
calculate the average model accuracy. We record the client
clustering timing as ts, and calculate the model accuracy
results for the “before” period (from the first round to the
ts − 1-th rounds) and the “after” period (from the ts round
to the T -th rounds), respectively Table 4 shows the accuracy
comparisons for the two clustering scenarios. We find that
we can get much higher model accuracy for the clients that
are clustered after model stability becomes stable.

In addition, we conduct experiments to compare the av-
erage model accuracy of client clustering guided by model

Fig. 10. Model accuracy comparisons with random reference and the
reference with the least model stability over CIFAR10 dataset.

stability or the converged models. We apply the model sta-
bility to an existing method, i.e., MTCFL [22]. Table 5 shows
the model accuracy of MTCFL and MTCFL with model sta-
bility in different non-IID settings over the CIFAR10 dataset.
The results show that the model stability-guided clients
clustering achieves compared model accuracy as MTCFL
which groups clients when their local models have been
converged. Besides, Table 5 shows that MTCFL with model
stability achieves such a model accuracy with much fewer
communication rounds.

The experimental results in Figure 4, Table 4 and Table
5 demonstrate that model stability is a better indicator than
model loss by earlier reflecting the state of model training.
Moreover, model stability is an effective timing indicator
to bi-partition clients into suitable clusters and derive more
accurate local models for clients with Non-IID data.

Validity of the reference client. To validate the effective-
ness of our model stability based reference selection method,
we conduct an experiment using the CIFAR10 dataset in
the Non-IID-2 β = 0.7 data setting. The experiment results
are shown in Figure 10. Compared to client bi-partitioning
with the random reference, we see that the reference with
the least model stability can achieve higher model accuracy
with improvement by 4.1%, which implies that model stabil-
ity based reference selection can produce much better client
clusters than the random reference.

Auto-correction for improper clustering. We conduct an
experiment in Non-IID-2 data setting over CIFAR10 dataset
to investigate the auto-correction capability of HiCFL for
improper clustering at the initial stage. To simulate the case
where some clients are mistakenly clustered, we artificially
divide different proportions, e.g., 10% and 20%, of clients
into incorrect clusters in the early stage, e.g., at the 5th and
10th communication round of FL training. We compare the
average model accuracy of different cases and the normal
execution where clients are clustered without intervention,
and report the results in Figure 11.

Figure 11 shows that if a fraction of clients is improperly
clustered in the early stage, the average model accuracy will
be affected, with lower accuracy than the normal execu-

(a) CIFAR10 5th (b) CIFAR10 10th

Fig. 11. Auto-correction for improper clustering over CIFAR10 dataset.
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(a) CIFAR10-CNN (b) Resnet18 (c) VGG11
Fig. 12. “Time-accuracy” training curves on CIFAR10-CNN model, Resnet18, and VGG11, respectively, with α = 0.3.

(a) CIFAR10-CNN (b) Resnet18 (c) VGG11
Fig. 13. “Time-accuracy” training curves on CIFAR10-CNN model, Resnet18, and VGG11, respectively, with α = 0.5.

TABLE 6
Comparisons on the average model accuracy of re-organizing clusters,

fine-grained clustering and personalized models.

Setting Re-organizing Fine-grained clustering Personalized

Non-IID-1 65.09% 65.24% 65.83%

Non-IID-2 76.66% 78.09% 79.17%

Non-IID-3 42.27% 44.08% 45.18%

tion. However, with continuous model training, the model
accuracy will tend to be consistent, in all cases, with the
normal execution after some communication rounds. The
results demonstrate that HiCFL can correct improper client
clustering and finally achieves high model accuracy.

Re-organizing clusters vs fine-grained clustering. We
conduct experiments to compare the performance of the
two design choices using CIFAR10 dataset. For the design
of re-organizing clusters, we re-organize the clusters using
their global models after client clustering is completed. The
cosine similarity between global model updates of any two
clusters is calculated, and whether two clusters should be
merged or not is determined based on the cosine similarity.
Clusters are merged according to the following rules: 1) a
smaller cluster is merged into the larger cluster; 2) cluster
G1 will be merged with the cluster that has the highest
cosine similarity with G1; 3) the two clusters that should
be merged don’t have a third cluster with a conflict. There is
a conflict if two clusters are dissimilar, i.e., with a negative
cosine similarity. For example, cluster G1 is similar to cluster
G2, and cluster G1 is similar to cluster G3, but cluster G2

conflicts with cluster G3, then cluster G1 and G2 will not be
merged. If condition 3) is not satisfied, then we will consider
to merge cluster G1 with the next most similar cluster.

For the design choice of fine-grained clustering, after the
clustering is complete, we will divide the clients of a cluster
into two sub-clusters following the current design of HiCFL.
Besides, we continue to bi-partition the clusters until each
cluster contains one client only, i.e., generating personalized
model for each client.

Table 6 shows the average model accuracy for the three
design choices. In general, fine-grained clustering can derive
better model accuracy than the design of re-organizing clus-
ters, while the design of personalized models achieves the
highest model accuracy. Compared to re-organizing clusters,
an additional benefit of fine-grained clustering is model
personalization. In the early stage, HiCFL groups clients
with similar data distribution to train a global model, while
in the later stage, HiCFL can refine clients’ model of each
cluster to learn more personal information from their own
data. Therefore, fine-grained clustering could provide more
personalized services for the users.

5.4 Evaluation with Complex Data and Models

Complex models and natural data distribution. In the
experiments, we train three models, namely CIFAR10-CNN
as described in Section 5.1, Resnet18, and VGG11, by using
different FL methods on the CIFAR10 dataset. Figure 12
and Figure 13 show the “time-accuracy training” curves of
different methods under the Latent Dirichlet allocation with
α = 0.3 and α = 0.5, respectively. From the results, we have
the following observations. First, HiCFL achieves the best
model accuracy during the training processes of the three
models. It demonstrates that HiCFL can work well with
complex models. In most of the cases, FedAvg has the lowest
model accuracy than CFL-like methods. Second, HiCFL has
a more stable training curve than other methods. This is
because HiCFL can find the proper clustering timing for bi-
partitioning clusters and can accurately group the clients
with similar data distribution. As a result, model accuracy
can be stably improved by HiCFL.

The results of the experiment demonstrate the phe-
nomenon that the performance improvement of HiCFL with
complex data is not as significant as that with simple data.
For simple data, the features can be extracted easily, and
there are significant differences between the features of dif-
ferent classes. As a result, clients with Non-IID simple data
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Fig. 14. Training curves of HAR models with different methods on the
USC-HAD dataset.

Fig. 15. The training curves of gesture recognition models with different
methods on the CSI dataset.
can be effectively separated into distinct clusters. However,
complex data possess more intricate features, and it is not
easy to discern the features of different classes. Additionally,
HiCFL assesses the similarity between client data by calcu-
lating the cosine similarity of model updates. In the case of
complex data, the disparities between the model updates
may not be adequately reflected in the model similarity.
This can lead to improper clustering and subsequently a
less notable improvement in accuracy.

Experiment on realistic dataset. In the experiment, we
assign IMU data of 14 volunteers to each of the 14 clients to
simulate the natural non-IID data setting. We use different
FL methods to train convolutional models for the clients
to realize human activity recognition (HAR). There are 200
communication rounds between the server and the clients.

Figure 14 shown the results of HiCFL and other methods
on the USC-HAD dataset. The results show that HiCFL
outperforms existing methods in “time-accuracy” under
the natural non-IID data setting. Compared to the existing
methods, HiCFL can achieve higher accuracy at an earlier
stage. It implies that HiCFL can work well with the natural
non-IID data. Thanks to the use of model stability for
finding the proper timing of client clustering, HiCFL can
complete the client clustering process more quickly and
derive stable models much earlier.

Experiment on an FL testbed. We firstly use a device
configured with an Intel 5300 NIC to collect WiFi Channel
State Information (CSI) data from 10 volunteers aged 21-
26 years old. Six of the ten volunteers are male and four
are female. Each volunteer was required to complete six
specified gestures (e.g., clapping, pushing, pulling, and so
on), each repeated 20 times. To understand the performance
of all methods on mobile devices, we randomly assign the
CSI data from each of the volunteers to 6 Raspberry Pi
3B+ and 4 laptops, which forms a simple FL testbed. We
implement all methods using PySyft. Besides, we process
CSI data and build a CNN model for gesture recognition

following the operations proposed in [42]. To train the CNN
model, we set the batch size as 8 and the learning rate as
0.01. The model training process lasts about 50 minutes.

We train the gesture recognition models using different
models on our FL testbed, and their “time-accuracy” curves
are shown in Figure 15. Compared to FedAvg, CFL-like
methods can achieve higher accuracy with a stable model
training process. HiCFL performs better than other CFL-like
methods on the FL testbed.

6 RELATED WORK

Federated learning (FL) is an emerging distributed machine
learning paradigm that enables training on large amounts
of data that reside on distributed clients without compro-
mising data privacy. Statistical heterogeneity challenge, in
particular non-IID data, is the focus of research in FL, and
has attracted many efforts [1, 16, 18, 20, 21, 43, 44, 45, 46]
in the literature. For example, McMahan et al. [1] attempt
to overcome the non-IID issue by averaging clients’ local
models. Zhao et al. [16] assume that only a subset of data
are shared among clients for model training with FL. Li et
al. [43] reduce feature shift with batch normalization before
averaging the models. Wang et al. [18] and Li et al. [20] mit-
igate the impact of non-IID data from client selections and
sample selections, respectively. However, these approaches
train only one single global model for all clients, which is
usually of limited generality and insufficient to effectively
eliminate the impact of non-IID data. For example, Ouyang
et al. [11] show that one single model is not applicable to
human activity recognition.

A promising way to address the non-IID challenge is
to train multiple global models or personalized models for
all clients according to their data distributions [47, 48, 49].
For example, Smith et al. [47] exploit multi-task learning
for building multiple models in FL. Feng et al. [49] use
transfer learning to improve the accuracy of FL trained
model by personalizing it with local data. Tu et al. [46]
propose a novel federated learning system, named FedDL,
for human activity recognition based on the bottom-up
layer-wise dynamic layer sharing scheme. Our work differs
from FedDL in both design motivation and operations. We
propose model stability as a means to determine the proper
clustering time, whereas FedDL implicitly groups clients
based on layer similarity in a bottom-up fashion.

Recently, the framework of clustered federated learning
(CFL) [22] inspires some novel approaches [23, 24, 25, 26,
50], which partition clients with similar data distributions
into clusters and train a global model for clients of each
cluster. Saputra et al. [9] propose a novel economic-efficiency
framework for the electric vehicle network to maximize
the profits of charging stations, which exploit FL to train
an energy demand prediction for each station. To reduce
the bias in energy demand prediction, they employ a con-
strained K-means algorithm to divide charging stations into
a predefined number of clusters based on their deployment
locations, since nearby stations may have similar profiles.
However, existing CFL approaches either require to input
the number κ of clusters, e.g., [23, 24, 25, 26], or are inefficient
in terms of communications, e.g., [22]. In general, we cannot
determine the optimal κ with no knowledge on the clients’
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data distributions [51]. Besides, communication efficiency is
essentially important for many FL applications scenarios,
where mobile clients are usually limited by battery energy
and network traffics. Different from previous works, HiCFL
exploits the novel concept of model stability to intelli-
gently bi-partition clients in a hierarchical manner, which is
communication-efficient and requires no knowledge of κ.

7 CONCLUSION

In this paper, we present HiCFL, an efficient CFL approach
to alleviate the impact of non-IID data. Built on the novel
concept of model stability, HiCFL can intelligently determine
the opportune time to separate a cluster and properly group
all clients into clusters. We evaluate HiCFL with three popu-
lar datasets under various non-IID settings. Experimental
results demonstrate that HiCFL significantly outperforms
state-of-the-art approaches, e.g., improving model accuracy
by 2.0% ∼ 9.0% and reducing communication costs by
27.3% ∼ 80.6%.

In the future, we will continue to explore more designs
that facilitate the FL on mobile devices, such as effective FL
over heterogenous mobile devices with varying computa-
tional and communication resources.
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[36] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[37] Han Xiao, Kashif Rasul, and Roland Vollgraf.
Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In

IEEE CVPR, 2016.
[39] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. In
ICLR, 2015.

[40] Mi Zhang and Alexander A Sawchuk. Usc-had: A daily
activity dataset for ubiquitous activity recognition us-
ing wearable sensors. In ACM UbiComp, 2012.

[41] Jie Zhang, Chen Chen, Bo Li, Lingjuan Lyu, Shuang
Wu, Shouhong Ding, Chunhua Shen, and Chao Wu.
Dense: Data-free one-shot federated learning. Advances
in Neural Information Processing Systems, 35:21414–
21428, 2022.

[42] Tianzhang Xing, Qing Yang, Zhiping Jiang, Xinhua
Fu, Junfeng Wang, Chase Q Wu, and Xiaojiang Chen.
Wifine: Real-time gesture recognition using wi-fi with
edge intelligence. ACM Transactions on Sensor Networks,
19(1):1–24, 2022.

[43] Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael
Kamp, and Qi Dou. FedBN: federated learning on non-
IID features via local batch normalization. In ICLR,
2021.

[44] Deng Yongheng, Lyu Feng, Ren Ju, Chen Yi-Chao, Yang
Peng, Zhou Yuezhi, and Zhang Yaoxue. FAIR: quality-
aware federated learning with precise user incentive
and model aggregation. In IEEE INFOCOM, 2021.

[45] Zihao Zhou, Yanan Li, Xuebin Ren, and Shusen Yang.
Towards efficient and stable k-asynchronous federated
learning with unbounded stale gradients on non-iid
data. IEEE Transactions on Parallel and Distributed Sys-
tems, 33(12):3291–3305, 2022.

[46] Linlin Tu, Xiaomin Ouyang, Jiayu Zhou, Yuze He, and
Guoliang Xing. Feddl: Federated learning via dynamic
layer sharing for human activity recognition. In ACM
SenSys, 2021.

[47] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and
Ameet Talwalkar. Federated multi-task learning. In
NeurIPS, 2017.

[48] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet,
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