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Abstract—Graphs have been widely used for modeling large-
scale data generated from real-world applications, while compact
representation of such graphs is beneficial for efficient storage and
effective graph analysis. As a promising solution, lossless graph
summarization can compactly represent a given graph as a sum-
mary graph, which consists of supernodes (i.e., sets of nodes) and
superedges (edges between supernodes), and the correction edge
sets, which together with summary graph can exactly reconstruct
the original graph. Although many research efforts have been
devoted to develop graph summarization methods, existing works
are still inefficient in terms of computation efficiency and repre-
sentation compactness. To address their limitations, we propose
optGS that includes a set of optimization techniques, including
computation-oriented supernode re-dividing, degree-aware ap-
proximation metric for selecting the best merge, and redundant
computation avoidance, to improve current advances. Extensive
experiments on a variety of large graph datasets demonstrate
the computation efficiency and compression effectiveness of our
optGS, e.g., improving the representation compactness by up to
20.28% and achieving 3.53× speedup in running time than the
state-of-the-art methods.

I. INTRODUCTION

Graphs have been frequently used to model the relationship

between entities in many real-world applications [2], e.g., web

pages [1], social networks [4], and the transportation networks

[12]. Such graphs are usually large and continuously growing.

Consequently, it is crucial to find a storage-efficient manner to

represent these large graphs. In addition to reducing the storage

cost, a compact graph representation allows a large graph to

fit in the main memory of one single machine for effective

processing and analysis [11].

Among various graph compression solutions, a widely used

technique is known as graph summarization, which takes

as input a given graph G = (V, E) and outputs a more

compact representation consisting of a summary graph G and

correction edge sets C [11], [15]. Specifically, the summary

graph G = (S,P) is a compressed graph, where each node in S
represents a disjoint subset of nodes in the original graph G and

each edge in P indicates the edges between all pairs of nodes

in the two subsets. For clarity, we name nodes and edges in a

summary graph as supernodes and superedges, respectively. In

addition, graph summarization introduces correction edge sets

C =< C+, C− > to achieve lossless compression, where C+

contains the edges to be inserted and C− specifies the edges
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to be removed when reconstructing the original graph G from

the summary graph G. Compared to other graph compression

techniques, graph summarization owns several valuable prop-

erties [16], e.g., be compatible with other techniques to further

compress the graph and queryable on the summary graph.

Since a summary graph captures the high-level structure of

the original graph, the output summary graph can be used for

insightful graph visualization as well [15], [18].

Many efforts have been made to design various graph sum-

marization methods [6], [11]. As the pioneer work, Navlakha

et al. first formally define the correction set based graph

summarization problem, and propose methods to iteratively

search for the best pair of nodes, which can reduce the storage

cost at the most, for merging over the entire graph [15].

Although the proposed methods can derive highly compact

representations, they incur huge computation overheads and

thus cannot scale to large graphs. The state-of-the-art methods,

e.g., SWeG [16] and LDME [18], have been designed based

on the same algorithmic framework consisting of three steps,

i.e., dividing, merging, and encoding. These advanced methods

divide supernodes into smaller groups prior to merging, and

utilize an approximation metric for choosing candidate supern-

ode pairs to merge. Compared with traditional methods, they

can achieve a significant speedup on the overall execution with

an acceptable loss in representation compactness.

Despite huge advantages, the state-of-the-art methods are

still inefficient in terms of running time and compactness of

outputs. Although SWeG [16] greatly alleviates the computa-

tion challenge, its dividing step usually leads to unbalanced

groups, where some groups are relatively larger and seriously

slow down the speed. In addition, the approximation metric in

SWeG is not capable of finding the best candidate supernodes

to merge, and as a result, the final representation compactness

is declined. LDME [18] is faster than SWeG by leveraging

a novel dividing strategy to reduce group sizes, while it may

separate the best supernodes for merging into different groups,

resulting in a poor compression ratio. For example, we conduct

experiments on graph EU (see more details of graph datasets

in Section IV-A) to compare their performance, and find that

LDME runs 19.30× faster than SWeG, while its output takes

76.23% more spaces. LDME is adjustable to balance speed

and compactness, however, it is hard to set the best parameter

for each graph in advance.



To address the limitations of existing works, we empirically

study the correction set based lossless graph summarization

problem, and propose an optimized graph summarization
(optGS) method to further advance current studies. With sev-

eral optimization techniques, optGS can obtain high represen-

tation compactness with a shorter running time. Specifically,

we test the impact of different settings of group size, and

propose a computation-oriented diving method that further

divides groups generated by SWeG or LDME into subgroups

of proper size. In addition, we enhance SWeG’s approximation

metric by considering the storage cost of supernodes, which

can better measure the contribution of a candidate pair to the

reduction of storage cost. Lastly, we observe that there are

abundant computations involved for the same candidate pairs

across multiple iterations. We thus exploit bloom filters to

efficiently record such supernode pairs, and skip computations

for the pairs by querying bloom filters.

In summary, the contributions of our work are as follows:

• We empirically investigate the impact of group size on

graph summarization, and present a dividing method to

split large groups into proper subgroups.

• We discover the inefficiency of SWeG’s approximation

metric, and propose an improved metric for finding the

best candidate pairs to merge.

• We observe repeated computations for the same candi-

date pairs, and devise a bloom filter based redundant

computation avoidance strategy to eliminate unnecessary

computation overheads.

• We conduct extensive experiments with seven large graph

datasets to evaluate the performance of optGS. Compared

to the state-of-the-art methods, optGS improves SWeG
and LDME up to 20.28% in representation compactness,

and achieves a 3.53× speedup in running time.

The rest of this paper is organized as follows. The prelimi-

nary is presented in Section II. We elaborate and evaluate the

design of optGS in Section III and Section IV, respectively.

Finally, Section V concludes this paper.

II. PRELIMINARY AND RELATED WORKS

A. Problem Definition

Following previous works [15], [16], [18], we also focus on

the correction set based graph summarization since it can be

easily extended for both lossless and lossy graph compression.

We introduce the involved concepts as follows.

Consider a given undirected graph G = (V, E) with a set

V of nodes and a set E of edges. Each edge (u, v) ∈ E is an

unordered pair of distinct nodes u, v ∈ V . The set of neighbors

of each node u in G is denoted by Nu = {v|(u, v) ∈ E}. For

the sake of reducing storage cost and enabling effective graph

analysis, a graph summarization solution aims to turn graph G
into a compact representation that includes a summary graph
G = (S,P) and correction edge sets C =< C+, C− >.

Input graph Summary graph 

Correction sets 

Summarization

Recovery

Fig. 1. Illustration of correction set based graph summarization and recovery.

• Summary graph G consists of a set S of supernodes and

a set P of superedges.

– Each supernode A ∈ S is a disjoint set of nodes in

V , and for any two different supernodes A,B ∈ S ,

we have A ∩ B = ∅. Meanwhile, each node u ∈ V is

contained in exactly one supernode A in S . We denote

the supernode that each node u belongs to as Au.

– Each superedge (A,B) ∈ P represents full connects

between any two distinct nodes u ∈ A and v ∈ B,

i.e., {(u, v)|u ∈ A, v ∈ B}. If A = B, then (A,B) =
(A,A) indicates the self-loop at supernode A ∈ S .

• Correction edge sets C =< C+, C− > consist of a set

C+ of edges to be inserted and a set C− of edges to

be removed when recovering original graph G from the

summary graph G.

Correction set based graph summarization can reconstruct

a graph G̃ = (V, Ẽ) from a summary graph G = (S,P) and

correction edge sets C =< C+, C− > through three steps: 1

For each superedge (A,B) ∈ P , adding edges formed by all

pairs of distinct nodes in A and B to Ẽ ; 2 Adding each edge in

C+ to Ẽ ; 3 Removing each edge in C− from Ẽ . In particular,

if E = Ẽ , graph G is lossless summarized by G and C.
Based on above definitions, the correction set based lossless

graph summarization problem is formally defined as follows.
Definition 1: (Correction set based lossless graph summa-

rization problem) Given an undirected graph G = (V, E), we

aim to compute a summary graph G = (S,P) and correction

edge sets C =< C+, C− >, such that the output representation

cost (i.e., Eq. (1)) of the original graph G can be minimized.

|P|+ |C+|+ |C−| (1)

The objective in Eq. (1) aims to minimize the sum of the

number of superedges in the summary graph and the number

of edges in the correction sets. Similar to previous works

[16], [18], we exclude all self-loops in P because they can

be encoded using a single bit, as a result, their representation

cost is negligible. Besides, we only consider lossless graph

summarization, as the lossy case can be easily implemented

by dropping certain edges in the correction edge sets C [15].
Figure 1 illustrates an example of graph summarization and

graph recovery. The input graph G = (V, E) with 9 nodes and

10 edges can be compactly represented as a summary graph

G = (S,P) with only 4 supernodes and 3 superedges and

correction edge sets C =< C+, C− >, where C+ contains only

one edge (e, f) and no edge is stored in C−. With summary

graph G and correction sets C, we can recover the original

graph G in a lossless manner.



Algorithm 1: Algorithmic framework for lossless

graph summarization

Input: input graph G = (V, E), number of iterations T
Output: summary graph G = (S,P), correction sets

C =< C+, C− >
1 Initialize each node v ∈ V as a supernode in S;
2 for it = 1 → T do
3 Divide S into disjoint groups {S(1),S(2), · · · ,S(m)};
4 Perform merges in each disjoint group;

5 Encode edges E into superedges P and correction sets C+,

C−;

6 return G = (S,P) and C;

B. Algorithmic Framework of State-of-the-Art Works

According to whether nodes are aggregated into supernodes

or not, previous graph summarization studies can be classified

into two categories, i.e., grouping [7], [8], [9], [15], [16],

[18] and non-grouping [3], [5], [10], [14], [17]. In this paper,

we focus on the research works of grouping based graph
summarization with correction edge sets.

The state-of-the-art lossless graph summarization methods

[16], [18] generally rely on the same algorithmic framework,

as shown in Algorithm 1, which consists of three important

steps, i.e., dividing, merging, and encoding. Given an input

graph G = (V, E) and number T of iterations, an expected

method summarizes graph G repeatedly over T iterations

by performing sequences of supernode merges per iteration.

Initially, each node in V is initialized as a unique supernode,

and all supernodes form the initial set S . Then in each

iteration, supernodes in S are divided into disjoint groups,

and suitable supernode pairs are merged within each group.

We will describe each step in detail as follows.

• Dividing. To address the computation bottleneck of tradi-

tional graph summarization methods [15], SWeG [16] proposes

to divide all supernodes into disjoint groups according to their

similarity on the node connectivity. Specifically, SWeG divides

supernodes using a function called as shingle. For a regular

node u ∈ V , its shingle f(u) is defined as

f(u) = min
v∈Nu or v=u

h(v),

where h is a random bijective function h : V →
{1, 2, · · · , |V|}. The shingle function can be easily extended

for supernode A ∈ S as F (A) = minu∈A f(u). As a

result, all supernodes in S can be divided into disjoint groups

{S(1),S(2), · · · ,S(m)}, where supernodes in each group have

the same shingle value.

Different from SWeG, another state-of-the-art method, i.e.,
LDME [18], proposes to use a weighted locality sensitive

hashing (LSH) technique to produce a hash signature of length

k for each supernode A ∈ S , and divides supernodes based on

their signature values into disjoint groups, where supernodes

within each group have the same signature value.

• Merging. This step is performed within each group S(i) ∈
{S(1),S(2), · · · ,S(m)}. Specifically, it merges supernodes by

selecting a random supernode A as the anchor and then

determining the best candidate B for A in the same group

S(i). Supernodes A and B will be merged if the result of the

merger reduces Eq. (1) by a sufficient amount. Before dividing

into the details, we present some definitions.

Definition 2: (Cost of superedge) For any superedge

(A,B) ∈ P , the cost of superedge (A,B), given current

supernode set S , is defined as:

CostS(A,B) = min{1 + πAB − εAB , εAB}, (2)

where εAB = {(u, v) ∈ E|u ∈ A, v ∈ B} is the set of edges

connecting supernode A and B, and πAB is the set of all pairs

of nodes in A and B.

Definition 3: (Cost of supernode) For any supernode A ∈
S , the cost of supernode A, given current supernode set S , is

defined as:

CostS(A) =
∑

B∈NA∪A

CostS(A,B), (3)

where CostS(A,B) is the cost of superedge (A,B), and NA =⋃
u∈A Nu represents the set of nodes that have edge adjacent

to any node in A.

Specifically, the cost of a supernode A implies how A con-

tributes to Eq. (1) based on its connectivity to the neighbors.

Based on the cost definitions, we then define the concept of

Saving due to the merger of two supernodes.
Definition 4: (Saving of a merge) The saving of a merge

between supernodes A and B (A �= B ∈ S(i)), given current
supernode set S , is defined as:

SavingS(A,B) = 1− Cost(S−{A,B})∪{A∪B}(A ∪B)

CostS(A) + CostS(B)− CostS(A,B)
,

(4)

where CostS(A) + CostS(B) − CostS(A,B) is the

cost of supernodes A and B before their merge, and

Cost(S−{A,B})∪{A∪B}(A ∪B) is the cost after merging.

Essentially, SavingS(A,B) in Eq. (4) is the ratio of the cost

reduction due to the merge of supernodes A and B and the cost

before their merge. Based on this metric, traditional methods

[15] iteratively search for the pair of supernodes, which can

produce the largest saving over the entire graph, and merge

them into one new supernode in a greedy manner. However,

SWeG [16] claims that computing Saving is computationally

expensive and proposes an approximation metric known as

SuperJaccard similarity to approximate Saving calculations.

Definition 5: (SuperJaccard similarity) The

SuperJaccard similarity between any two supernodes

A and B is defined as:

SuperJaccard(A,B) =

∑
v∈NA∪NB

min(w(A, v), w(B, v))∑
v∈NA∪NB

max(w(A, v), w(B, v))
(5)

where w(A, v) = |{u ∈ A|(u, v) ∈ E}| is the number of nodes

in supernode A ∈ S adjacent to node v ∈ V .



Because SuperJaccard(A,B) can measure the similarity

of A and B in term of their connectivity, SWeG thus em-

ploys it to search the best merge candidate. After identifying

the best merge candidate B for A by using SuperJaccard
similarity, then SavingS(A,B) is computed only once in

SWeG to decide whether to merge or not. More specifically, if

SavingS(A,B) ≥ θ(it) in the it-th iteration, then A and B
are merged; Otherwise they are not merged in current iteration.

In general, the merging threshold θ(it) is defined as

θ(it) =
1

1 + it
, 1 ≤ it ≤ T. (6)

Since θ(it) decreases along with time, more merging would

be performed in the later iterations.

Instead of using SuperJaccard to find the candidate for

merging, LDME [18] calculates the SavingS(A,B) value for

each supernode B ∈ S(i) with respect to anchor A, and merges

them if SavingS(A,B) is above the threshold θ(it). LDME
employs hashtable-of-hashtables structure to index edges be-

tween supernodes, which can accelerate the computations

of Cost and Saving values. However, this data structure

introduces extra storage space and needs maintenance.

• Encoding. After executing the steps of dividing and merg-

ing supernodes for T times, encoding step takes supernodes

S from merging step and encodes edges E of input graph G
into superedges P and correction edge sets C =< C+, C− >.

Specifically, we either (i) encode a superedge (A,B) ∈ P and

add the extraneous edges to C−; or (ii) add existing edges to C+

without creating a superedge. In the former case, we encode

a superedge (A,B) and as a result, may introduce edges that

were not in the original graph. We thus add these extraneous

edges to C−, implying edges to be removed during recovery.

In both SWeG [16] and LDME [18], they encode superedges

according to the same rules. For each pair of supernodes

A,B ∈ S, where εAB �= ∅, if εAB ≤ πAB

2 then we

do not encode superedge (A,B) and εAB is merged into

C+; Otherwise, we encode superedge (A,B) and edges in

{πAB − εAB} are merged into C−. In the special case where

A = B, the condition is that if πAA ≤ εAB

2 , we do not encode a

loop superedge of A; otherwise, we encode a loop superedge.

III. OPTIMIZED DESIGN

Although the state-of-the-art methods, i.e., SWeG [16] and

LDME [18], have greatly improved the traditional methods

[15], we still find their deficiencies in terms of computation and

representation compactness. Therefore, we present optGS that

includes a set of optimization techniques to further advance

current graph summarization researches.

A. Computation-oriented Supernode Dividing

Current advances improve traditional methods [15] by divid-

ing all supernodes into disjoint groups and merging supern-

odes within each group individually. Despite certain losses

in representation compactness, they significantly accelerate

Fig. 2. Running time and standard deviation of group sizes for each iteration.

Fig. 3. Impact of group sizes on running time and representation compactness.

the whole process of graph summarization. According to our

experiments, however, supernode groups derived by shingle
function in SWeG [16] vary greatly in their sizes. In particular,

some groups have much more supernodes than others, which

could potentially lead to unbalanced computation workloads

among groups, which will slow down the whole process. We

run SWeG on a representative graph CN (Please see more

details about the graph datasets in Section IV-A) for T = 60
iterations, and record the running time and standard deviation

of all supernode groups for each iteration. Figure 2 shows that

there exists a strong correlation between the deviation of group

sizes and the running time of an iteration.

In theory, smaller groups will trigger much fewer com-

putations as there are fewer supernodes to be evaluated for

searching the best candidate within each group, while also

degrading the representation’s compactness. We run SWeG
on graph CN by varying the group sizes. Figure 3 shows

the experiment results on running time and representation

compactness, which is the ratio between storage cost for

summary graph and corrections expressed in Eq. (1) and the

number |E| of all edges. The results comply with our analysis

on the impact of group sizes. Another state-of-the-art LDME
[18] can control group sizes by tuning parameter k, while it

is hard to determine the best k for each graph without trial.

Based on the above experimental observations, we thus

propose a computation-oriented supernode dividing method

that aims to split a large group into multiple proper subgroups.

Consider that the number of computations involved for a group

of size n is about O(n2), we estimate the group size for a given

computation budget and present the results in Table I (see the

second row). In addition, we run SWeG on a modern server and

record the running time for each group size setting, as shown in

the third row of Table I. The experiment result in Table I shows

that when group size n increases, more running time will be

taken. While we find the running time for groups smaller than



TABLE I
NUMBER AND TIME OF COMPUTATIONS INVOLVED FOR DIFFERENT GROUP SIZE.

Budget/O(n2) 100 101 102 103 104 105 106 107 108

Size/n 2 5 15 46 142 448 1415 4473 14143

Time (ms) 10−3 10−2 10−1 10−1 100 101 102 103 104

46 to be relatively stable. Therefore, we empirically split a

group with size greater than the threshold μ = 46 into smaller

subgroups. For a given supernode group S(i) with size |S(i)|,
we determine the size of subgroups (denoted by φ(|S(i)|))
using the following equation:

φ(|S(i)|) = argmin
2<n≤ |S(i)|

2

|S(i)|
n

× τn, (7)

where n is the candidate group size listed in the second row

of Table I and τn represents the running time for a group of

size n that can be referred to from the third row of Table I.

We exclude the case of splitting a group into extremely small

subgroups consisting of only 2 supernodes, which will lead to

terrible compression performance.

Therefore, we will divide a large group S(i), derived from

the dividing step of SWeG or LDME, with size |S(i)| > μ

into 
 |S(i)|
φ(|S(i)|)� subgroups. For simplicity, supernodes in S(i)

are randomly assigned to these subgroups. It is worth noting

that the best setting of μ for different computing hardware can

be experimentally found by investigating various group size

settings and deriving a result table like Table I, which can be

easily obtained for each computing server.

B. Degree-aware Approximation Metric

During the supernode merging step, SWeG [16] employs

SuperJaccard(A,B) (i.e., Eq. (5)) instead of Saving(A,B)1

(i.e., Eq. (4)) to find the best candidate supernode B
for anchor A, where B �= A ∈ S(i). This is because

SuperJaccard(A,B) is cheaper than Saving(A,B) on com-

putations, and intuitively Saving(A,B) tends to be high when

A and B have similar connectivity that could be approximated

by their SuperJaccard value.

However, SuperJaccard based merging will bring about

a certain loss in representation compactness, as the definition

of SuperJaccard in Eq. (5) only considers the number of

edges between A and B, while neglecting the key information

about the size of supernodes. By comparing the definitions of

Saving and SuperJaccard in Eq. (4) and Eq. (5), we suspect

that the approximation metric cannot work well in some cases.

For example, for a common node v of supernodes A and B,

if v just connects few nodes of one supernode but most nodes

of the other supernode, e.g., w(A, v) = 1 and w(B, v) = |B|
(or w(A, v) = |A| and w(B, v) = 1) where |A| and |B| are

the number of nodes in supernodes A and B respectively, then

SuperJaccard(A,B) tends to be low while Saving(A,B) is

still high if A and B have such common nodes. As a result,

1We omit the superscript S if the context is clear.

E = {

H = {

Anchor supernode

Merging supernodes within 

Fig. 4. An example to demonstrate the deficiency of SuperJaccard.

the candidate chosen by SuperJaccard may not be the same

one as the one selected by using Saving value.

To fill the gap, we correct the SuperJaccard calculation

by taking the size of supernodes into account, and using the

degree-aware approximation metric SuperJaccard value for

supernodes A and B is defined as

SuperJaccard(A,B) =

∑
v∈NA∪NB

min(w(A,v)
|A| , w(B,v)

|B| )∑
v∈NA∪NB

max(w(A,v)
|A| , w(B,v)

|B| )
.

(8)

Example: As shown in Figure 4, given an input graph

G = (V, E) with 9 nodes (i.e., V = {a, b, c, d, e, f, g, h, k})

and 10 edges between these nodes, assuming that in some

iteration supernodes B,C,E, F,R,H are divided into the

same group S(i). Then, we select supernode C as the anchor

supernode, and try to search for the best candidate within

S(i) for the possible merging with anchor C. If we use

Saving as the metric to compare supernodes B and F , we

have Saving(C,F ) = 1
3 < Saving(C,B) = 1

2 , which

indicates that merging C with B can obtain more compactness

than F . However, the approximation metric SuperJaccard
suggests that supernode F is a better candidate than B, because

SuperJaccard(C,F ) = 1
2 > SuperJaccard(C,B) = 1

3 . As

a comparison, we use our degree-aware approximation metric

SuperJaccard to evaluate the two pairs of supernodes, and

have SuperJaccard(C,F ) = 1
2 < SuperJaccard(C,B) =

1, which leads to the same merging suggestion as the Saving
metric, i.e., merging C with B will bring more storage cost

reduction than F .

C. Redundant Computation Avoidance

As shown in Algorithm 1, the overall execution is iteratively

performed T times over supernodes S . Each iteration contains

a dividing step and a merging step, where the dividing step

tends to partition supernodes into groups while the merging

step computes the best merge within each group. A merge

happens when two supernodes can gain considerable profit

on compactness by comparing with a threshold θ(it), which

is gradually decreased and predictable as shown in Eq. (6).

At the initial iterations, finding a candidate supernode that

satisfies the merging condition is very difficult, resulting in



TABLE II
SUMMARY OF REAL-WORLD GRAPH DATASETS FOR EXPERIMENTS.

Name #Nodes #Edges Summary

cnr-2000 (CN) 325,557 5,565,380 Hyperlinks
in-2004 (IN) 1,382,908 27,560,356 Hyperlinks

eu-2005 (EU) 862,664 32,778,363 Hyperlinks
dblp-2011 (DB) 986,324 6,707,236 Collaboration

hollywood-2009 (HO) 1,139,905 113,891,327 Collaboration
amazon-2008 (AM) 735,323 5,158,388 Co-purchase

frwiki-2013 (FR) 1,352,053 34,378,431 Hyperlinks

many supernode pairs repeatedly computing the Saving values

for multiple iterations. The computations are redundant, and

we thus propose to record such supernode pairs and avoid the

redundant computations by using bloom filters.

Bloom filter is a space-efficient probabilistic data structure,

which is used to test whether an element is a member of a

set [13]. In optGS, we employ a bloom filter to record the

supernode pairs, which still cannot contribute to the reduction

of storage cost in the next iteration given their current Saving
value. For a supernode pair (A,B) that fails to meet the

merging condition θ(it) at the it-th iteration, we will insert

(A,B) into the bloom filter if Saving(A,B) < θ(it+1). We

refer to such a candidate supernode pair as ineffective pair. By

recording and querying ineffective pairs with bloom filter, we

can avoid repeated computation in the next iteration, and thus

speed up the execution without loss of compactness.

A more aggressive approach is that we could capture more

ineffective pairs for the next κ iterations if Saving(A,B) <
θ(it+ j), where j = 1, 2, · · · , κ. To this end, we utilize κ-

level bloom filters, denoted by Lit = {L(1),L(2), · · · ,L(κ)},

to record the ineffective pairs given their Saving values at the

it-th iteration. Each bloom filter L(j) records the ineffective

pairs for the (it+ j)-th iteration.

In practice, given a supernode pair (A,B) that is possibly

merged at the it-th iteration, we will first lookup whether the

pair (A,B) exists in the bloom filter Lit. If (A,B) indeed

exists, we simply skip the computation of Saving(A,B) and

will not merge them. If (A,B) is not recorded in Lit, we then

compute Saving(A,B), and merge them if Saving(A,B) ≥
θ(it); Otherwise, we insert pair (A,B) into the j-th bloom

filter L(j) if Saving(A,B) < θ(it+ j), j = 1, 2, · · · , κ. It

is worth noting that bloom filters are continuously generated

and discarded. For example, after the it-th iteration, we will

discard the first bloom filter L(1) in Lit, and meanwhile create

a new bloom filter to record ineffective pairs for the (it+ κ)-
th iteration. However, the number κ of bloom filters should

be carefully selected because the graph structural information

may change and the Saving values of recorded pairs will

consequently change as well. We experimentally examine the

settings of κ in Section IV-B.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We compare the performance of optGS with two state-of-

the-art methods using a set of real-world graph datasets.

Datasets: We utilize seven graph datasets downloaded from

the Laboratory of Web Algorithmics2 for the experiments. We

remove all edge directions, duplicated edges, and self-loops.

Table II shows the characteristics of each graph.

Baseline methods: We compare our optGS with the current

state-of-the-art SWeG [16] and LDME [18]. Specifically, we

have the following five methods for performance comparisons.

(a) optGS-S that uses the Shingle function of SWeG to derive

initial supernode groups; (b) optGS-L that adopts the LSH

technique of LDME to obtain initial supernode groups, where

we set k = 1 as the signature length; (c) SWeG [16]; (d)

LDME5 with signature length k = 5; and (e) LDME20 with

signature length k = 20. In particular, optGS-S and optGS-

L mainly differ in the way of obtaining the initial supernode

groups. As variants of LDME [18], LDME20 runs faster while

LDME5 can produce more compact output.

Evaluation metrics: Given a correction set based graph

summarization representation G = (S,P) and correction edge

set C =< C+, C− > for the input graph G = (V, E). In addition

to the running time, we also use the compactness of output

representation, defined as Eq. (9), to evaluate the compression

performance of each graph summarization method.

compactness =
|P|+ |C+|+ |C−|

|E| (9)

The metric of compactness measures the relative size of output,

where the numerator in Eq. (9) is the objective function of

graph summarization (i.e., Eq. (1)) while the denominator is

the storage cost of the input graph G, which is constant for all

methods. The lower the compactness value is, the better the

compression performance of the method provides.

Implementation: We implement the five graph summa-

rization methods in Java 1.8. We directly adopt the open-

sourced implementations of SWeG [16] and LDME [18] for

the experiments, and tune the parameters to achieve their best

performance respectively. We set the length of each bloom

filter as 7298440 bits, and operate bloom filters with 5 hash

functions. Such an implementation can efficiently insert and

lookup 1000000 ineffective pairs with an extremely low false

positive rate. By default, we use κ = 2 bloom filters to achieve

the best redundant computation avoidance. All experiments are

performed on a powerful server with 3.8GHz AMD Ryzen 9

3900X CPUs (with 12 cores) and 64 GB memory. We run each

method for T = 60 iterations, and encode the graph every 5

iterations for computing metrics of compactness and running
time. Each experiment is performed 5 trials, and we report the

average values in terms of execution speed and compactness

of output representation.

B. Results

Comparisons on running time. As shown in Figure 5, our

proposed methods, i.e., optGS-S and optGS-L, have similar

2Laboratory of Web Algorithmics: http://law.di.unimi.it/dataset.php.



Fig. 5. Comparison among our methods, i.e., optGS-S and optGS-L, and state-of-the-art methods in term of running time (in seconds) over 60 iterations.

Fig. 6. Comparison among our methods, i.e., optGS-S and optGS-L, and state-of-the-art methods in term of representation compactness over 60 iterations.

performance on the metric of running time across all graphs,

and greatly outperform SWeG on most of the graphs. Overall,

our methods achieves 2.59× to 6.99× speedup over SWeG.

More specifically, our methods outperform SWeG on graph

CN by 5.31×, IN by 2.60×, EU by 5.31×, HO by 2.71×, and

FR by 6.91×. In addition, we also observe that our methods

run a bit slower than SWeG on graphs DB and AM. The

possible reason could be that their graph structures lead to

less unbalanced groups, and as a result, our methods achieve

similar performance as SWeG in running time.

From Figure 5, we see that LDME5 (LDME20) can achieve

2.67× (1.88×) to 93.67× (73.60×) speedup over SWeG,

respectively. LDME20 achieves the best speedup performance

because the size of supernode groups is very small, which

potentially misses a large amount of candidate supernode pairs

and will affect the final compactness of representation (as

discussed later). On the contrary, the size of groups generated

by LDME5 is relatively larger than LDME20. The speedup

performance of LDME is determined by the signature length k,

but the optimal setting of k varies among different graphs. As

a result, it is difficult to determine k for a given input graph in

advance. Different from SWeG and LDME, our methods speed

up the computations by limiting the size of each group, where

the size threshold μ is relatively generic to most graphs.

Comparisons on compactness. As shown in Figure 6, our

methods, i.e., optGS-S and optGS-L, perform similarly in the

metric of compactness, and they achieve comparable final

compression performance as SWeG across the seven graphs.

We even find that our methods outperform SWeG with a slight

improvement on graph for CN (by 1.33%), IN (by 1.61%) and

EU (by 1.20%). Such improvements in the representation com-

pactness are mainly attributed to the proposed approximation

metric SuperJaccard, which helps find the best candidate

supernode on reducing storage cost. We also observe that the

five methods get more compact representations for graphs CN,

IN, and EU, which are hyperlinks to web pages, than the other

four graphs. It may be that web graphs exist much more similar

connections among nodes than other kinds of graphs.

Although LDME runs fast, we find that both LDME5 and

LDME20 perform poorly on deriving compact representations

on all graphs, as shown in Figure 6. Specifically, LDME20 has

the worst compactness performance among the five methods.

It is because a long signature (i.e., k = 20) will divide all

supernodes into much smaller groups and thus miss many



Fig. 7. Compression comparisons between different approximation metrics.

proper supernode pairs for merging. As a trade-off for com-

pression, LDME5 runs slower than LDME20 but can get better

compactness of outputs. Compared to LDME5 and LDME20,

our methods perform much better in the terms of compactness,

with improvements of 10.63% and 29.94%, respectively.

Summary. According to these experiment results in Figure 5

and Figure 6, we find that both SWeG and LDME cannot well

balance the performance of running time and compactness.

On the contrary, our methods can achieve equal or even better

compactness than SWeG, but have much speedier execution.

On average, our methods improve SWeG by 3.53× in running

time and 0.53% in representation compactness. In addition,

although our methods run slower than LDME, optGS greatly

improves LDME in compactness by 20.28% on average.

Effectiveness of improved approximation metric. We re-

place the approximation metric used in SWeG and LDME5 with

our improved SuperJaccard for finding candidate supern-

odes, and the two variants are denoted by SWeG-J and LDME5-
J, respectively. We compare their compression performance

on all graphs, and report the results on graph IN in Figure

7. We find that SWeG-J and LDME5-J improve their original

versions in compactness by 2.45% and 1.18%, respectively.

We observe similar results on other graphs, but omit them due

to space limitations. This experiment shows the effectiveness

of our degree-aware approximation metric that can select the

best candidate for merging.

Effectiveness of bloom filter. We combine the κ-level

bloom filter based redundant computation avoidance strategy

with SWeG and vary the number of bloom filters used. Sim-

ilarly, we only report the experiment results on graph IN in

Figure 8. Compared to the original SWeG design (i.e., κ = 0),

we find that the bloom filter is useful to avoid unnecessary

Saving computations of ineffective pairs, and thus reduce the

running time. However, the speedup performance is weakened

when more bloom filters (i.e., κ = 3) are used. This could

be because querying time on multiple bloom filters outweighs

the benefits of computation avoidance. Therefore, we suggest

κ = 2 to obtain the best speedup performance.

V. CONCLUSION

In this paper, we present optGS that incorporates a set

of optimization techniques to improve state-of-the-art lossless

graph summarization methods, namely SWeG and LDME.

Specifically, we have devised a computation-oriented dividing

method and a redundant computation avoidance strategy to

Fig. 8. Impact of number of bloom filters used for SWeG on running time.

reduce the computation overhead. Furthermore, we present a

better approximation metric to select the best candidate pairs

for merging. Extensive experiments on seven large-scale graph

datasets demonstrate that optGS provides 0.53% and 20.28%

higher compactness of representation than SWeG and LDME,

respectively. In addition, our method achieves 3.53× speedup

in running time than SWeG.
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