
1996 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

Context-Aware Taxi Dispatching at City-Scale
Using Deep Reinforcement Learning
Zhidan Liu , Member, IEEE, Jiangzhou Li, and Kaishun Wu , Member, IEEE

Abstract— Proactive taxi dispatching is of great importance to
balance taxi demand-supply gaps among different locations in
a city. Recent advances primarily rely on deep reinforcement
learning (DRL) to directly learn the optimal dispatching policy.
These works, however, are still not sufficiently efficient because
they overlook several pieces of valuable context information. As a
result, they may generate quite a few improper actions and
introduce unnecessary coordination costs. To improve existing
works, we present COX – a context-aware taxi dispatching
approach that incorporates rich contexts into DRL modeling for
more efficient taxi reallocations. Specifically, rather than simply
dividing the service area into grids, COX proposes a road con-
nectivity aware clustering algorithm to divide the road network
graph into zones for practical taxi dispatching. In addition, COX
comprehensively analyzes zone-level taxi demands and supplies
through accurate taxi demand prediction and timely updates of
taxi statuses. COX improves the DRL modeling by integrating
these derived contexts, e.g., state representation with complete
demand/supply data and sequential action generation with full
coordination among idle taxis. In particular, we implement an
environment simulator to train and evaluate COX using a large
real-world taxi dataset. Extensive experiments show that COX
outperforms state-of-the-art approaches on various performance
metrics, e.g., on average improving the total order values by
6.74%, while reducing the number of unserved taxi orders and
passengers’ waiting time by 4.92% and 44.84%, respectively.

Index Terms— Taxi dispatching, deep reinforcement learning,
road network clustering, taxi demand prediction.

I. INTRODUCTION

THE emerging large-scale modern ride-hailing platforms,
e.g., Uber [3] and Didi Chuxing [1], have greatly bene-

fited our daily travel by allowing passengers to book a trip in
advance and matching available taxis with ride requests in real

Manuscript received January 18, 2020; revised July 8, 2020; accepted
September 30, 2020. Date of publication November 3, 2020; date of current
version March 9, 2022. This work was supported in part by the China
NSFC under Grant 61802261, Grant 61872248, and Grant U1736207; in
part by the Guangdong Basic and Applied Basic Research Foundation
under Grant 2020A1515011502; in part by the Guangdong NSF under
Grant 2017A030312008; in part by the Guangdong Science and Technol-
ogy Foundation under Grant 2019B111103001 and Grant 2019B020209001;
in part by the Shenzhen Science and Technology Foundation under
Grant ZDSYS20190902092853047; and in part by the GDUPS (2015).
The Associate Editor for this article was Y. Lv. (Corresponding author:
Kaishun Wu.)

Zhidan Liu and Jiangzhou Li are with the College of Computer Science and
Software Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
liuzhidan@szu.edu.cn; lijiangzhou2018@email.szu.edu.cn).

Kaishun Wu is with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen 518060, China, and also with the
Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458,
China (e-mail: wu@szu.edu.cn).

Digital Object Identifier 10.1109/TITS.2020.3030252

time. Although such systems could serve millions of taxi ride
requests everyday in a city, a large number of requests remain
unserved due to the lack of available taxis nearby [36]. On the
other hand, however, there are a plenty of idle taxis seeking
for passengers in other places [49]. Such taxi demand-supply
imbalances among different geographic locations widely exist
in urban cities [47], which will severely deteriorate the system
efficiency and result in terrible user experience.

As a key enabler for the intelligent ride-hailing systems,
taxi dispatching is expected to balance the difference between
taxi demands and supplies by proactively reallocating avail-
able taxis to some locations for better serving future ride
requests [18]. An efficient taxi dispatching strategy can signif-
icantly increase the number of requests being served, reduce
the idle cursing distances of taxis and passengers’ waiting
time [25]. Proactive taxi dispatching over a large city, however,
encounters two major challenges [30]. First, a ride-hailing plat-
form usually manages and regulates tens of thousands of taxis
to pick-up and deliver passengers across the whole city. It thus
requires extremely complex coordination among taxis. The
demand-supply balancing may further lead to sequential and
long-term impacts that are difficult or even impossible to be
well modelled. Second, taxi demands and supplies are dynam-
ically changing over time, which thus poses many sources of
future uncertainties for the effective taxi dispatching.

In the literature, many efforts have been made to achieve
efficient taxi dispatching. Based on historical taxi data, some
studies attempt to explicitly build taxi demand/supply mod-
els [47], and then dispatch idle taxis given these models
through techniques like receding horizon control [25]. The
model-based approaches, however, are inherently limited by
the specified model and cannot evolve with the dynamic taxi
service network. Therefore, some model-free approaches [9],
[18], [30], [33] have been recently proposed. They primarily
rely on the deep reinforcement learning (DRL) theory [5]
to directly learn the best dispatching policies by interact-
ing with the taxi transportation environment. Although these
approaches have achieved better performances when compared
with traditional ones, they are still not sufficiently efficient
due to the neglects of some context information. As a result,
existing DRL based approaches usually use numerous states
to represent the environment and generate improper or even
inconsistent actions, leading to huge computational and coor-
dination costs.

To improve existing works, we present a context-aware
taxi dispatching approach, named as COX . As a data-driven
model-free approach, COX also makes use of the DRL

1558-0016 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0003-2216-0737

LIU et al.: CONTEXT-AWARE TAXI DISPATCHING AT CITY-SCALE USING DRL 1997

framework to search for the optimal actions rather than
explicitly modeling the system. Specifically, COX views the
dispatching center as the agent and exploits double deep
Q-network (DQN) learning technique [26] to directly learn the
dispatching policies, since DQN can comprehensively capture
the relationship among observed states, actions, and long-term
rewards. More important, COX derives and incorporates sev-
eral pieces of important yet neglected context information into
the system design.

(1) road connectivity aware zone formation. Existing
works [9], [18], [30] usually divide the city into grids, and
taxis are dispatched from its currently locating grid to one of
the adjacent grids, so as to reduce the action space. Such a grid
based taxi dispatching, however, omits the underlying road net-
work, and thus possibly leads to improper dispatching between
two grids with no direct road connectivity or no accessibility.
Instead, COX divides a city into zones by clustering on the
road network graph, and dispatches an idle taxi by taking both
road connectivity and practical travel cost into consideration.

(2) Comprehensive demand/supply aware states. The appro-
priate state representation will potentially help DRL models
to better understand the environment and thus determines the
optimal dispatching actions. Previous works merely consider
currently idle taxis as the supply [9], [18], [30] and implicitly
encode future taxi demand information into DRL states [18].
As a result, their DRL models poorly describe the environment
and bring unacceptable computation overheads. Instead, COX
carefully counts both current and future available taxis as the
overall supply, and accurately predicts zone-level demands by
exploiting the graph convolutional network (GCN) model [12],
which well fits with our irregular zones.

(3) Action aware coordination. Existing works [9],
[18], [30] separately generate an independent action for each
available taxi with no coordination at all, resulting in inef-
ficient and redundant dispatching [18]. COX improves the
coordination efficiency by allowing each available taxi to
encode its own decision on the state representation, so that
subsequent taxis can perceive such supply information and
make wiser decisions accordingly.

The contributions of our work are summarized as follows.
• We identify the limitations of existing DRL based taxi

dispatching approaches, and thus propose COX to achieve
more efficient taxi dispatching at city scale by incorpo-
rating rich context information.

• We implement a realistic environment simulator to train,
test, and evaluate COX design and other taxi dispatching
approaches based on a large scale real-world taxi dataset.
In order to inspire more future studies, we have publicly
opened the source code of our simulator.1

• We conduct extensive experiments to evaluate COX
using the environment simulator and large datasets.
The experimental results demonstrate that COX signif-
icantly outperforms state-of-the-art approaches on var-
ious metrics, e.g., averagely reducing the number of
unserved requests (due to the unavailability of idle taxis
nearby) and passengers’ waiting time by 4.92% and

1Code is available at https://github.com/szlhl1040/Simulator.

44.84%, respectively, while improving the total order
values by 6.74%.

The rest of this paper is organized as follows. We review the
related works in Section II. We present the problem statement
in Section III. The COX design is elaborated and evaluated
in Section IV and Section V, respectively. Finally, Section VI
concludes this paper.

II. RELATED WORK

A. Taxi Dispatching

Proactive taxi dispatching is an imperative part of fleet
management systems to balance taxi demands and supplies
among different locations [29]. Traditionally, people have
studied the demand-supply equilibrium of taxi services with
regulations on fare structure and fleet size [47]. With the
wide availability of taxi data, many data-driven approaches
have been proposed [24], [31], [49]. For example, previous
works recommend drivers to find potential passengers along
a profitable driving route [31] or stay at some hot-spots [49]
by analyzing massive historical taxi data. These methods have
no coordination among taxis at all. In addition, some works
explicitly model taxi demand/supply based on taxi data, and
then dispatch taxis according to the model and real-time GPS
locations of taxis through various techniques, e.g., receding
horizon control [25], mixed-integer program [44] and com-
binatorial optimization algorithm [42]. However, model-based
approaches are inherently limited by the pre-specified model
and cannot be adapted to the dynamic environment [30].

Recently, some model-free approaches have been propo-
sed to address the taxi dispatching problem [9], [18], [30],
[33], [40]. These approaches mainly make use of deep rein-
forcement learning [5] to directly learn appropriate action
policies, rather than accurately modeling taxi demand/supply,
by instructing all taxis to interact with the external envi-
ronment. As the action space could be extremely large for
taxi dispatching in a city, deep Q-network learning [26] has
been adopted by the state-of-the-art approaches [9], [18], [30]
to accelerate the policy learning process. Although these
works have indeed improved the system performances when
compared with the traditional ones, they are still not suffi-
ciently efficient since they overlook some important context
information, e.g., road network connectivity and future taxi
demands. Furthermore, these works do not well coordinate
the available taxis, and as a result introduce large dispatching
costs. In this paper, COX carefully derives and incorporates
such context information into the design to further optimize
the performance.

B. Order Dispatching

Different from taxi dispatching, order dispatching corre-
sponds to the process of searching a proper vehicle to serve
a received ride request [50]. Previously, greedy methods are
widely used by assigning the nearest available taxi to a ride
request [17]. Although simple, these methods omit the global
demands and supplies, and thus cannot achieve the optimal
performance in the long run.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

1998 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

Recent works utilize complete demand-supply information
to achieve automatically order dispatching with the optimized
long-term performances [45], e.g., maximizing the success
rate of taxi-order matches [50]. To this end, Xu et al. model
order dispatching as a sequential decision-making problem
and address it with the reinforcement learning theory [45].
Wang et al. further propose a transfer learning method to
increase the learning adaptability and efficiency, where the
learned order dispatching model can be transferred to other
cities [39]. Li et al. propose a multi-agent reinforcement
learning solution to address order dispatching in large-scale
ridesharing scenarios [15]. Zhou et al. simultaneously maxi-
mize both accumulated driver income and served orders by
exploiting double Q-learning and KL-divergence optimiza-
tion [53]. Other factors, e.g., pricing [52] and preferences of
passengers [51], have also been considered. Our work differs
from these works by proactively dispatching taxis to serve
future unknown requests.

C. Ride-Hailing Demand Prediction

It is necessary and essential for intelligent ride-hailing
platforms to be aware of the future mobility demands, which
can help them to efficiently allocate resources in advance [27].
Thanks to the deep learning theory [13], [38] and the avail-
ability of tremendous amount of mobility data [22] in recent
years, many research efforts have been made on predicting
ride-hailing demands. To derive more accurate forecasting
results, these works capture the complex spatial-temporal
relations in the transportation network using various deep
learning models, including recurrent neural network [43],
multi-graph convolutional network [8], and deep multi-view
spatial-temporal network [48]. In particular, Tong et al. pro-
pose a unified approach to predict the original taxi demands,
which refer to the number of taxi-calling requests [36].
Wang et al. study a new perspective of demand modeling by
predicting origin-destination matrix, which contains the num-
ber of taxi demands from one region to another region [19].
These works could benefit taxi dispatching, since they provide
hints on determining proper dispatching actions.

D. Deep Reinforcement Learning

Deep reinforcement learning combines the principles of
deep learning [13] and reinforcement learning [11] to intel-
ligently learn the best actions from the observed states and
received rewards based on sequential trail and error [5]. In
recent years, deep reinforcement learning has been success-
fully applied to various challenging problems, e.g., rideshar-
ing [4], express system [16], network congestion control [41],
and App usage prediction [35]. By comparing with exist-
ing works [9], [18], [30], we propose a context-aware
approach to improve the deep reinforcement learning based
taxi dispatching.

III. PROBLEM STATEMENT

In this section, we will define the taxi dispatching problem,
and briefly discuss existing deep reinforcement learning based

TABLE I

SUMMARY OF KEY NOTATIONS

TABLE II

LIST OF KEY ABBREVIATIONS

taxi dispatching approaches to motivate our design. The key
notations and abbreviations used in this paper are summarized
in Table I and Table II, respectively.

A. Preliminary

We consider a modern ride-hailing platform, where a dis-
patching center manages a large number of geographically
distributed taxis to serve passengers who can issue their ride
requests online through the smartphones. The dispatching cen-
ter continuously tracks the real-time location and availability
status of each taxi, receives passengers’ online ride requests,
and assigns a proper taxi to serve each request given intelligent
taxi-order matching algorithms [20]. In a city, the amounts
of ride requests across different time of a day and among
different locations can be distinctly different, resulting in
taxi demand-supply imbalances that will harm the quality
and efficiency of taxi service [47]. Therefore, the ride-hailing
platforms usually proactively dispatch some available taxis to
the location with larger demand-supply gap than their current
locations, in the hope of serving more passengers with better
experience [18].

To facilitate taxi allocations, the dispatching center usually
divides a large city into a set of disjoint zones, denoted by
Z = {z1, z2, · · · , zm}, and splits the time into a sequence of
time slots, denoted by T = {t0, t1, · · · , tn}, where the size of
all time slots is set as �t . The sizes of both zone and time
slot can be adjusted to balance the dispatching granularity and
computation overhead [9]. Therefore, rather than dispatching
a taxi to a specific location, existing works [9], [18], [29],
[30], [33], [40] pre-allocate each idle taxi to a nearby zone
within each time slot, so as to reduce the overall dispatching
complexity. For simplicity, these works usually divide a large

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: CONTEXT-AWARE TAXI DISPATCHING AT CITY-SCALE USING DRL 1999

Fig. 1. A simple motivation example. (a) The whole area is divided into
zones (i.e., grids) to track statuses of taxis and ride requests, where at
time t0 taxi v1 and v2 are in zone z3 and z6, respectively, and at time t1
passenger p1 and p2 will appear in zone z7 and z10, respectively. The blue
and red arrows correspond to two different taxi dispatching policies. (b) The
spatial-temporal illustration of taxi dispatching policy for time t1, where the
red policy is better than the blue one as it considers both future demands
(i.e., p2) and the coordination among idle taxis (i.e., v1 and v2).

city into grids [9], [30], [40] (or hexagonal grids [18]).
Figure 1(a) shows the grid-world system adopted by previous
works to track taxis and ride requests.

Problem statement: given the real-time locations and avail-
ability statuses of all taxis and the information of ride requests
(including pick-up location, drop-off location, and the release
time), the taxi dispatching problem aims to decide which zone
and when each available taxi should be reallocated, so as to
maximize the total number of ride requests being served and
the passenger-perceived service quality (e.g., the waiting time).

B. Deep Reinforcement Learning Based Solutions

Due to the uncertainties and dynamics of taxi demands and
supplies in the urban city, however, proactive taxi dispatching
is quite challenging [47]. To tackle this tough problem, many
research efforts have been already made [29], [49], while most
of the recent advances [9], [18], [30], [40] primarily rely
on deep reinforcement learning (DRL) [5] to directly learn
the best dispatching policies rather than accurately modeling
taxi demand/supply. Specifically, DRL instructs the agent to
accomplish a challenging task by trail and error in the process
of interacting with the external environment [11]. In general,
these recent works [9], [18], [30], [33], [40] characterize taxi
dispatching problem with following five major components:
• Agent: Some works [9], [30], [40] view the dispatching

center as an agent to interact with the external environ-
ment through a sequence of observed states, actions, and
rewards. Besides, some other works [18], [33] adopt a
multi-agent setting, where each available taxi is consid-
ered as an agent to partially observe the environment.

• State st ∈ S: The perceived information at time t are
represented as the state st , which is the input of an agent
to determine the corresponding action. Specifically, state
st in prior works [18], [30], [40] includes the zone-level
spatial distribution of currently available taxis and ride
requests, and other external factors like time of the day,
day of the week, weather conditions, and etc.., [9].

• Action at ∈ A: An action is a coordination solution
made by the agent. Action at will instruct an available
taxi to travel to a target zone (which may be in short

of taxi supplies) or stay at its current zone. In order
to reduce the coordination cost (e.g., travel cost to the
target zone), the action space Av for each available taxi
v could be defined as a set of discrete transits to any of
its neighboring zones and staying where it is. Taking taxi
v2 locating in zone z6 in Figure 1(a) as an example, its
action space is Av2 = {z1, z2, z3, z5, z6, z7, z9, z10, z11}.

• Reward rt ∈ R: Each applied action will affect the envi-
ronment and thus get a feedback from the environment.
Such a feedback can be quantified using a reward function
fR to calculate an immediate reward rt . In general,
fR will take the revenues (e.g., serving passengers at
the target zone) and coordination costs into consideration.
In DRL, the agent usually aims to maximize the long-term
discount reward Q(S,A) that is defined as

Q(S,A) = E [
∞∑

t=0

γ · rt |s0], (1)

where rt is the reward of time t , s0 is the initial state,
and γ is the predefined discount factor.

• Policy π: As the core of an agent, policy π takes the state
as the input to generate an action. By extensively interact-
ing with the environment, the agent will learn a mapping
between the states and proper actions. Considering the
complexity of real-world problems, deep learning models,
e.g., deep neural networks [30], [35], are frequently used
to learn the dispatching policy [5], [26].

C. Motivation

Although recent DRL based solutions [9], [18], [30], [40]
have shown great advantages than traditional approaches [24],
[25], [31], [47], [49], they are still not sufficiently efficient yet.
Specifically, we observe at least three limitations of existing
works, which will affect their efficiency and practicality.

1) Zone Formation With No Consideration of Road Con-
nectivity: Despite the simplicity, most of existing works [9],
[18], [30] divide a city area into grids with no consideration
of the underlying road network. These grids, however, will
lead to some improper action spaces due to the neglects of
road connectivity. For example, an action may be infeasible if
the target grid is occupied by a lake with no accessible roads.
In addition, taxis may not timely arrive at the target grids
when dispatching decisions are made with no consideration of
real travel costs on the road network. Improper action spaces
will not only harm the taxi dispatching performances, but also
introduce unnecessary computation overheads.

2) Inadequate Coordination Among Taxis: Although multi-
agent DRL setting can reduce the complexity by decomposing
the dispatching task to each idle taxi, it makes the coordination
among taxis more difficult. As a result, multi-agent DRL based
solutions [18], [40] cannot adequately coordinate all agents to
achieve the global taxi demand-supply balance. Meanwhile,
other works [9], [30], which view the dispatching center as
the agent, separately select an independent action for each
available taxi, with no coordination as well. In fact, the action
taken for one taxi would affect the decision-making of other
taxis that are waiting for dispatching.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

2000 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

3) Incomplete Taxi Supply/Demand Information: Previous
works [18], [29], [40] primarily rely on already known infor-
mation of supplies (i.e., currently idle taxis) and demands
(i.e., received yet unserved ride requests) for state represen-
tations, and exploit the long-term reward effect to implic-
itly perceive demands and supplies in the near future for
making dispatching decisions. However, they need enormous
states to describe the environment and thus introduce tremen-
dous training and computation overheads. Although some
works [9], [30] have explicitly considered future taxi demands
that are predicted by some models, they still cannot derive the
comprehensive and accurate taxi supply/demand information
for taxi dispatching.

Figure 1 further illustrates above arguments. Based on the
distribution of available taxis, the agent of existing approaches
may generate two independent actions for taxi v1 and v2 by
dispatching them to the same zone z7 where passenger p1
locates (as shown in the third column of Figure 1(b)). There
is only one request in zone z7, while the agent sends two idle
taxi there. Such a dispatching, however, will result in a waste
of resources (e.g., energy and time) with no benefit for the taxi
that finally gets no passenger. In fact, if the agent can predict
the arrival of ride request p2 in zone z10 at time t1, a better
dispatching plan would be that the agent dispatches taxi v1
to zone z7 and taxi v2 to zone z10 (as shown in the forth
column of Figure 1(b)). These dispatching decisions are well
coordinated among taxis based on more comprehensive taxi
demand/supply information, and thus would be more beneficial
for taxi drivers, passengers, and the ride-hailing platform.

Challenges. To improve the recent advances, rich context
information, including road connectivity, explicit coordination,
and comprehensive supply/demand information, are desired to
be incorporated into the DRL modeling for more effective
and efficient taxi dispatching. However, it is non-trivial to
realize such a system mainly due to following two challenges.
First, it is challenging to accurately derive and represent
these context information, e.g., predicting future taxi demands
and counting possible taxi supplies are difficult, since taxi
demands/supplies actually are extremely dynamic. Second,
considering the large number of taxis to operate in a city,
it is necessary yet difficult to well refine both state space
and action space. Previous works [9], [30] include many fea-
tures (e.g., taxi supply/demand and some external factors like
weather conditions) into the state representation to minutely
describe the environment, however, it leads to enormous state
spaces and thus interminable training process of the DRL
model. In addition, an appropriate action space should be
defined for each idle taxi to produce effective dispatching
while retaining the coordination among taxis.

IV. DESIGN OF COX

In this section, we first present the system overview of COX ,
and then elaborate the design of each component.

A. Design Overview

Figure 2 illustrates the system architecture of COX , which
consists of three major modules, i.e., Context Acquisition,

Fig. 2. The system architecture of COX .

DQN Model, and Environment Simulator. At high level, COX
aims to derive a deep Q-network (DQN) model by extensively
interacting with the environment simulator, which emulates a
practical ride-hailing scenario based on real-world taxi data.

Specifically, the Context Acquisition module acquires useful
context features to represent the external environment. On one
hand, it divides the road network rather than the city area
into connectivity-aware zones for fine-grained taxi dispatch-
ing. On the other hand, it makes use of external features
(e.g., weather conditions, time of the day, day of the week,
festival/event, points of interest, and so on) and historical taxi
data to build a demand predictor, which can provide accurate
zone-level future taxi demands. These contexts together with
observed state delivered by the simulator form the contex-
tual DRL states. The DQN Model module will train the
taxi dispatching model via deep Q-network learning with a
plenty of episodes. At each episode, contextual states, agent’s
coordination actions, and resultant rewards are used to train
the DQN model for policy learning. In particular, both state
representation and action space are refined by COX to optimize
the training process. Lastly, the Environment Simulator module
will execute taxi dispatcher and taxi-order matcher, both of
which are supported by the route planner to find a travel route
for each taxi on the road network. A ride request could be
either served by an idle taxi nearby or be rejected by the
ride-hailing platform if there are no idle taxis within a given
time deadline.

B. Context Acquisition

In order to derive rich context information, COX proposes
a connectivity-aware road network clustering (CARnet) algo-
rithm to form the zones, and builds a demand predictor to
predict zone-level future taxi demands for better capturing the
demand-supply gaps. We introduce them as follows.

1) Connectivity-Aware Zone Formation: In order to pre-
serve road connectivity among zones, COX proposes to cluster
on the road network rather than the city area to form zones Z.

To this end, we formulate the road network as a
directed graph G(V,E), where each vertex in V represents a
geo-location (e.g., road intersection), and each edge e ∈ E
represents a road segment, which is associated with a travel
cost cost (e)2 as the weight. Then, some clustering algorithms,
e.g., k-means [10] and spectral clustering [46], can be applied

2Function cost (·) can calculate the travel time on road network graph G for
a given route or any two locations based on the distance and travel speeds.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: CONTEXT-AWARE TAXI DISPATCHING AT CITY-SCALE USING DRL 2001

Fig. 3. Demonstrations of applying (a) grid clustering; (b) k-means clustering; and (c) CARnet algorithm on the road network graph of Chengdu city, China.
The vertices and edges belonging to different clusters are differentiated by colors. Since spectral clustering has similar results as k-means, we thus omit its
results due to space limit.

on G to classify vertices into different clusters. Edges are
assigned along with their source vertices as well. At last,
each cluster will form a zone. These algorithms, however, pri-
marily group vertices (and edges) based on their geographical
locations, and thus even vertices and edges belonging to the
same zone may still be disconnected. In addition, the resultant
cluster sizes vary greatly, resulting in biased dispatching costs
among zones. To preserve both inter-zones and intra-zone road
connectivity, we instead present CARnet algorithm that works
as follows.

① Initializing clusters. To obtain the uniformly distributed
clusters, we firstly divide road network graph G using k grids.
For each grid, we select the vertex u that is the most closest to
the grid center as the centroid to initialize a cluster C. Edges
are classified into clusters along with their source vertices
respectively. Each cluster C maintains following information:
the centroid C.c, vertex set C.V , edge set C.E , and total weight
C.w that is the weight sum of edges belonging to this cluster.
Next, we will classify all unassigned vertices, denoted by
set U, to clusters C = {Ci , i = 1, · · · , k}.

② Selecting target cluster. We select the cluster Ci with the
minimum total weight Ci .w in C to add new vertex/edge. The
intuition behind is that we would like to balance the sizes
of all clusters, so that dispatching actions executed on these
clusters would be more operable and efficient.

③ Adding unassigned vertex/edge. We scan all unassigned
vertices, and select the vertex u ∈ U with the minimum
vertex-cluster cost. The vertex-cluster cost di

u , with respect
to vertex u and cluster Ci , is defined as the sum of travel
cost from u to cluster centroid Ci .c and the minimum travel
cost from u to any vertex in Ci .V . If di

u is smaller than a
threshold dvc, we add u (and its associated edges) to cluster Ci ,
and remove u out from U; Otherwise, we move to the vertex
with the second minimum vertex-cluster cost.

We repeat step ② and ③ until the set U becomes empty. In
practice, due to the irregular road network graph structures,
there may exist a few vertices that cannot be included into
any cluster even after multiple iterations. We can gradually
increase the threshold dvc to relax the constraint so that these
vertices (and edges) can be finally accepted by some clusters.

Figure 3 compares the zones formed by different clustering
algorithms for the road network graph of Chengdu city, China.

As shown in the zoom-in figures in Figure 3(a)(b), we see that
vertices/edges of the same cluster generated by either grid
clustering or k-means clustering are disconnected. In addition,
we find that the zones formed by CARnet not only preserve the
road connectivity, but also have similar cluster sizes, as shown
in Figure 3(c). Such properties will benefit taxi dispatching.

2) Taxi Demand Predictor: Previous works [18] implicitly
encode future taxi demand information into state representa-
tions, resulting in major issues like numerous state spaces and
inefficient DRL model training. Thus COX separately builds
a taxi demand predictor to decouple the two correlative tasks
of taxi dispatching and demand prediction. There are three
reasons for this design choice. First, demand prediction can
be well handled by supervised machine learning models based
on historical taxi orders. Second, we can migrate the complex
external factors to the demand predictor, so as to keep the DRL
states simple yet clear. Third, accurate future taxi demands will
boost DRL modeling, since these information could greatly
reduce the complexity of state spaces.

Recent advances on predicting taxi demands mainly resort
to deep learning models, e.g., convolutional neural networks
(CNN) [48] and recurrent neural networks (RNN) [43]. In par-
ticular, recent taxi dispatching studies [9], [30] treat the whole
city divided by regular grids as an image and utilize CNN
models to predict taxi demands. CNN models have been
successfully used to process Euclidean domain data that are
with regular grid structures (e.g., images and text) [6], while
our connectivity-aware zones are quite different from grids
but with irregular structures in the non-Euclidean domain.
Thus, previous CNN model based predictors cannot work
well here.

For taxi demand predictions over irregular zones, we model
the zones as a graph, and exploit emerging graph convo-
lutional network (GCN) [12] to derive accurate zone-level
demands. GCN model has recently been proposed to process
the non-Euclidean data, e.g., graphs, and gained remarkable
performances. Specifically, we define each zone as a ver-
tex, and an edge is formed if two zones are immediately
neighboring. Given the distribution of zones, we build a zone
graph Gz = (Z,A), where Z is the set of zone vertices
and A ∈ R|Z|×|Z| is the adjacency matrix, indicating the con-
nections between vertices. In addition, we define the graph

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

2002 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

Fig. 4. The framework of GCN based taxi demand predictor and the structure
of feature vector f . We adopt ReLU as the activation function σ .

Laplacian matrix as

L = I − D−
1
2 AD−

1
2 , (2)

where I ∈ R|Z|×|Z| is an identity matrix, D ∈ R|Z|×|Z| is the
degree matrix, in which all of the diagonal elements are the
degrees of vertices [12]. With matrix L, GCN is able to capture
non-Euclidean pair-wise correlations among distant zones on
the taxi demands. This is achieved by the message passing
function, which is defined as:

H�+1 = σ(L H� W�), (3)

where H� denotes the features in the �-th layer, W� is a
trainable weight matrix for the �-th layer, and σ is a non-linear
activation function. In recent years, the rectified linear unit,
i.e., ReLU [28], has become the most popular activation
function for many types of neural networks because a model
that uses ReLU is easier to train and often achieves better
performance. We thus adopt ReLU as the activation function.
In order to incorporate most factors that will influence taxi
orders in a zone, we construct a feature vector f̄i ∈ R10 for
each zone zi , which includes the numbers of taxi demands
in previous three time slots, day of the week, hour of the
day, minute of the hour, weather condition, temperature, wind
direction, and wind speed. Therefore, the input of GCN,
i.e., H0, is summarized in a |Z|×10 feature matrix, and Equa-
tion (3) captures local and global structural patterns for the
final demand prediction. The predictor is trained independently
from the DQN model, and thus the whole training overhead
of COX will be alleviated.

Figure 4 illustrates the framework of our GCN based taxi
demand predictor and the detailed structure of feature vector
f̄i for zone zi . Specifically, we discretize the features of day of
the week, hour of the day, minute of the hour, weather condi-
tion (i.e., 0-sunny, 1-rainy, 2-cloudy, and 3-others), and wind
direction, as illustrated in Figure 4. In addition, we normalize
remaining features using the Min-Max normalization method.
In fact, extra features on some special events, e.g., accidents,
can be included into the feature vector to further enhance the
predictor’s capability to handle unusual situations. The final
output is the zone-level future taxi demands.

C. DQN Model

We consider the dispatching center as the agent, which can
continuously track the real-time information (e.g., location and

status) of all taxis and ride requests, and thus could achieve
the optimized taxi demand-supply balance. At the beginning of
each time slot, the agent exploits the DQN model to generate
an action for each available taxi based on the contextual states.

In practice, it is inefficient to dispatch an available taxi to a
zone far away. Similarly, the states of distant zones also have
ignoble impacts on the dispatching action of a taxi. We thus
refine the state space and action space for all available taxis
in the same zone, so as to reduce the computation complexity
and enable COX work for city-scale ride-hailing services. Taxi
dispatching among adjacent zones can be effective and fast to
alleviate the demand-supply imbalances. Therefore, for a given
zone zi , we define the top-κ nearest zones as its neighbors
Nzi = {z j , j = 1, · · · , κ}, where the distance between two
zones is calculated as the travel cost on road network between
their corresponding centroids. To avoid dispatching taxis to
distant zones, we search neighbors for each zone only within
the travel cost threshold dnb. Furthermore, instead of making
the same decision for all available taxis in the same zone [18]
or generating actions for taxis independently [9], [30], COX
takes actions for all available taxis sequentially, so as to
guarantee the coordination among taxis. The intuition behind
is that once an idle taxi has been sent to a specific zone, it has
essentially changed the demand-supply environment that will
affect the actions of other subsequent taxis. Based on these
considerations, we design the DQN model of COX as follows.

1) Contextual State: Since we migrate all external fac-
tors, e.g., weather condition, to the taxi demand predic-
tor model, thus we can adopt a simple state representation
that mainly contains zone-level demand-supply information.
Specifically, the state of an available taxi’s locating zone zi

includes the zone ID i , zi ’s demand and supply data, and
the demand/supply data of zi ’s all neighbor zones. If zi has
insufficient (< κ) neighbors, the remaining fields are padded
with zeros.

For each zone zi , its taxi demand D̂
t j
zi of time slot t j is

provided by the demand predictor, while its taxi supply P̂
t j
zi

can be comprehensively estimated as:
P̂

t j
zi = N

t j
drop + N

t j
stay + N

t j−1
disp, (4)

where N
t j
drop , N

t j
stay , and N

t j−1
disp represent the number of taxis

that drop off passengers in zone zi at time t j , the number of
available taxis that prefer to stay in zone zi at time t j , and
the number of taxis that are dispatched to zone zi at time t j−1
and will arrive in zone zi at time t j , respectively.

As a concrete example, we illustrate the state sz
t for zone z

at time t in Equation (5), where we set κ = 5. Thus sz
t includes

the demand and supply data of z (in blue), the demand/supply
information of z’s 4 neighbors (in orange), and the remaining
fields are padded with zeros (in gray).

sz
t = [i, 5, 10, 4, 1, 2, 2, 15, 20, 7, 4, 0, 0]. (5)

2) Dispatching Action: Each available taxi has (κ + 1)
possible actions, each of which dispatches the taxi to a specific
zone. Specifically, at = i (0 < i ≤ κ) indicates dispatching
the taxi to the i -th neighbor zone of its locating zone at time t ,
while at = 0 suggests this taxi to stay at current zone at time t .

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: CONTEXT-AWARE TAXI DISPATCHING AT CITY-SCALE USING DRL 2003

3) Immediate Reward: Since the actions are sequentially
taken for all idle taxis, we thus calculate an immediate reward
for each taxi separately according to its dispatching order. For
the action that dispatches taxi x from zone zi to target zone
zg at time t j−1, we calculate a reward for taxi x at time t j

according to this action’s impact on the supply-demand situa-
tions of both current zone and target zone. Hence, we define
supply-demand ratio ωzi for zone zi with respect to taxi x as:

ωzi =
P

t j−1
zi

D
t j−1
zi

, (6)

where P
t j−1
zi and D

t j−1
zi represent actual supplies and actual

demands for zone zi at time t j−1. Specifically, D
t j−1
zi can

be observed by the agent at time t j , and the agent will
dynamically calculate P

t j−1
zi for each dispatched taxi according

to its dispatching order. Specifically, P
t j−1
zi consists of the

number of taxis that actually drop off passengers in zone zi

at time t j , the number of idle taxis that have been dispatched
to zone zi before the action taken for taxi x at time t j−1, and
the number of idle taxis in zone zi , which will be processed
after dispatching taxi x . In particular, we set ωzi = +∞ if
D

t j−1
zi = 0 for Equation (6).
For the action that dispatches an idle taxi from its locating

zone zi to target zone zg , COX calculates an immediate reward
rt using the reward function fR defined as Equation (7) based
on ωzi and ωzg . In principle, if zi is in short of taxi supplies,
staying action will get a positive reward and other actions are
penalized. If there are more supplies than demands in zone zi ,
the action will get more rewards if target zone zg has more
demands than supplies. For the case when both current zone
and nearby zones have sufficient supplies (i.e., ωzi > 1 and
ωzg > 1), dispatching an idle taxi out of its current zone will
get a penalizing reward while staying action gets zero reward.
COX implicitly encourages idle taxis to stay at their current
zones to avoid unnecessary taxi dispatching in this case.

rt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

5 0 ≤ ωzi ≤ 1 & i == g,

−5 0 ≤ ωzi ≤ 1 & i �= g,
1

ωzg

ωzi > 1 & 0 ≤ ωzg ≤ 1,

0 ωzi > 1 & ωzg > 1 & i == g,

−ωzg ωzi > 1 & ωzg > 1 & i �= g.

(7)

Based on above modeling, we utilize powerful DQN
model [26] to dynamically learn the best policy for taxi
dispatching. As the core of DQN models, Q-learning is an
off-policy temporal-difference learning approach and aims to
obtain the maximum long-term discount reward Q(S,A),
as expressed in Equation (1). In particular, COX utilizes a deep
neural network to approximate the Q function (see Figure 2).
During the training phase, the total Q-value (i.e., rewards) is
updated as:

Q∗(s, a)← Q(s, a)+ α[r + γ max
a∗

Q(s, a∗)−Q(s, a)],
(8)

where α is the learning rate and γ is the discount factor.

In order to address the instability problem of DQN training,
we adopt two techniques: target network [37] and prioritized
experience replay [32]. Specifically, the target network is a
copy of the estimated value function that is kept frozen to serve
as a stable target for a number of steps. During training, para-
meters of target network are updated to match policy network.
In addition, experience replay memory stores experiences in
the form of transition tuples, denoted as (st−1, at−1, rt−1, st)
with states, actions, rewards, and successor states at some
time index t , in a cyclic buffer, and thus enables the agent to
sample from and train on the previously observed data. Instead
of uniformly sampling on the memorized tuples, prioritizing
samples based on temporal-difference (TD) error δ would be
more effective for learning [32]. For each transition tuple,
we compute its δ as

δ = rt−1 + γ max
a∗

Q(st , a∗)−Q(st−1, at−1). (9)

When updating Q-network weights, the mean-squared loss
function L(θ) is used to calculate the difference between the
predicted Q-values and the target Q-values, i.e.,

L(θ) = E [((r + γ max
a∗

Q(s, a∗; θ ′))−Q(s, a; θ))2], (10)

where θ and θ ′ are the weights of behavior network and target
network, respectively. In this equation, the optimal values are
approximated with a target value r+γ maxa∗ Q(s, a∗; θ ′), with
the weights θ ′ that are kept from some previous iterations.

Algorithm 1 presents the pseudocode of double Q-learning
with prioritized experience replay. At first, we initialize replay
memory M, and set both behavior Q-network’s θ and target
Q-network’s θ ′ with random weights. Then we train the DQN
model with a specified maximum episodes by exploiting our
environment simulator (detailed in next subsection). In each
episode, we use the taxi data of |T| = n time slots to train the
model with total n steps. At each step, we conduct dispatching
actions and store the transition tuples into M (line 9-11).
The transition tuples are sampled with different priorities to
update behavior Q-network weights θ (line 12-19), and we
update target Q-network’s weights θ ′ as θ for every 144 steps
(line 20). Finally, we take both predicted demands and supply
statistics into account to generate coordination actions for all
available taxis (line 21-26). Note that actions are sequentially
generated, so that COX can take an action for each taxi by
referring to other taxis’ actions to achieve better coordination.

In the algorithm, exponent ψ determines how much pri-
oritization is used, with ψ = 0 corresponding to the uniform
sampling case. The exponent β is used to adjust the importance
of sampling weights, and the exponent η is a coefficient for
updating behavior Q-network’s weights. In this paper, we set
these exponents as the default values in [32].

D. Environment Simulator

We design and implement a simulator that can emulate
the external environment to train DRL algorithms based on
real-world datasets. The simulator models the whole procedure
of how a ride-hailing platform manages taxis and processes
ride requests. Specifically, the simulator includes a route
planner that will find a travel path on the road network for a

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

2004 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

Algorithm 1 DQN With Prioritized Experience Replay

1 Input: mini-batch b, replay period B , exponents ψ , β,
and η.

2 Initialize: memory M = ∅ and size N , � = 0, p∗ = 1;
3 Initialize: behavior Q-network θ with random weights;
4 Initialize: target Q-network θ ′ with random weights;
5 for epi = 1 to max-episodes do
6 Reset the simulator with initial state s0;
7 for step t = 1 to n do
8 Execute taxi dispatching actions;
9 for each dispatched taxi i do

10 Observe state si
t and calculate reward r i

t ;
11 Store tuple (si

t−1, ai
t−1, r

i
t−1, si

t) into M;

12 if t ≡ 0 mod B then
13 for i = 1 to b do

14 Sample transition tuple i ∼ P(i) = pψi∑
j pψj

;

15 Compute importance-sampling weight

wi = (N×P(i))−β
max j w j

;

16 Compute TD-error δi using Equation (9);
17 Update transition priority pi ← |δi |;
18 Accumulate weight-change

�← �+ wiδi Q(si , ai ; θ);
19 Update θ ← θ + η�, and reset � = 0;
20 Set θ ′ = θ after replay period of 144 steps;

21 Predict zone-level taxi demands for step t + 1;
22 Create a random sequence X of all available taxis;
23 for each available taxi x ∈ X do
24 Observe state sx ;
25 Generate an action ax for taxi x given sx ;
26 Update demand/supply statistics of taxi x’s

current zone and target zone;

taxi given its dispatching action or assigned order, a taxi-order
matcher that assigns each ride request to an appropriate taxi,
and a taxi dispatcher that executes a dispatching action for
an available taxi according to some taxi dispatching policy.
Therefore, this simulator serves as the training environment
for different DRL algorithms, and also can be used for the
realistic evaluations of various taxi dispatching approaches.
We detail each component of the environment simulator as
follows.

1) Real-World Dataset: We build the simulator using a
public taxi dataset that is provided by Didi’s GAIA initia-
tive.3 This dataset totally includes 7065907 taxi orders in the
downtown area of Chengdu city, China, in November 2016.
Each taxi order consists of a transaction ID, a taxi ID, pick-
up/drop-off locations, and a release timestamp. We obtain the
road network of Chengdu city from OpenStreetMap [2] and
build the road network graph G (as shown in Figure 3), which
consists of 214440 vertices and 466330 edges, covering an
area of more than 70 km2. Besides, we have downloaded the
corresponding weather data (including temperature, weather

3Didi’s GAIA: https://outreach.didichuxing.com/research/opendata/.

condition, and wind direction/speed) via Internet as the exter-
nal factors for building the taxi demand predictor.

2) Route Planner: For realistic evaluations, the route plan-
ner computes the shortest path between two locations using
the Dijkstra’s algorithm [7] on road network graph G. It serves
both taxi-order matcher and taxi dispatcher to estimate: (1) the
arrival time of an occupied taxi that is delivering passengers
to the destination, so that this taxi supply can be taken into
account for future taxi demand-supply balance; (2) the time of
passengers to wait for their assigned taxis; (3) the travel cost
of dispatching an available taxi from its current location to the
center position of target zone. For simplicity, we assume the
constant taxi speed 15 km/h as with previous works [52], and
calculate the travel cost for a given route through cost (·).

Real-time traffic conditions, which can be derived from
the transportation agency or inferred from traffic samplings
by exploiting advanced traffic estimation methods [21], [23],
could be incorporated to dynamically update the edge weights.
Over the dynamic road network graph, some fast shortest path
query algorithms [14] can be used to calculate more accurate
travel costs. Since our dataset does not contain such traffic
condition data, we thus consider a static road network graph as
previous works [9], [18], [30], [33]. We leave the traffic-aware
route planning as the future work.

3) Taxi-Order Matcher: When a new ride request arrives,
the simulator assigns the closest idle taxi to serve it. The
assigned taxi will travel to pick-up the passengers and then
deliver them to the destination. If a ride request cannot be
assigned with an idle taxi within �t minutes (i.e., we hope that
each ride request can be served within a dispatching time slot),
the request is instead rejected. In practice, taxi ride-hailing
platforms usually expect to minimize the number of rejected
requests.

4) Taxi Dispatcher: This component will execute the
actions generated by the DQN model to dispatch each available
taxi to the center of target zone. Meanwhile, it tracks the
statuses of all taxis and ride requests to form observed states
for the DQN model. Given the actual taxi demands and
supplies in each zone, it will calculate the rewards for these
actions taken in last time slot using Equation (7), serving
as a feedback of the environment to the agent to update the
dispatching policy.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of COX using the environment simulator.

A. Experimental Setup

We will compare COX with six representative taxi dispatch-
ing approaches on some typical performance metrics.

1) Baseline Approaches: The baseline approaches for per-
formance comparisons are described as follows.

• Simulation. Once a taxi drops off the passengers, it will
stay in place to wait for a new ride request. This baseline
simulates the scenario with no taxi dispatching strategy.

• Random. This baseline randomly dispatches an available
taxi to one of the neighbor zones with a 50% probability.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: CONTEXT-AWARE TAXI DISPATCHING AT CITY-SCALE USING DRL 2005

• Greedy. This baseline dispatches an available taxi to the
neighbor zone, which currently has the fewest idle taxis,
in a greedy manner.

• cDQN . This baseline is one of state-of-the-art approaches.
This approach dispatches idle taxis among zones using
the multi-agent DRL models, where each taxi is regarded
as an agent. It implicitly encodes future taxi demands into
states, and explicitly includes the geographic context and
the collaborative context into DRL modeling [18].

• MOVI . This baseline is one of state-of-the-art approaches
as well. Its DRL modeling also explicitly incorporates
future taxi demands, which are predicted by CNN models,
for the demand-supply balances [30].

• Adaptive cooperative rebalance (ACR). This baseline
could be viewed as a variant of our COX , which can also
perceive comprehensive zone-level taxi demands/supplies
but dispatches taxis in a greedy manner. For each
zone zi , it computes a supply-demand ratio ωzi using
Equation (6) with the estimated supplies and predicted
demands. Then it dispatches each available taxi in zone zi

to the neighbor zone that has the smallest supply-demand
ratio.

All the baseline approaches form the zones using the grids.
Since our CARnet algorithm initializes the clusters using grids
as well, thus all approaches will operate on the same number
of zones for fair comparisons.

2) Performance Metrics: We comparatively evaluate the
performances of all approaches based on the following metrics.

(1) Reject rate, which is calculated as the ratio between the
rejected ride requests (due to unavailability of idle taxis) and
the total number of received ride requests.

(2) Average repositions, which is the average reallocation
times of dispatching a taxi out of its current zone.

(3) Average coordination cost, which measures the average
travel time to the target zone for all dispatched taxis.

(4) Average waiting time, which indicates the average time
of all served ride requests waiting for their assigned taxis.

(5) Total order values (TOV). The total order values are
the revenues gained by all taxis for serving ride requests,
where we approximate the revenue of a taxi order as the
trip distance. For a clear comparison, the total order values
of each approach is normalized by the total order values of
Simulation.

3) Implementation: We implement COX and the six base-
line approaches in Python 3.7.3 with Keras 2.3.1 and Ten-
sorFlow 1.15.0 for building various deep learning and DRL
models. For evaluations, we keep the taxi data from the last
week of November, 2016 for testing and all the rest as his-
torical data for training the models, e.g., CNN or GCN based
demand predictors and DRL models of different approaches.
On average, we have 246871 ride requests per day for the
testing. For each ride request, its pick-up/drop-off locations
are map matched [34] to the closest vertices of graph G.
In addition, we fix the total number of taxis, whose initial
locations are randomly chosen from the vertices of graph G.
We set time slot size �t = 10 minutes. Besides, we divide
the entire service area with the grid size of 800 m × 800 m,
and in total we have 192 zones. Since cDQN [18] performs

better on smaller grids, we thus conduct extra experiments
for cDQN using the grid size of 400 m × 400 m, with totally
768 zones. In particular, we denote its results on the smaller
grids as cDQN∗.

We set COX’s parameters as follows. For CARnet algorithm,
we set dvc = 30 minutes to classify vertices into clusters,
and search at most κ = 7 neighbors for each zone with
threshold dnb = 10 minutes. For demand predictor, we build
the GCN model with 3 convolutional layers, each of which
has 512 units, and use ReLU as the activation function. For
the DQN model, we set both behavior Q-network and target
Q-network with the same architecture, which consists of 4
fully connected layers with 400 units per layer. We use ReLU
as the activation function as well. We follow the settings
in [32] to configure the prioritized experience replay, and set
N = 3 × 104, b = 256, and B = 12. We set learning rate
α = 10−4 and discount factor γ = 0.9. Furthermore, for each
baseline approach we adopt the settings that can achieve its
best performance.

All experiments are conducted on a powerful server with
Intel Core i9-9900K CPU@3.60GHz, NAVIDA GeForce RTX
2080 Ti GPU, and 32GB memory. Each experiment setting is
repeated 5 times and the average results are reported.

B. Performance Comparison

We compare COX with baseline approaches by varying the
total number of taxis, i.e., 6000, 9000, and 12000. The results
are summarized in Table III, where for the given number of
taxis the best result for each metric is marked in bold.

In general, more taxis could serve more ride requests, and
thus both reject rate and passengers’ waiting time of all the
approaches can be largely reduced. From Table III, we find
that cDQN∗ outperforms cDQN on the metrics of both reject
rate and coordination cost. This is because cDQN [18] prefers
to work with smaller zones. Among all the approaches except
cDQN , Simulation has the largest reject rate and on average
introduces passengers’ waiting time about 0.95 minutes. On
the other hand, we find that MOVI , ACR, and COX generally
have smaller reject rates and shorter passengers’ waiting time.
These results demonstrate that efficient taxi dispatching indeed
helps taxis to approach potential taxi demands, and meanwhile
can improve the taxi service quality (with reduced passengers’
waiting time) and the ride-hailing platform’s revenues (with
increased Normalized TOV), as shown in Table III.

Compared to the two naive taxi dispatching approaches
(i.e., Random and Greedy), other advanced approaches (except
cDQN) achieve much better performances on all the metrics.
Compared to Simulation, Random and Greedy derive higher
Normalized TOV at the cost of more average repositions.
For example, Random and Greedy reposition each taxi with
11.23 times and 24.54 times, respectively, when we have
9000 taxis.

Among these DRL based solutions, COX beats the other
two state-of-the-art approaches, i.e., cDQN/cDQN∗ and MOVI ,
with significant advantages on the four metrics of reject rate,
average repositions, passengers’ waiting time, and Normalized
TOV. Note that cDQN∗ has the smallest coordination cost

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

2006 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

TABLE III

PERFORMANCE COMPARISONS OF DIFFERENT APPROACHES ON THE FIVE METRICS, WHERE THE UNITS FOR BOTH COORDINATION COST AND WAITING
TIME ARE Minutes, N/A REPRESENTS Not Available, AND cDQN∗ INDICATES THE RESULTS OF cDQN ON THE SMALLER GRIDS

because it dispatches taxis among the smaller grids.4 However,
the finer granularity of dispatching zones introduces much
more computation overheads as cDQN enlarges the action
space by 4 (= 768

192) times. Compared to cDQN∗ and MOVI ,
on average COX reduces reject rate by 5.67% and 4.17%,
respectively, reduces passengers’ waiting time by 52.96% and
36.71%, respectively, and improves the Normalized TOV by
7.64% and 5.83%, respectively. These statistics indicate that
COX has taken more effective dispatching actions than the
other two DRL based approaches. It can be explained as that
COX is able to accurately localize the zones with insufficient
taxi supplies, and then accordingly reallocate nearby idle taxis
there, which is proved by our case study later.

It is interesting to find that ACR outperforms cDQN/cDQN∗
and MOVI in most cases. This is possibly because the com-
prehensive taxi demand/supply information help ACR to better
understand the demand-supply gaps for decision-making. COX
performs better than ACR, mainly because the DQN model can
learn a wiser dispatching policy than ACR’s greedy manner.

Last but not the least, COX has the smallest average coordi-
nation cost and passengers’ waiting time among all approaches
except cDQN∗ (as it runs on smaller grids). The reason behind
is that COX dispatches taxis among the connectivity-preserved
zones rather than grids that omit the underlying road network.
Our CARnet algorithm restrains the travel cost between any
two vertices within a cluster, so that passengers’ waiting time
is potentially bounded. In addition, COX refines the action
space for each zone by restricting its neighbor zones within
a travel cost threshold dnb, where we set it as �t so that
dispatched taxis can serve requests in the next time slot.

4We run COX on the smaller grids as well, and find COX still significantly
outperforms cDQN∗ on all metrics. For example, when we have 12000 taxis,
COX achieves reject rate as 9.88%, average repositions as 7.15, coordination
cost as 3.31, waiting time as 0.76, and NTOV as 119.39%.

In summary, the results in Table III demonstrate that proac-
tive taxi dispatching benefits both the platform and passengers.
Furthermore, rich contexts derived by COX indeed help DRL
modeling better understand the external environment and thus
learn much better dispatching policies.

C. Evaluations of COX Design

Next, we conduct experiments to evaluate the design choices
of COX by comparing with some alternative designs.

1) Computation Efficiency: To investigate COX’s efficiency
for city-scale dispatching, we run COX with 12000 taxis and
record the execution time for each component. The experiment
results show that on average COX can complete the simulation
of each time slot within 3.53 seconds. More specifically, GCN
based demand predictor takes 14.24 milliseconds to perform
demand predictions for the next time slot, and the DQN
model takes about 2.52 seconds to make dispatching decisions
for all available taxis within a time slot. In addition, COX
uses 0.99 seconds to simulate taxi-order matching and route
planning for serving all ride requests in a time slot. The results
demonstrate that COX can perform real-time taxi dispatching
at city scale.

2) Impact of Zone Formations: We compare our CARnet
algorithm with the grid based zone formation [9], [18], [30]
and two classical clustering algorithms, i.e., k-means [10] and
spectral clustering [46]. More specifically, we use each of these
algorithms to form the zones and then run COX on them.

Since Normalized TOV can be inferred by the reject rate and
all methods have similar average repositions (because we use
the same DQN model to process the same demands/supplies),
we thus only report their results on the metrics of reject rate
and waiting time in Figure V-C.2. We find that the zones
derived by clustering algorithms generally lead to lower reject

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: CONTEXT-AWARE TAXI DISPATCHING AT CITY-SCALE USING DRL 2007

Fig. 5. Comparisons of different zone formation methods on the metric of
(a) reject rate; and (b) waiting time.

rates (see Figure V-C.2(a)) and shorter passengers’ waiting
time (see Figure V-C.2(b)) than the grids. Therefore, it is
necessary to consider the underlying road network structure
when making taxi dispatching decisions. CARnet performs
even better than k-means and spectral clustering by further
reducing reject rate and waiting time, e.g., averagely reducing
by 2.26% and 0.16 minutes when we have 9000 taxis. The
reason may be that CARnet, different from the two algorithms,
can preserve both inter-zones and intra-zone road connectivity,
just as shown in Figure 3, and thus is beneficial for taxi
reallocation.

3) Impact of Demand Prediction: COX builds a taxi demand
predictor that best fits our irregular zones with the GCN
model [12]. To evaluate its performance, we compare our
predictor with a baseline predictor named HA and MOVI’s
CNN based predictor [30]. Specifically, HA adopts the same
zones as COX , and predicts a zone’s demands of next time
slot by averaging the numbers of taxi orders at the same time
slots of all previous days. The CNN based predictor divides
the city into grids, and applies the CNN technique to these
grids, which are viewed as an image, for predicting grid-level
demands.

At first, we compare their prediction accuracy based on the
root mean squared error (RMSE) over the predictions of all
zones and time slots using the testing data. Experiments show
that the RMSEs of GCN predictor, HA, and CNN predictor are
3.81, 5.81, and 5.66, respectively. CNN slightly outperforms
HA, while GCN derives much more accurate predictions. In
particular, GCN predictor achieves low RMSE as 3.90 in the
rainy days. It implies that COX is able to handle some unusual
situations like bad weather conditions.

Then we individually input their demand predictions into
COX’s DQN model for taxi dispatching, and present their
impacts on the metrics of reject rate and average repositions
in Figure 6. In this experiment, we also apply GCN on the
same grids as CNN for comparison, and its results are denoted
by GCN* in Figure 6. As shown in Figure 6(a), GCN* has
similar reject rates as CNN, and they both perform a bit better
than HA. GCN outperforms the three models with the lowest
reject rates. It proves that GCN model indeed captures demand
correlations among the irregular zones. Figure 6(b) shows
that GCN has the largest average repositions, while GCN*
and CNN have similar results on this metric. We find that

Fig. 6. Comparisons of different demand predictors on the metric of (a) reject
rate; and (b) average repositions.

Fig. 7. Comparisons of partial and full taxi supply information on the metrics
of reject rate and average repositions.

average repositions have an inverse relation with the reject rate,
i.e., high average repositions usually correspond to low reject
rate. It is possibly because GCN provides more accurate
demand predictions, and COX accordingly makes more effec-
tive dispatching actions to meet these future demands.

4) Impact of Supply Information: In addition to the cur-
rently idle taxis in zone z, COX further considers the potential
taxi supplies, including the taxis that will drop off passengers
in zone z right away and the taxis that have been dispatched
to zone z, to derive more comprehensive supply information,
as expressed in Equation (4). However, previous works [9],
[18], [30] only encode the number of currently idle taxis into
DRL states for generating actions. In Figure V-C.3, we com-
pare the performances of COX with partial supply informa-
tion (i.e., “COX w/ Idle”) and with full supply information
(i.e., “COX w/ Full”). It reports that the full supply information
can reduce the reject rate by 6.25%, 9.29%, and 9.52% for the
three settings of total taxis, respectively. Moreover, the reject
rate reductions are achieved with much fewer repositions,
e.g., on average COX w/ Full has reduced the average reposi-
tions by 71.03% with 12000 taxis. The comparisons imply that
comprehensive supply information enable COX have a clear
understanding of the external environment to take the right
actions.

5) Case Study: To understand the rationality of how COX
takes dispatching actions, we log the intermediate states of
all zones in a typical workday. For each zone zi and a given
time slot t j , the corresponding record includes the demand
predictions predicted at time t j−1, currently idle taxis at time

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

2008 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

Fig. 8. The taxi demand and supply statuses of a zone in the peak hours of
a typical workday.

t j−1, and actual demands and supplies observed at time t j .
As a study case, we present the state information of a randomly
selected zone during the peak hours (i.e., 7:40AM-10:30AM)
in Figure 8. In the peak hours, there are many ride requests
in this zone, and we find the predicted demands are quite
close to the actual demands. From Figure 8, we see in most
time slots this zone has insufficient taxi supplies to serve the
potential taxi demands. Thanks to the contextual DQN model,
COX can perceive this situation and proactively dispatches
available taxis to this zone in advance, where we see the
actual supplies is sufficiently enough for the actual demands.
By comparing idle supplies and actual supplies, we find COX
actually reallocates quite a few taxis to this busy zone. After
the 58-th time slot (about 9:40AM), taxi demand-supply gap
becomes increasingly larger, as there are even no idle taxis
in some time slots. By perceiving this situation, COX still
tries to allocate many available taxis to this zone (referring
to the difference between idle supplies and actual supplies).
Although these dispatched taxis cannot serve all the demands,
COX still serves most of them and thus potentially reduces
the reject rate through effective taxi dispatching.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we present COX to improve the existing
taxi dispatching approaches by incorporating rich context
information. Specifically, COX divides the road network graph
into connectivity-preserved zones and encodes comprehensive
taxi demand/supply information into DRL state representa-
tion to derive effective and coordinated actions. In addition,
we implement a realistic environment simulator to train and
evaluate COX using a large real-world taxi dataset. Extensive
experiments demonstrate that COX significantly outperforms
the state-of-the-art approaches, e.g., on average reducing reject
rate and passengers’ waiting time by 4.92% and 44.84%,
respectively, while improving the total order values by 6.74%.

As future works, we plan to improve COX’s capability on
handling unusual situations, e.g., special events and accidents.
The nature of unusual situations means that available informa-
tion of these events are usually sparse, and how to train a deep
learning model from such sparse data calls for research efforts.
In addition, we would like to design a unified simulator, which
can be used to evaluate different taxi dispatching approaches in

a wide range of scenarios. Specifically, the scenarios should
cover different road networks, different number of vehicles,
various amounts of ride requests, and others.

REFERENCES

[1] Didi Chuxing. Accessed: Jul. 7, 2020. [Online]. Available: https://www.
didiglobal.com/

[2] OpenStreetMap. Accessed: Jul. 7, 2020. [Online]. Available: http://www.
openstreetmap.org/

[3] Uber. Accessed: Jul. 7, 2020. [Online]. Available: https://www.uber.com
[4] A. O. Al-Abbasi, A. Ghosh, and V. Aggarwal, “DeepPool: Distributed

model-free algorithm for ride-sharing using deep reinforcement learn-
ing,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4714–4727,
Dec. 2019.

[5] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process.
Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.

[6] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. NIPS,
2016, pp. 3844–3852.

[7] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[8] X. Geng et al., “Spatiotemporal multi-graph convolution network for
ride-hailing demand forecasting,” in Proc. AAAI, 2019, pp. 3656–3663.

[9] S. He and K. G. Shin, “Spatio-temporal capsule-based reinforcement
learning for mobility-on-demand network coordination,” in Proc. World
Wide Web Conf. (WWW), 2019, pp. 2806–2813.

[10] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognit. Lett., vol. 31, no. 8, pp. 651–666, Jun. 2010.

[11] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285,
Jan. 1996.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. ICLR, 2017, pp. 1–13.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[14] L. Li, M. Zhang, W. Hua, and X. Zhou, “Fast query decomposition for
batch shortest path processing in road networks,” in Proc. IEEE 36th
Int. Conf. Data Eng. (ICDE), Apr. 2020, pp. 1189–1200.

[15] M. Li et al., “Efficient ridesharing order dispatching with mean field
multi-agent reinforcement learning,” in Proc. World Wide Web Conf.,
May 2019, pp. 983–994.

[16] Y. Li, Y. Zheng, and Q. Yang, “Efficient and effective express via contex-
tual cooperative reinforcement learning,” in Proc. 25th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Jul. 2019, pp. 510–519.

[17] Z. Liao, “Real-time taxi dispatching using global positioning systems,”
Commun. ACM, vol. 46, no. 5, p. 81, 2003.

[18] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet
management via multi-agent deep reinforcement learning,” in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 1774–1783.

[19] L. Liu, Z. Qiu, G. Li, Q. Wang, W. Ouyang, and L. Lin, “Contextualized
spatial–temporal network for taxi origin-destination demand prediction,”
IEEE Trans. Intell. Transp. Syst., vol. 20, no. 10, pp. 3875–3887,
Oct. 2019.

[20] Z. Liu, Z. Gong, J. Li, and K. Wu, “Mobility-aware dynamic taxi
ridesharing,” in Proc. IEEE 36th Int. Conf. Data Eng. (ICDE), Apr. 2020,
pp. 961–972.

[21] Z. Liu, Z. Li, M. Li, W. Xing, and D. Lu, “Mining road network
correlation for traffic estimation via compressive sensing,” IEEE Trans.
Intell. Transp. Syst., vol. 17, no. 7, pp. 1880–1893, Jul. 2016.

[22] Z. Liu, Z. Li, K. Wu, and M. Li, “Urban traffic prediction from mobility
data using deep learning,” IEEE Netw., vol. 32, no. 4, pp. 40–46,
Jul. 2018.

[23] Z. Liu, P. Zhou, Z. Li, and M. Li, “Think like a graph: Real-time traffic
estimation at city-scale,” IEEE Trans. Mobile Comput., vol. 18, no. 10,
pp. 2446–2459, Oct. 2019.

[24] F. Miao, S. Han, A. M. Hendawi, M. E. Khalefa, J. A. Stankovic, and
G. J. Pappas, “Data-driven distributionally robust vehicle balancing using
dynamic region partitions,” in Proc. 8th Int. Conf. Cyber-Phys. Syst.,
Apr. 2017, pp. 261–271.

[25] F. Miao et al., “Taxi dispatch with real-time sensing data in metropolitan
areas: A receding horizon control approach,” IEEE Trans. Autom. Sci.
Eng., vol. 13, no. 2, pp. 463–478, Apr. 2016.

[26] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: CONTEXT-AWARE TAXI DISPATCHING AT CITY-SCALE USING DRL 2009

[27] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and
L. Damas, “Predicting taxi–passenger demand using streaming data,”
IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1393–1402,
Sep. 2013.

[28] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. ICML, 2010, pp. 807–814.

[29] M. Nourinejad and M. Ramezani, “Developing a large-scale taxi dis-
patching system for urban networks,” in Proc. IEEE 19th Int. Conf.
Intell. Transp. Syst. (ITSC), Nov. 2016, pp. 441–446.

[30] T. Oda and C. Joe-Wong, “MOVI: A model-free approach to dynamic
fleet management,” in Proc. IEEE Conf. Comput. Commun. (INFO-
COM), Apr. 2018, pp. 2708–2716.

[31] M. Qu, H. Zhu, J. Liu, G. Liu, and H. Xiong, “A cost-effective
recommender system for taxi drivers,” in Proc. 20th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 45–54.

[32] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. ICLR, 2016, pp. 1–21.

[33] K. Tian Seow, N. Hai Dang, and D.-H. Lee, “A collaborative multiagent
taxi-dispatch system,” IEEE Trans. Autom. Sci. Eng., vol. 7, no. 3,
pp. 607–616, Jul. 2010.

[34] Z. Shen, W. Du, X. Zhao, and J. Zou, “DMM: Fast map matching for
cellular data,” in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw.,
Sep. 2020, pp. 1–14.

[35] Z. Shen, K. Yang, W. Du, X. Zhao, and J. Zou, “DeepAPP:
A deep reinforcement learning framework for mobile application usage
prediction,” in Proc. 17th Conf. Embedded Networked Sensor Syst.,
Nov. 2019, pp. 153–165.

[36] Y. Tong et al., “The simpler the better: A unified approach to predict-
ing original taxi demands based on large-scale online platforms,” in
Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2017, pp. 1653–1662.

[37] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI, 2016, pp. 2094–2100.

[38] M. Veres and M. Moussa, “Deep learning for intelligent transportation
systems: A survey of emerging trends,” IEEE Trans. Intell. Transp. Syst.,
vol. 21, no. 8, pp. 3152–3168, Aug. 2020.

[39] Z. Wang, Z. Qin, X. Tang, J. Ye, and H. Zhu, “Deep reinforcement
learning with knowledge transfer for online rides order dispatching,” in
Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2018, pp. 617–626.

[40] J. Wen, J. Zhao, and P. Jaillet, “Rebalancing shared mobility-on-demand
systems: A reinforcement learning approach,” in Proc. IEEE 20th Int.
Conf. Intell. Transp. Syst. (ITSC), Oct. 2017, pp. 220–225.

[41] R. Xie, X. Jia, and K. Wu, “Adaptive online decision method for
initial congestion window in 5G mobile edge computing using deep
reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 2,
pp. 389–403, Feb. 2020.

[42] X. Xie, F. Zhang, and D. Zhang, “PrivateHunt: Multi-source data-
driven dispatching in for-hire vehicle systems,” ACM Interact., Mobile,
Wearable Ubiquitous Technol., vol. 2, no. 1, pp. 45:1–45:26, 2018.

[43] J. Xu, R. Rahmatizadeh, L. Boloni, and D. Turgut, “Real-time prediction
of taxi demand using recurrent neural networks,” IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 8, pp. 2572–2581, Aug. 2018.

[44] J. Xu, R. Rahmatizadeh, L. Boloni, and D. Turgut, “Taxi dispatch
planning via demand and destination modeling,” in Proc. IEEE 43rd
Conf. Local Comput. Netw. (LCN), Oct. 2018, pp. 377–384.

[45] Z. Xu et al., “Large-scale order dispatch in on-demand ride-hailing plat-
forms: A learning and planning approach,” in Proc. 24th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Jul. 2018, pp. 905–913.

[46] D. Yan, L. Huang, and M. I. Jordan, “Fast approximate spectral
clustering,” in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2009, pp. 907–916.

[47] H. Yang, S. C. Wong, and K. I. Wong, “Demand–supply equilibrium of
taxi services in a network under competition and regulation,” Transp.
Res. B, Methodol., vol. 36, no. 9, pp. 799–819, Nov. 2002.

[48] H. Yao et al., “Deep multi-view spatial-temporal network for taxi
demand prediction,” in Proc. AAAI, 2018, pp. 2588–2595.

[49] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie, “T-finder: A recommender
system for finding passengers and vacant taxis,” IEEE Trans. Knowl.
Data Eng., vol. 25, no. 10, pp. 2390–2403, Oct. 2013.

[50] L. Zhang et al., “A taxi order dispatch model based on combinatorial
optimization,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2017, pp. 2151–2159.

[51] B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and Y. Zeng, “Preference-
aware task assignment in on-demand taxi dispatching: An online stable
matching approach,” in Proc. AAAI, 2019, pp. 2245–2252.

[52] L. Zheng, L. Chen, and J. Ye, “Order dispatch in price-aware rideshar-
ing,” Proc. VLDB Endowment, vol. 11, no. 8, pp. 853–865, Apr. 2018.

[53] M. Zhou et al., “Multi-agent reinforcement learning for order-
dispatching via order-vehicle distribution matching,” in Proc. 28th ACM
Int. Conf. Inf. Knowl. Manage., Nov. 2019, pp. 2645–2653.

Zhidan Liu (Member, IEEE) received the Ph.D.
degree in computer science and technology from
Zhejiang University, Hangzhou, China, in 2014.
After that, he worked as a Research Fellow
with Nanyang Technological University, Singapore.
In 2017, he joined Shenzhen University, Shenzhen,
China, as an Assistant Professor. His research inter-
ests include distributed sensing and mobile comput-
ing, big data analytics, the Internet of Things, and
urban computing.

Jiangzhou Li received the B.S. degree in software
engineering from Qingdao University, Qingdao,
China, in 2018. He is currently a master’s degree
with the College of Computer Science and Software
Engineering, Shenzhen University, under the super-
vision of Dr. Z. Liu. His research interests include
big data, including data analysis, urban computing,
and reinforcement learning.

Kaishun Wu (Member, IEEE) received the Ph.D.
degree in computer science and engineering from
The Hong Kong University of Science and Technol-
ogy (HKUST), Hong Kong, in 2011.

After that, he worked as a Research Assis-
tant Professor with HKUST. In 2013, he joined
Shenzhen University as a Distinguish Professor.
He has coauthored two books and published more
than 100 high-quality research papers in interna-
tional leading journals and primer conferences, such
as the IEEE TRANSACTIONS ON MOBILE COMPUT-

ING (TMC), the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS (TPDS), ACM MobiCom, and IEEE INFOCOM. He is the Inventor
of six U.S., and more than 100 Chinese pending patent. He is an IET Fellow.
He received the 2012 Hong Kong Young Scientist Award, the 2014 Hong
Kong ICT awards: Best Innovation, and the 2014 IEEE ComSoc Asia-Pacific
Outstanding Young Researcher Award.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:15:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

