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In this article, we propose and study a novel data-driven framework for Targeted Outdoor Advertising Rec-

ommendation (TOAR) with a special consideration of user profiles and advertisement topics. Given an ad-

vertisement query and a set of outdoor billboards with different spatial locations and rental prices, our goal

is to find a subset of billboards, such that the total targeted influence is maximum under a limited budget

constraint. To achieve this goal, we are facing two challenges: (1) it is difficult to estimate targeted advertis-

ing influence in physical world; (2) due to NP hardness, many common search techniques fail to provide a

satisfied solution with an acceptable time, especially for large-scale problem settings. Taking into account

the exposure strength, advertisement matching degree, and advertising repetition effect, we first build a tar-

geted influence model that can characterize that the advertising influence spreads along with users mobility.

Subsequently, based on a divide-and-conquer strategy, we develop two effective approaches, i.e., a master–

slave-based sequential optimization method, TOAR-MSS, and a cooperative co-evolution-based optimization

method, TOAR-CC, to solve our studied problem. Extensive experiments on two real-world datasets clearly

validate the effectiveness and efficiency of our proposed approaches.
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1 INTRODUCTION

According to a recentmarket study released by Technavio,1 the global outdoor advertising business
is expected to grow to 45.46 billion dollars by 2021, at a compound annual growth rate about to 5%
over a forecast period. Therein, as the most common advertising form, outdoor billboard, which
focuses on delivering marketing information to users when they are in transit, takes a majority
of the market share, about 66%.2 More specifically, the statistics show that U.S. consumers are
exposed to outdoor billboard ad for about 59 minutes per week. In practice, billboard advertising
focuses on promoting product/service information to users when they are in transit [27].

To achieve a successful billboard advertising campaign, advertisers seek to expandmarketing in-
fluence to targeted consumers with a limited promotion expenditure. First, the targeted consumers
should be identified to a maximum extent. Because it brings little benefit by delivering ad content
to “wrong audiences” who have no interest in the content. Fortunately, the largely available digital
footprints of users enable us to create a much more precise user profile, i.e., characterizing subtly
individual’s interests and preferences [6, 15, 16, 28]. We conduct an empirical mobile users pro-
filing study, exploring moving trajectories of taxicabs traveling in Chengdu, China. By extracting
and analyzing the surrounding environment of each trajectory’s destination, its implicit traveling
intention, which would reflect the user’s interest and preference, can be modeled by a distribu-
tion of topics, where the topics are constructed by applying the bag-of-words model [4] on spatial
Point of Interest (POI) categories, e.g., scenic spot, Chinese restaurant, and so on. Practically,
POI categories have been widely used to characterize users’ interest and preference [5, 22]. By pro-
jecting each trip’s intention to its covered road segments, the collective preferences of users can
be obtained over each road segment, and associated with relative roadside facilities, e.g., outdoor
billboards. As shown in the left part of Figure 1, the integrated results of users’ preferences over
different road segments are displayed in different colors, where a portion of POI categories are
present in the right part. Intuitively, if mobile audience’s intention coincides with a displayed ad
content, then the return on marketing investment can be improved markedly.
After creating a user profile, we need to measure the advertising influence from billboard media

to on-the-go audiences. At present, some naive tools, e.g., gross traffic volume [6, 32, 33] and
detour distance [36], are employed to approximate the influence. However, such measurement
suffers from the following limitations: (1) As it ignores the preference of the targeted audience, it is
difficult to implement targeted advertising. (2) Due to the usersmobility, it might repeatedly expose
the audiences in the same ad information, which refers to “redundant advertising.” In practice, the
redundant advertising is discouraging, as it not only results in wasted advertising resources but
also makes audiences bored and even irritated [2, 9]. So, it is necessary to develop a novel and
tailored targeted billboard advertising influence model.
Finally, based on the desired targeted advertising influence, business people can make informed

marketing decisions to promote their products/services. However, considering redundant advertis-
ing and different billboard rental prices (due to the distinct advertisement exposure opportunities),
it is not trivial to accurately evaluate the correlation between targeted influence and correspond-
ing promotion cost and to determine an optimal subset of displayed billboards under a pre-given
advertising budget. To this end, we propose and study a Targeted Outdoor Advertising Rec-

ommendation (TOAR) problem in this article. Given an advertisement query, a set of candidate
billboards and a budget, TOAR strives to effectively search a subset of billboards, such that the
total targeted influence is maximized within the pre-given budget.

1https://www.technavio.com.
2http://www.prnewswire.com.
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Fig. 1. The users’ collective preferences over different roads.

However, to solve our studied TOAR problem, we are facing at least two challenges: (1) It is
difficult to model the targeted advertising influence in the physical world, considering advertise-
ment topics, users’ preferences and the advertising repetition effect. (2) Due to the NP-hardness of
the TOAR problem, common exact algorithms fail to provide a satisfied solution within an accept-
able time, especially for large-scale problem settings, i.e., involving a large number of candidate
billboards.
To overcome these challenges, we first build a targeted ad influence model to estimate the influ-

ence of outdoor billboard on potential audiences, by considering the impacts of advertising topic
matching and the influence redundancy effect. In addition, we devise an billboard rental price
mechanism from the view of advertising exposure opportunities. Subsequently, we formalize our
TOAR problem and analyze its complexity. To effectively solve this problemwith large-scale dimen-
sions, based on the divide-and-conquer strategy, we develop two approaches, namely a master–
slave-based sequential optimization algorithm, TOAR-MSS, and a cooperative co-evolution-based
optimization algorithm, TOAR-Cooperative Co-evolution (TOAR-CC), respectively. Specifi-
cally, we make the following contributions.

• To the best of our knowledge, this is the first work to study the problem of targeted outdoor
advertising recommendation (i.e., TOAR). Compared to the existing relevant studies, TOAR
takes into account of topic-aware targeted advertising and fine-grained mobility patterns.
• By utilizing the divide-and-conquer strategy, we first devise a graph-embedding-based prob-
lem decomposition method to decompose our studied problem into many smaller and sim-
per subcomponents. Then, we propose two effective problem-solving approaches, including
a master–slave-based sequential optimization algorithm, TOAR-MSS, and a cooperative co-
evolution-based optimization algorithm, TOAR-CC, respectively, to tackle the TOAR prob-
lem in Section 4.
• We perform an extensive experimental study on real-world datasets, validating the perfor-
mance of our proposed approaches in Section 5.

2 RELATEDWORK

Influence Maximization in Geo-social Networks. Recently, by incorporating a spatial dimension,
traditional Influence Maximization (IM) problems are extended to a location-aware scenario
[11, 12, 22, 26]. Li et al. strive to search a seed set of users to maximize the influence propagation
in a predefined region [11]. An influence spanning maximization problem in geo-social networks
is proposed and studied in Reference [12], where the maximum geographic spanning region is
identified under a constraint of predefined regional acceptance rate. Wang et al. [26] formulate
a distance-aware influence maximization problem in geo-social networks and propose two
novel index-based approaches to achieve online query. In Reference [22], a multi-objective
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optimization-based influence spread framework is developed to reveal the full view of Pareto-
optimal solutions in geo-social networks. Nevertheless, all the above research efforts focus on
influence spreading over online social networks [25] instead of the physical world in our problem
scenario. So it invalidates the commonly used influence propagation model, such as independent
cascade, linear threshold model, and so on, and calls for novel model to accommodate our studied
problem.
Trajectory-based Billboard Placement. Using a taxi GPS trajectory record, Liu et al. first study

the billboard location selection problem and develop a visual analytics tool named SmartAdP [17].
Similarly to Reference [17], Huang et al. propose an interest-driven outdoor advertising location
selection problem by leveraging mobile phone data [7]. Especially, the advertising influence is es-
timated as the size of covered historical trajectories in a given database. Zheng et al. [36] study
a roadside advertisement dissemination research, in which the effectiveness of advertising influ-
ence is evaluated by users’ detour distance. Some work study billboard advertising problems in
public transportation systems, such as bus, metro, and so on [6, 31, 32]. Zhang et al. [32] study a
bus/train advertisement recommendation problem in which full-wrap buses act as moving adver-
tising mediums to influence passengers. Via capturing users’ motion patterns and interests, the
original problem is transformed into a top-k retrieval problem for advertisement recommendation.
By maximizing a trajectory coverage for top-k bus routes, Zhang et al. further extend the above-
mentioned problem in a citywide bus system [31]. Given a trajectory database, Guo et al. strive to
retrieve k best trajectories to be attached with an advertisement, with the goal of maximizing the
influence among a crowd of audience with certain spatio-temporal patterns [6]. Through its sub-
modular property, greedy-based search approaches are proposed to find solutions with a constant
approximation ratio.
Wang et al. [24] set up a more general scenario, where the influence is estimated by a cumulative

influence probability. Zhang et al. [33] study a problem of trajectory-driven billboard placement:
Given a set of billboards, a trajectory database, and a budget, it strives to find a subset of billboards
under a budget constraint, such that the number of influenced trajectories is maximized. Taking
into consideration impression counts, Zhang et al. extend the aforementioned work and exam-
ine a novel problem, namely ICOA [35]. Based on an integrated quantitative model, an influence
maximization targeted billboard advertising problem is formulated to find k advertising units over
spatiotemporal dimensions [23].

Compared with the existing research, the core differences of our TOAR problem lie in the fol-
lowing aspects: (1) By incorporating advertising content topics and users’ preferences, we focus on
targeted billboard advertising to potential customers, instead of all the mobile users; (2) different
from the trajectory-coverage-based model [6, 7, 17, 33, 35] or distance-based model [24, 36], we
establish a data-driven targeted ad influence spread model by comprehensively considering fine-
grained mobility transition and advertising repetition effect; and (3) almost all research assumes
that the billboards at different places have the same rental price [23], which is an unrealistic set-
ting in practice. By considering relevant factors, we build an exposure-opportunity-based ad price
mechanism. Therefore, we cannot directly apply the existing solutions to solve our problem.

3 PRELIMINARY AND PROBLEM DEFINITION

3.1 Targeted Billboard Advertising Influence Model

3.1.1 Individual Billboard Advertising Influence. In this work, one trajectory is characterized
with a digitized timestamped sequence:Tr = {pt1,pt2, . . . ,ptn }, wherepti denotes a spatial location
with time point ti , i.e., pti = (loci , ti ). By investigating Tr ’s destination location ptn , its holder’s
preference can be profiled by the POI categories from its surroundings on the basis of the bag-of-
words model [6]. Recall the Figure 1, we leverage POI categories as the vocabulary of “words.” To
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be specific, considering a set of POI categories O = {o1,o2, . . . ,om }, the implicit preference, i.e.,

traveling intention, can be represented with an empirical distribution −→η over surrounding POI

categories, where −→η = {η1,η2, . . . ,ηm } and
∑m

i=1 ηi = 1. For example, one traveling intention can
be formalized as {0.3, 0.7} over POI categories {entertainment ,dininд}. Similarly, ad query q is

also represented as q = −→γ , where −→γ = (γ1,γ2, . . . ,γm ) is q’s content topic distribution over POI
categories O [13]. To deliver advertisement q to on-the-go audiences, outdoor billboard media is
placed at road segment r ∈ R, where R denotes the set of candidate road segments throughout a
city. Hereafter, we also use r to indicate the outdoor billboard located on r .

Without loss of generality, ad query q is assumed to be displayed on billboard r within one day.
However, our outdoor advertisement influence is orthogonal to the choice of billboard display time
frame. Different from the traffic volume tool, we quantify targeted advertising influence Irq , i.e.,
billboard r ’s influence for q, by incorporating two key factors: exposure strength and advertisement

matching degree.
(1) Exposure Strength: By looking into the traditional influence measurement of one of the

largest outdoor advertising companies LAMAR,3 it is observed that the panel size is used as an
intuitive indicator of exposure frequency [33]. As there exists no real data, here for simplicity, we
adopt a constant factor a0 to denote the billboard size in the work. In addition, when more people
coming across billboard r , more prospective audiences might be reached by q displayed on r [32].
Following this common sense, the exposure strength should also depends on two measurements:
traffic flow f w and average travel speed v across billboard r . Specifically, larger f w and lower
v would increase the opportunity of the displayed ad q being viewed by passerby. By traversing
trajectory records T B, we can obtain the empirical traffic flow and travel speed on each road r , i.e.,
f w (r ) and v (r ), respectively. And in light of traffic volume saturation [10], we comprehensively
define outdoor billboard’s exposure strength as follows:

H (r ) = a0 ∗ a1 ∗ loд2 f w (r ) ∗ exp (−a2 ∗v (r )), (1)

wherea0 denotes the billboard size,a1 anda2 are for normalizing f w andv , respectively. Obviously,
the exposure strengthH (r ) is independent of ad query q.

(2) Advertisement Matching Degree: The advertisement matching degree is commonly used
in the targeted advertising, as it is capable of capturing the potential targeted customers. The
reason lies in that, audiences who are more interested in q (i.e., traveling intention matches better
q) are more likely to adopt the promoted products/services. Thus, we leverage cosine similarity to
evaluate the matching degree between q’s content topic and the collective traveling intention over
r . Formally, the matching degree can be calculated using a dot product as below:

Sim(q, r ) =
−→γ .−→η
‖−→γ ‖‖−→η ‖

=

∑m
i=1 γiηi√∑m

i=1 γ
2
i

√∑m
i=1 η

2
i

, (2)

where −→γ denotes q’s topic and −→η is the empirical traveling intention distribution over r .
So far, we formally define targeted billboard advertising influence for each billboard. Given ad

query q = −→γ , its individual targeted advertising influence Irq from billboard r can be quantified by
combining both r ’s exposure strength and the advertisement matching degree:

Irq = H (r ) ∗ Sim(q, r ). (3)

3http://www.lamar.com.
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3.1.2 Billboard Advertising Influence Diffusion Model. When q is displayed on more than one
billboard, audiences may receive the same information many times in transit. In such a case,
there exits redundant advertising to audiences as mentioned above [33]. In other words, adver-
tising influence from each billboard can disseminate to elsewhere along with users’ mobility. So,
given a subset of determined billboards R∗ ⊆ R, the total advertising influence should not be
a simple summation of all the involved billboards’ individual influence, such as

∑
r ∈R∗ Irq , but

should rather consider the redundant advertising effect. By means of user mobility transition,
we design a billboard advertising influence diffusion model to characterize redundant advertising
effect.
First, we compute mobility transition probabilities among different billboards. Formally, the

transition probability from ri to r j , i.e., p (
−−→rir j ), can be calculated as follows:

p (−−→rir j ) = |T Bri→r j |/|T Bri |, (4)

where |T Bri→r j | represents the number of trajectories sequentially passing through ri and r j ,
and ��T Bri

�� denotes the number of trajectories covering ri . For the ease of exposition, we adopt
a graph representation G = {R,E,W } to characterize association relationship among billboards,
where a node set R denotes the involved billboards, an edge set E represents the transition re-
lationship between any two billboards, e.g., ei, j = ri → r j , and weightsW are associated tran-

sition probabilities, such as wi, j = p (−−→rir j ). Note that as users can move either from ri to r j or
from r j to ri , G is a directed graph. Hereafter, we will refer to the terms “billboard” and “node”
interchangeably.
Afterwards, we will build our billboard advertising influence diffusion model. For the sake of

illustration, let us start with a simple case that ad query q is being displayed only on billboards ri
and r j (R∗ = {ri , r j }), and the relative transition probabilities are p (−−→rir j ) and p (−−→r jri ), respectively.
From the perspective of r j , advertising influenceI

r j
q contains audiences who have visited billboard

ri (i.e., users who have viewed q at ri will visit billboard r j with probability p (−−→rir j )), and we have
the same formulation for ri as well.
Next, the redundant advertising effect existing in ri and r j can be calculated as follows:

Ir eduq = Iriq ∗
[
1 − exp (−βi, j ∗ p (−−→rir j ))

]
+ Ir jq ∗

[
1 − exp (−βj,i ∗ p (−−→r jri ))

]
, (5)

where exp (−βi, j ∗p (−−→rir j )) and exp (−βj,i ∗p (−−→r jri )) are diffusion coefficients. βi, j (or βj,i ) denotes the
diminishing return, which is formalized by a Gaussian decay function as below:

βi, j = exp
(−(dist (ri , r j ) − b1)2

2 ∗ b22

)
, (6)

where dist (ri , r j ) denotes the road network distance between billboard ri and r j , and b1, b2 are
parameters controlling the decay rate. Actually, due to a symmetric property, βi, j equals βj,i . In
practice, the effect of advertising influence would decay along with time, which has been ver-
ified in References [18, 20]. Considering users’ diverse traveling time, we leverage here physi-
cal distance as a more general case. In summary, the total advertising influence of ri and r j is
as below:

IR∗q = Iriq + I
r j
q − Ir eduq = Iriq ∗ exp (−βi, j ∗ p (−−→rir j )) + I

r j
q ∗ exp (−βj,i ∗ p (−−→r jri )). (7)
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Next, we extend the redundant advertising influence to multiple billboards. Given billboards R∗,
R∗ ⊆ R, its total targeted advertising influence IR∗q is calculated as below:

IR∗q =
∑
ri ∈R∗

Iriq ∗
⎧⎪⎪⎨⎪⎪⎩1 −

⎡⎢⎢⎢⎢⎢⎣1 − exp
�
�−

∑
rx ∈R∗\ri

βi,x ∗ p (−−→rirx )���
⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
=
∑
ri ∈R∗

Iriq ∗
⎡⎢⎢⎢⎢⎢⎣exp

�
�−
∑

rx ∈R∗\ri

βi,x ∗ p (−−→rirx )���
⎤⎥⎥⎥⎥⎥⎦

=
∑
ri ∈R∗

Iriq ∗
∏

rx ∈R∗\ri

exp (−βi,x ∗ p (−−→rirx )),

(8)

where r j ∈ R∗\ri denotes billboards in R∗ excluding ri .

3.2 Billboard Rental Price

From the perspective of advertisement exposure opportunity, here we devise a billboard rental
price mechanism, instead of using a random simulation. In practical cases, billboard rental price
depends on many factors that could contribute to attracting potential consumers.4 Here, we con-
sider three factors: business popularity, public transit facility, and traffic flow. The business popu-
larity characterizes potential regional commercial value, and public transit facility and traffic flow
are used to estimate the scale of audience from different views.
(1) Business Popularity. The business popularity represents commercial prosperity and potential

business opportunities. It is a positive factor for billboard rental pricing, as it can potentially attract
audiences. Formally, we partition an urban region into a set of gridsD = {d1,d2, . . . ,dm } and count
the number of commercial POIs (e.g., shopping mall, etc.) located in each grid N (di ), 1 � i � m.
To normalize this measurement, we adopt a function Ψ(xi ) as follows:

Ψ(xi ) =
xi

Max {xi |1 � i � n} , (9)

where xi is a discrete variable and Ψ(xi ) ∈ [0, 1]. And then each grid di ’s business popularity can
be calculated as Ψ(N (di )). Note that as one road segment ri may be partially located in more than
one grid, e.g., Dri , for each road segment ri , we average all its covered grids’ business popularity:
P1 (ri ) = 1

|Dri |
∑
di ∈Dri Ψ(N (di )).

(2) Public Transit Facility. This factor implicitly represents the potential traffic of audiences, i.e.,
billboard impression. We consider three elements to evaluate this metric: the number of buses
passing ri , the number of bus stations located at ri , and the minimum distance between ri and
available subway stations, which are denoted by φ1

ri
, φ2

ri
, and φ3

ri
, respectively. Specifically, the

first two elements are positive for billboard impression, while the last one has a negative effect.
By utilizing the above-mentioned normalization function Ψ(), we formalize this measurement as
P2 (ri ) = 1/3 ∗ [Ψ(φ1

ri
) + Ψ(φ2

ri
) − Ψ(φ3

ri
)].

(3) Traffic Flow. This measurement obtained from trajectory history T B can be regarded as
samples of the whole traffic flow over ri , i.e., f w (ri ). Over each road segment ri , its normalized
metric can be computed as: P3 (ri ) = Ψ( f w (ri ))
Finally, each billboard ri ’s rental price is formulted by combining all these three type of relative

factors:

C (ri ) = B0 ∗ (P1 (ri ) + P2 (ri ) + P3 (ri )), (10)

where B0 is a base ratio that can be adjusted according to different application requirements.

4http://www.lamar.com.
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3.3 Problem Definition and Analysis

Definition 1. TOAR Problem. Given an ad query q = −→γ : {γ1,γ2, . . . ,γm }, and a set of potential
billboards R = {r1, r2, . . . , rn }, the TOAR problem is to search a subset of billboards: R∗ ⊆ R,
toward the goal of achieving a maximum targeted advertising influence IR∗q under the specified

budget constraint Cmax , such that
∑

r ∈R∗ C (r ) � Cmax . Formally, the combinatorial optimization
TOAR problem is formalized as follows:

⎧⎪⎨⎪⎩
arд maxR∗

∑
ri ∈R∗I

ri
q ∗
∏

rx ∈R∗\ri exp (−βi,x ∗ p (
−−→rirx ))

S .t . : C (R∗) � Cmax

. (11)

In the following, we analyze the complexity of our TOAR problem in detail. By reducing the
classical Budgeted Maximum Coverage (BMC) problem [8], it can proved that our problem is
NP-hard. So, there is no polynomial time approach available solving this problem, and we will not
be concerned with algorithms giving a global optimal solution but near-optimal solutions. More
importantly, as involving a high number of decision variables, i.e., thousands of candidate bill-
boards in citywide settings, our TOAR problem is a large-scale optimization problem. In practice,
to tackle the large-scale optimization problem, many commonly used methods, such as Particle
Swarm Optimization (PSO) and the Differential Evolution (DE) algorithm, usually cannot
adequately explore the solution space and fail to find a good near optimal solution. Such an is-
sue, typically referred to as the “curse of dimensionality,” indicates that the solution space of a
large-scale problem grows exponentially with the increase of its dimension.
Moreover, compared with the BMC problem, our problem is more complicated as (1) targeted

advertising advertising influence Irq varies with different ad queries, instead of constant value;

(2) the two-way mobility association among billboards complicates the total targeted influence
calculation. Specifically, when sequentially determining billboards, both the newly selected bill-
board’s influence and already determined billboards’ influence might be affected; and (3) with the
increasing number of determined billboards, the whole targeted ad influence is non-monotonic
but might decrease due to the reinforcement of the redundant advertising effect.

Lemma 3.1. Targeted billboard advertising influence IR∗q is non-monotonic.

Proof. Consider two subsets of billboardsR∗1 andR∗2, whereR∗1 ⊆ R∗2 . For simplicity, we assume
that R∗2 = R∗1

⋃
rk , and rk � R∗1. Then, we have

IR
∗
1

q =
∑
ri ∈R∗1

Iriq ∗
∏

rx ∈R∗1\ri

Xi,x , (12)

Note that, for the ease of exposition, the relative diffusion coefficient exp (−βi,x ∗p (−−→rirx )) is repre-
sented as Xi,x .
Thus, targeted advertising influence of subset R∗2 could be calculated as

IR
∗
2

q =
∑
ri ∈R∗1

Iriq ∗
∏

rx ∈R∗1\ri

Xi,x

︸������������������������︷︷������������������������︸
I
R∗
1

q

∗Xi,k + Irkq ∗
∏
rx ∈R∗1

Xk,x .
(13)

IR
∗
2

q − IR
∗
1

q =
∑
ri ∈R∗1

Iriq ∗
∏

rx ∈R∗1\ri

Xi,x

︸������������������������︷︷������������������������︸
I
R∗
1

q

∗(Xi,k − 1) + Irkq ∗
∏
rx ∈R∗1

Xk,x (14)
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However, there is no guarantee that the above equation Equation (14) is not less than 0, due to
diverse billboard characteristics, advertising topic, and mobility transition relationship. Thus, we
can achieve Lemma 2. �

4 PROPOSED APPROACHES

To effectively solve the high-dimensional problem, it is a natural way to take the idea of divide-
and-conquer strategy. Basically, it first decomposes the original problem into a set of smaller and
simpler subcomponents and then separately solves the individual subcomponents. In the section,
following the practice, in the work, we first devise a graph embedding-based problem decomposi-
tion framework to decompose the original problem into several subproblems. Based on it, we pro-
pose two approaches to achieve the desired optimal solution, i.e., a master–slave-based sequential
optimization algorithm TOAR-MSS, and a cooperative co-evolution-based optimization algorithm
TOAR-CC. The reason we devise these two different approaches is that we want to explore the
problem-solving from different perspectives, i.e., sequential construction and evolutionary search.
Next, we will explain them in detail.

4.1 Graph Embedding-based Problem Decomposition

Generally, many a priori problem decomposition methods, e.g., splitting-into-halt decomposition,
random grouping decomposition, and so on, have been proposed to accommodate specific problem
settings [29]. In practice, the optimization performance is potentially sensitive to the chosen de-
composition strategies, especially for those problems containing interdependencies between any
two decision variables. In essence, it is desirable to find a suitable decomposition strategy, where
the interdependencies among different subcomponents are minimal.
Thinking back our studied TOAR problem, there exist direct and indirect interactions, i.e., under-

lying transition relationship, between the involved nodes in graph representation G. Taking the
characteristics into account, we devise a graph embedding-based problem decomposition strategy.
Specifically, it first utilizes the graph embedding technique to learn the low-dimensional vector rep-
resentation of graph G and then directly adopts the existing methods, e.g., a k-means algorithm,
to cluster the involved nodes into different subcomponents. In this way, the nodes (decision vari-
ables), which are strongly interdependent, i.e., associated with high transition probabilities, would
be grouped into the same subcomponents; otherwise, they will be assigned into different ones.
Concretely, in our problem setting, the interdependence between candidate nodes directly fo-

cuses on the latent mobility transition probability, i.e., edge weight wi, j . Thus, we just need to
capture the first-order proximity of two nodes, such as ri and r j , in the embedding vector space. In
other words, the pairwise similarity between node ri and r j is calculated by the linked edge weight
wi, j and w j,i . Based on deep autoencoder [30], we build the graph embedding model accordingly,
which is composed of two parts, i.e., the encoder and decoder. To be specific, the encoder, which
transforms the candidate nodes into low-dimension vectors, and the decoder, which reconstruct
the original connected edges from embedded vectors, are trained concurrently to better maintain
the structural information of graph G. The number of input of the autoencoder equals to the scale
of nodes contained in G, i.e., |R |, and the number of output is the dimension of embedded low-
dimensional vector representation, e.g., χ . Many hidden layers are indispensable to better preserve
graph information, and the number of layers and neurons inside a layer is problem specific and
varies from one graph structure to another. The optimization objective in the embedding process
is given as below.

Loss =

n∑
i, j=1

wi, j
���y(χ )i − y(χ )j

���22 =
n∑

i, j=1

wi, j ‖yi − yj ‖22 , (15)
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Fig. 2. The workflow of the TOAR-MSS algorithm.

where yi denotes the output of encoder for node ri . When we obtain the low-dimensional vector
representations, the k-means algorithm is implemented on these vectors to cluster nodes into a set
of disjoint subcomponents: {G1, . . . ,Gk }, such thatG = G1

⋃G2⋃ · · ·⋃Gk , and∀i � j,Gi
⋂Gj =

∅. Figure 2 illustrates a toy example, where eight nodes are grouped into three clusters in different
colors, and the thickness of an edge is proportional to its weight.

4.2 Master–Slave Mode-based Sequential Optimization

Based on a master–slave mode, we propose a greedy sequential optimization approach, i.e., the
TOAR-MSS algorithm, to construct the desired solution. Basically, within each subcomponent
Gi , 1 � i � k , the greedy sequential probing is implemented to locally construct a partial subsolu-
tion R∗i . Besides, to conquer the intrinsic local optima of greedy sequential optimization, a central
controller acted as the master is used to globally coordinate each subcomponent by intercommu-
nicating among all the subcomponents. Finally, we can achieve a desired complete solution R∗ by
combining all the partial solutions, i.e., R∗ = R∗1

⋃
. . .
⋃R∗

k
. In the following, we will elaborate it

in detail.

4.2.1 The Pipeline of TOAR-MSS. Given an ad query q, all billboards’ influence Irq , r ∈ R, are
computed individually. Next, the billboards in each subcomponent are ranked based on the cost
performance metric. Formally, this metric formalized by Irq /C (r ) denotes the ratio of billboard r ’s
influence over its rental cost. Within each decomposed subcomponent, all the contained billboards
are sorted in descending order of their cost performance. The optimization process will sequen-
tially examine all the involved candidate nodes according to this order, instead of blindly traversing.
The one with the largest metric is regarded as the “current node” in each subcomponent, and its
information will be sent to the master. On the master side, a global list is maintained to record all
the current nodes in each subcomponent. And when one current node has been included in R∗i , the
second-largest one in subcomponent Gi becomes the current node, and its relevant information
will be updated in the global list.

At the initial phase, the desired complete solution maintained at master side and all the partial
solution in each subcomponent are initialized, i.e., R∗ = ∅ and R∗i = ∅, 1 � i � k . Then,
according to the global list, the master selects the top-ϱ current nodes, e.g., ϱ = 3, and then the
greedy sequential optimization is implemented within their respective subcomponents separately.
To be specific, for each selected subcomponent, say, Gi , it attempts to maximize an incremental
utility ΔI/ΔC during the solution searching process:

arд max
r ∈Ri \R∗i

{ [
IR

∗⋃ r
q − IR∗q

]
/C (r )

}
. (16)
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Following it, we examine all the candidate billboards contained in Gi and select the one with
largest incremental utility to extend its corresponding partial solution R∗i , i.e., R∗i = R∗i

⋃
r . Note

that we combine candidate r with the current discovered complete solution R∗, instead of the
partial solution R∗i . The reason is that we wanted to ensure the effective estimation of utility, i.e.,
to keep the interdependencies between the subcomponents to a minimum. After handling the ϱ
current nodes, the master finally decides the one partial solution with largest incremental utility
to extend the complete solution R∗. This process continues until the budget has been exhausted.

However, restricted by the greedy nature, the aforementioned sequential search process might
fall into local optima. To avoid it, here we devise a dynamic substitutionmechanism to improve the
effectiveness of the obtained solution R∗. Briefly speaking, to escape from local optimum, some
previously selected billboards might be substituted by other unchosen ones during the optimiza-
tion process. To be specific, for each billboard r , there are two cases: (1) none of the nodes in r ’s
subcomponent, e.g., Gx , have been selected into R∗, i.e., ∀r j ∈ Gx , r j � R∗, and (2) at least one
node in Gx has been included into R∗, i.e., ∃r j ∈ Gx , r j ∈ R∗. Next, we will deal with these two
cases separately.
(1) According to Lemma 4.1, for each decomposed subcomponent, it is enough to examine its

current node r .

Lemma 4.1. In the TOAR-MSS algorithm, when handling current node r , where r � R∗ ∧ r ∈ Gx ,
if ∃ri ∈ Gx , ri � R∗, then r is near optimal among all the uncovered ones in Gx .

Proof. As nodes are handled in a descending order of their cost performance, we have

[Irq /C (r )] � [Ir jq /C (r j )], where r j denotes any uncovered nodes in Gx , except r (i.e., r j ∈
R\R∗ ∧ r � r j ). Then, we have the following approximation: IR

∗⋃ r
q ≈ IR∗q + Irq due to the

weak diffusion association between different subcomponents. In other words, the connected edges
between different subcomponents are associated with small weights, i.e., transition probabilities,
and have been neglected during variable decomposition. Thus, we have{ [

IR
∗⋃ r

q − IR∗q

]
/C (r )

}
≈

[
Irq /C (r )

]
�

[
Ir jq /C (r j )

]
. (17)

Considering the redundant advertising effect, the below equation can be derived:[
Ir jq /C (r j )

]
�
{ [
IR

∗⋃ r j
q − IR∗q

]
/C (r j )

}
, (18){ [

IR
∗⋃ r

q − IR∗q

]
/C (r )

}
�
{ [
IR

∗⋃ r j
q − IR∗q

]
/C (r j )

}
. (19)

So, from the formalized ratio of incremental influence to rental cost, r is near optimal in the un-
covered billboards in Gx . �

(2) For the second case, we design a local enumeration procedure within subcomponent Gx
to avoid local optima. To be specific, we harness a local enumeration strategy to dynamically
update the already discovered solution R∗. Assume that l nodes in Gx has been selected into R∗,
GR∗x = {r j |r j ∈ Gx ∧ r j ∈ R∗}, and |GR

∗
x | = l . Due to the implicit association relationship, it might

not be the optimal result by directly adding r intoR∗. Thus, we go back to r ’s subcomponentGx and
traverse all the possible node combinations of size l + 1. Obviously, the number of possible node
combinations is Cl+1

|Gx | , where |Gx | represents the number of nodes contained in subcomponent

Gx . We examine each combination and identify the one with the largest incremental utility in
terms of gained influence and incurred rental cost. Take Figure 2 as an example. Assume that R∗
includes two nodes, such as R∗ = {r3, r8}. When we examine current node r2, as R∗ has contained
nodes within r2’s subcomponent, i.e., r3, we invoke the enumeration procedure to find an optimal
subsolution of size 2 from possible combinations, i.e., {r3, r2}, {r3, r1}, {r2, r1}, and so on. Supposing
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{r2, r1} has the largest incremental utility, R∗ should be updated to R∗ = {r8, r2, r1} accordingly.
That is, node r3, which has been previously included in R∗, is removed.

4.2.2 Pruning Strategies. Owing to the local enumeration operation, our TOAR-MSS algorithm
might be time-consuming. To maintain acceptable efficiency, we develop the following pruning
strategies to exclude many impossible solutions.
(1) Instead of inspect all the possible enumeration combinations, we pick up a subset of combi-

nations of limited size to further examine cautiously. To be specific, a random-walk-based graph
sampling technique is adopted. It starts from a random node, say, ri , and along with directed edges

based on probability distribution
1−p (−−−→ri r j )∑

rj ∈Neighbor(ri )[1−p (
−−−−→ri rj )]

to sample nodes until its length reaches l + 1,

where Neighbor(ri ) = {r j |ei, j = ri → r j ∈ E}. In this way, the random walk trace can form a
billboard combination. This process repeats until a pre-given number of node combinations, i.e.,
Z , have been obtained. Note that as the factor of edge weight is incorporated during sampling
process, its performance could be better than completely random sampling.
(2) Within each subcomponent Gx , to examine billboard combinations of size l +1, a benchmark

lower bound is built using top-(l + 1) nodes in the light of cost performance. Specifically, suppose
that the set of selected nodes in cluster Gx is GR∗x (GR∗x = {r |r ∈ R∗ ∧ r ∈ Gx }), the lower bound
Iwb is represented as below:

Iwb =
I (R∗\GR∗x

⋃ Gtop−(k+1)x )
q − IR∗q

C (R∗\GR∗x

⋃Gtop−(k+1)
x ) − C (R∗)

, (20)

where Gtop−(l+1)
x denotes the set of top-(l + 1) nodes in Gx in terms of cost performance. Based on

it, we provide Lemma 4.2 to prune node combinations that satisfy the criterion with respect to Iwb .

Actually, as integrated influence calculation (e.g., IR
∗
−x
⋃ Gl+1x

q ) is much more time consuming than

simply accumulating up individual influence, i.e.,
∑IGl+1x

q , TOAR-MSS’s search efficiency can be
improved significantly.

Lemma 4.2. Within subcomponent Gx , for any node combination Gl+1x of size l + 1, if∑ IGl+1x
q

C (R∗−x
⋃ Gl+1x )−C (R∗ ) � Iwb holds, then Gl+1x can be directly skipped, where R∗−x denotes the remaining

nodes by excluding Gx ’s nodes in R∗.

Proof. For node combination Gl+1x , its real incremental utility can be calculated as

IR
∗
−x
⋃ Gl+1x

q − IR∗q

C (R∗−x
⋃Gl+1x ) − C (R∗)

. (21)

Since our solution searching process is like hill climbing (seeking maximize incremental utility
among all the candidate billboards), we have

IR
∗
−x
⋃ Gl+1x

q − IR∗q � IR
∗⋃ Gl+1x

q − IR∗q . (22)

As IR
∗⋃ Gl+1x

q − IR∗q � ∑IGl+1x
q , the following equation holds:

IR
∗
−x
⋃ Gl+1x

q − IR∗q

C (R∗−x
⋃Gl+1x ) − C (R∗)

�
∑IGl+1x

q

C (R∗−x
⋃Gl+1x ) − C (R∗)

. (23)

That is, Gl+1x ’s real incremental benefit must be less than Iwb . So, there is no need to consider

combination Gl+1x . �
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The pseudo code of the TOAR-MSS algorithm is shown in Algorithm 1.

ALGORITHM 1: TOAR-MSS Algorithm

Input: Graph: G, Ad query: q, Decomposed subcomponent: Gi , 1 � i � k , Budget Cmax ;

Output: Recommended Billboards: R∗;
1 Initializing R∗ = ∅ and R∗i = ∅, 1 � i � k ;

2 Sort nodes in each subcomponent Gi by cost performance and construct global list;

3 while
∑
r ∈R∗ C (r ) � Cmax do

4 Take out top-ϱ current nodes from the global list;

5 for each selected current node ri ∈ Gi do
6 if ∃ r j ∈ Gi , r j ∈ R∗ then
7 Enumerate |GR∗i | + 1 node combinatons in Gi ;
8 Return the node combination with largest incremental utility;

9 else

10 Calculate marginal utility:
IR
∗ ⋃ ri

q −IR∗q

C (ri ) ;

11 end

12 end

13 Update R∗ by R∗i with the largest utility;

14 Update R∗i and the global list;

15 end

4.2.3 Time Complexity. We discuss the computational complexity of each major module of
TOAR-MSS. For simplicity, the size of subcomponents is represented as a fixed value k . The sorting

operation costs k ∗O ( |R |
k
loд |R |

k
) =O ( |R | loд |R |k ) to rank the nodes contained in each decomposed

subcomponent. Suppose that the average rental price of candidate billboards is Cave , the TOAR-
MSS algorithm will be implemented at most Cmax

Cave rounds. In each round, if one or more nodes that

are contained in current node’s subcomponent have already been selected into solution R∗, then
it will evoke the enumeration procedure. By adopting our designed random-walk-based pruning
strategy, its computational overhead isO (Z ∗ l ), where Z denotes the preset number of graph sam-
pling, and l represents the average length of node combinations. And to rank all the sampled node
combinations is O (Z ∗ loдZ ). Thus, in worst case, each round takes O (ϱ ∗ l ∗ Z 2loдZ ).

4.3 Cooperative Co-Evolution-based Population Optimization

Recently, the most popular Evolutionary Algorithms-based framework to tackle large-scale opti-
mization problem is Cooperative Co-Evolution (CC) [21]. Similarly, CC first decomposes the
large-scale problem into several smaller and simpler subcomponents. Then each subcomponent is
solved by a subpopulation in a round-robin fashion using a chosen optimization method, where
each individual in a subpopulation is evaluated in a cooperative way by interacting with the other
subcomponents. In this part, based on the CC framework, we propose a population-based approach,
namely the TOAR-CC algorithm, to address our problem. In addition, we design two different con-
straint handling mechanisms to tackle the constraint issue. Compared with the above TOAR-MSS
approach, TOAR-CC utilizes the evolutionary algorithm to iteratively search a subsolution within
each decomposed subproblem.

4.3.1 Workfolow of the TOAR-CC Algorithm. Generally, the CC framework comprises two se-
rial stages: problem decomposition and multi-cycle subcomponent optimization. Here, we directly
use the above-mentioned graph embedding-based decomposition to realize the first stage. In most
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of the existing literature, during the subcomponent optimization process, a static decomposition
manner is usually adopted, where the decomposed subcomponents remain unchanged over the
whole optimization process. It has been shown that, due to the lost of fitness landscape informa-
tion, the performance of static decomposition will distinctly degenerate for nonseparable problem,
i.e., there exit interdependencies between the decision variables [29, 34]. For our TOAR problem,
we adopt a dynamical decomposition strategy to alleviate the issue. In otherwords, the group size is
not fixed during the running of CC but dynamically changing. To be specific, based on the learned
lower-dimensional embedding vector representation, it conducts k-means clustering in every be-
ginning of the subcomponent optimization cycle by varying the parameter of k in the k-means
algorithm. As a result, the decision variables are grouped into different sets of subcomponents in
each cycle. By this way, it enables more robust problem decomposition results, and the final perfor-
mance will be insensitive to the value of parameter k . Formally, in the jth cycle, denoting the ith

subcomponent as G j
i , i.e., G = {G

j
1 , . . . ,G

j

k
}, and the best individual in G j

i is denoted as best ji . For

each subcomponent, say, G j
i , one subpopulation with size of PS

j
i is used to optimize it in each cycle.

Next, considering the imbalance feature among subcomponents in terms of their advertising in-
fluences and rental prices, it is advisable to pay different attention to each subcomponent. Actually,
several contribution-based CC algorithms have been proposed, in which a subcomponent with a
higher contribution to the global fitness will be given more computational resources [34]. Along

this line of thinking, if one subcomponent G j
i has larger utility, then it is likely to be promising

area in search space, and more computing resources should be assigned to it during the optimiza-
tion process. In this work, given one specific ad query q, we exploit the a priori knowledge to

devise a computing resource predistribution scheme. To be specific, for each subcomponent G j
i ,

we estimate the upper bound of its utility Λ(G j
i ,q) as follows:

Λ(G j
i ,q) =

∑
r ∈R ji

Irq
C (r ) , (24)

where R j
i denotes the set of nodes contained in G j

i . Then we specify different scales of subpopu-
lation to each subcomponent in proportions of their estimated upper bounds. In other words, the

larger the advertising influence estimation Λ(G j
i ,q) is, the more assigned subpopulation.

Obviously, any one desired solutionmust satisfy the pre-given budget Cmax . In fact, with respect
to the co-evolutionary constraint handling, it is still in its infancy [1]. Considering our problem
characteristics, here we design two different budget constraint handling mechanisms as follows:
(1) BCHS-I : During the whole optimization process, all the subpopulations strive to maximize

the advertising influence objective regardless of the budget constraint Cmax . When the multi-cycle
optimization stage terminates, a solution repair operation (detailed later) is implemented to cali-
brate the global solution дbest . Basically, it successively removes one node with the lowest cost
performance at a time, until дbest satisfies the budget constraint.

(2) BCHS-II : Different from BCHS-I, it decomposes budget Cmax to the subpopulations before
optimization process. Specifically, it normalizes all the decomposed subcomponents’ utility esti-

mation, to achieve a distribution vector
−→
X = {Λ(G j

1 ,q), . . . ,Λ(G
j

k
,q)}. And then, according to the

distribution, it randomly chooses a subcomponent Gi and allocates it a subbudget Ci, jmax , where

ω ∗ ∑
r ∈R ji

C (r ) < Ci, jmax <
∑

r ∈R ji
C (r ), R j

i denotes the nodes contained in subcomponent Gi ,
and ω is a regulatory factor. This process continues until the budget Cmax has been exhausted. In
this way, the subcomponents with larger advertising influence estimations will be preferentially
allocated budget.
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Fig. 3. The workflow of the TOAR-CC algorithm.

With respect to subcomponent optimizer, we utilize the DE [14] as it is a simple yet effective
algorithm for global optimization. Based on the reproduction and selection operation (e.g., tourna-
ment selection), it selects individuals from the current population to be parents and utilize them
to generate the children for the next generation, where the crossover and mutation parameters
are set as cr andmr , respectively. Furthermore, to enhance the search capability of the DE algo-
rithm, we additionally perform a local refinement operation, e.g., variable neighborhood search,
to exploit the search subspace in each subcomponent. The neighborhood structures are defined as
follows:
(1) NS1 (): For a partial solution, say, the jth individual in ith subpopulation R∗i, j , it randomly

select an unchosen node to replace one already selected node.
(2) NS2 (): For R∗i, j , it randomly selects one node and flips its value, i.e., if one node has already

been selected in R∗i, j , then it will be discarded; otherwise, it will be included in R∗i, j .
During subcomponent evolutionary, if the fitness of complete solution has not been improved,

then the variable neighborhood search will be evoked. In this way, it balances well the exploration
and exploitation.
With respect to fitness evaluation, each of its individuals needs to be evaluated by collaborating

with the global best solution. At the beginning of the subcomponent optimization stage, we ini-
tialize the global best solution дbest as a null vector [0, 0, . . . , 0]. For the successive generations,

when one evolutionary cycle has finished, it would be compared with the local best solutions best ji
in each subcomponent Gi , and updated if a better solution has been discovered,

дbest =

{ [
дbest |best ji

]
, i f

[
дbest |best ji

]
> дbest

дbest , otherwise,
(25)

where [дbest |best ji ] denotes the overall candidate solution that replaces the corresponding sub-

component of the global best solution дbest with best ji . In this way, the subpopulation interacts
with one another through fitness evaluation. In each evolutionary cycle, the optimizer continues

to solve every subcomponent, say, G j
i , until a pre-given stopping criterion threshold has been

achieved. Here we adopt a maximum fitness evaluation FEmax as the stopping criterion.
In Figure 3, we present the basic workflow of the TOAR-CC algorithm using the BCHS-II

mechanism. Its pseudo code is outlined in Algorithm 2. Many submodules are described in the
following.

4.3.2 Solution Representation. Specifically, each billboard’s targeted influence for an ad query

q is represented in a vector form, i.e., IRq = [Ir1q ,Ir2q , . . . ,I
r |R |
q ]. The desired solution R∗, i.e., дbest ,
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ALGORITHM 2: TOAR-CC Algorithm

Input: Graph: G, Ad query: q, Budget Cmax ;

Output: Recommended Billboards: R∗ (дbest );
1 Initializing global best solution дbest ;

2 for each cycle j, 1 � j � Cyc do

3 G = {G j1 , . . . ,G
j

k
} ← Problem decomposition using k-means by a random value k ;

4 Λ(G ji ,q) ← Estimate each subcomponent G ji ’s utility upper bound;

5 Assign subpopulation and subbudget for G ji ;
6 for each decomposed subcomponent G ji , do
7 Initializing local best solution best

j
i ;

8 while FE � FEmax do

9 best
j
i ← Optimizer(G ji ,best

j
i ,C

i, j
max );

10 end

11 end

12 update and repair дbest ;

13 end

is defined as a 0-1 indicator vector UR∗ , i.e., UR∗ =
[
u1,u2, . . . ,u |R |

]
, where

ui =

{
1, i f ri ∈ R∗
0, otherwise .

(26)

In other words, if ri has been chosen into R∗, then the ith entry ui equals 1; otherwise, it is zero,
where 0 � i � |R |.

4.3.3 Fitness Evaluation. For simplicity, we first consider one candidate solution R∗ in limited
size, say, R∗ = {ri , r j , rk }. According to Equation (8), their total ad influence IR∗q is

IR∗q =
[
Iriq ,I

r j
q ,Irkq

]
∗

⎡⎢⎢⎢⎢⎢⎢⎣
exp (−∑rx ∈R∗\ri βi,x ∗ p (

−−→rirx ))
exp (−∑rx ∈R∗\r j βj,x ∗ p (

−−→r jrx ))
exp (−∑rx ∈R∗\rk βk,x ∗ p (

−−−→rkrx ))

⎤⎥⎥⎥⎥⎥⎥⎦
. (27)

For the sake of brevity, if we define diffusion coefficient variable Ti,x = βi,x ∗ p (−−→rirx ), and an
exponential function F (x ) = exp (−x ), then the above equation could be rewritten as follows:

IR∗q =
[
Iriq ,I

r j
q ,Irkq

]
∗

⎡⎢⎢⎢⎢⎢⎢⎣
F (
∑

rx ∈R∗\ri Ti,x )
F (
∑

rx ∈R∗\r j Tj,x )
F (
∑

rx ∈R∗\rk Tk,x )

⎤⎥⎥⎥⎥⎥⎥⎦
, (28)

where
∑

rx ∈R∗\ri Ti,x = [0 1 1] ∗ [Ti,i Ti, j Ti,k ]T , and others could likewise be formalized.

After traversing all the involved billboards, all these variables could be recorded in a matrix

T . We transform matrix T into a vector representation, i.e., [T1,T2, . . . ,Tn]T , where Ti =[Ti,1,Ti,2, . . . ,Ti,n ] denotes its ith row vector.
Based on the above formulation, our optimization problem can be rewritten as follows:

arд max
R∗

IRq ∗
{
F (PR∗ ∗ [T1,T2, . . . ,Tn]T )

}
, (29)
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where matrix PR∗ is mathematically represented as follows:

PR∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V(1) 0 · · · 0 0
V(2)

...
. . .

...
V(j )

0 · · · V(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (30)

where V(i ) is a vector of length n defined as follows:

V(i ) =

{
UR∗ − Ii , i f ri ∈ R∗

[0, 0, . . . , 0], otherwise,
(31)

and Ii is one unit vector in which the ith entry is 1, and any others are all zeros. In other words,
the entries associated with determined billboards are all set to 1, except the ith entry. In essence,
our task is to determine the indicator vector UR∗ .

4.3.4 Solution Repair. Moreover, during the subcomponent evolution, the newly discovered
solution might violate the budget constraint. Thus, a repair operation is necessary to calibrate
these solutions. Basically, we gradually eliminate elements contained in R∗ to meet budget Cmax .
Specifically, by comparing the difference between Cmax and selected billboards’ rental cost, i.e.,
|∑r ∈R∗ C (r ) − Cmax |, we drop the element r whose cost is closest to the calculated difference
instead of randomly removing billboards from R∗.

4.3.5 Time Complexity. We discuss the computational complexity of major modules of the
TOAR-CC algorithm. During the coevolution process, it requires to optimize all the decomposed
subcomponent within Cyc cycles. In each cycle, the computational overhead of the k-means de-
composition implementation isO ( |R |∗χ∗k ), where χ denotes the dimension of embedding vectors.
For each decomposed subcomponent Gi , 1 � i � k , the optimizer will be conducted FEmax gener-
ations. During the optimization process, it costsO (PSi ∗Ri ) to initialize each subpopulation, where
PSi is the scale of the incumbent subpopulation. The reproduction consumesO (PS ji ∗PS

j
i ∗cr ) and

O (PS ji ∗mr ) in crossover and mutation operations, and the survivor selection tasks O (PS ji ).

5 EVALUATION AND DISCUSSION

5.1 Experimental Settings

Datasets. Two real-world datasets collected from Shenzhen and Chengdu, China, respectively are
used in our experiments. The first dataset, which contains 425,690 taxi trajectories, is collected from
3,000 taxicabs over 14 days; the second dataset, which contains 3,495,336 trajectories, is collected
from 10,000 taxicabs over 20 days. The selected road segments at which the billboards are located
are shown in Figure 4(a).
Billboard Rental Price. In this article, we set the base ratio B0 of our pricing mechanism as

1,000 dollars. The relative distribution of the billboards’ rental price in the Chengdu dataset is
illustrated in Figure 4(b).
Baseline Algorithms. To the best of our knowledge, there is no work directly related to our

studied problem. To evaluate the performance of our proposed approaches, we employ the follow-
ing algorithms as the baselines for comparison.

• MCSRS randomly selects a subset of billboards from R, under the budget constraint Cmax .
This process repeats many times (e.g., 100) and outputs the best result as the final solution.
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Fig. 4. The candidate road segments and billboard rental price distribution in Chengdu.

• NaiveHeur first arranges all the billboards in the descending order of cost performance. Then,
following a descending order, it selects a billboard into R∗ only when the incremental influ-
ence by adding the current billboard r into R∗ is positive and otherwise ignored.
• EAMC (AAAI 2020) [3] is devised to tackle non-submodular maximization problems with a
monotone cost constraint by employing a simple evolutionary algorithm.
• mCCEA is a classical and popular CC algorithm [19] that harnesses a dynamic multipopula-
tion strategy to search multiple optima.
• GloGdy is a greedy-based optimization that strives to construct the desired solution directly
from the whole problem space.
• B&B is a branch and bound-based method, and an upper bound estimation is utilized to
prune the solution search space [35].

Parameter Settings. The parameter a0, a1, and a2 in exposure strength are set to 1, 10, and
0.04, respectively. With respect to the diffusion coefficient, parameters b1 and b2 equal 0 and 1,
respectively. The parameter of χ in the graph embedding process is set to 100. With respect to
the TOAR-MSS algorithm, the parameter ϱ is set to 3. In the TOAR-CC algorithm, PS is set to the
number of candidate billboards, i.e., |R |, FEmax is 100, and the parameter k takes values from 100
to 120. And the crossover rate cr and mutation ratemr are set to 0.50 and 0.20, respectively.

5.2 Experimental Results and Analysis

For each technique, we examine its runtime efficiency and the returned advertising influence of the
resulting billboard R∗. Every experiment is repeated 10 times, and the average result is reported.
First, to comprehensively demonstrate our proposed approaches’ performance, we conduct experi-
ments on all involved approaches. The results are present in Figure 5, where R = 3000 and Cmax =
400,000 dollars.

From the reported experimental results, we observe that our proposed TOAR-CC algorithm
achieve the best influence performance, followed by our TOAR-MSS, mCCEA, B&B, EAMC,
GloGdy, NaiveHeur, and MCSRS algorithms. Specifically, with respect to the cost-effectiveness,
our proposed TOAR-MSS and TOAR-CC algorithms have achieved averagely 4 times of targeted
advertising influence than the MCSRS and NaiveHeur. Among all these approaches, the random
MCSRS algorithm achieves the worst targeted influence, as it completely ignores the association
between billboards, i.e., the redundant advertising effect. Despite the fastest running efficiency,
MCSRS’s results are unrealistic in practice. Because of utilizing naive heuristics, NaiveHeur yields
higher influence performance than MCSRS. However, the roughly sequential comparison makes
it quickly hit a performance bottleneck, i.e., trapped into local optima. Compared with the Naive-
Heur algorithm, GloGdy strives to achieve an optima by traversing all the candidate elements.
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Fig. 5. The experimental results on all involved approaches.

By utilizing a bitwise mutation operation, it enables the ability of the EAMC algorithm to escape
from local optima. Thus, its performance significantly outperforms the GloGdy and NaiveHeur al-
gorithm. The B&B algorithm adopt a quasi-enumeration optimization approach with upper bound
estimation-based pruning strategies. Its obtains moderate advertising influence performance. By
adopting the divide-and-conquer strategy, the mCCEA, TOAR-MSS, and TOAR-CC algorithms
achieve better solution quality than the others. Although mCCEA shows stable capability to opti-
mize the ad influence, its performance is still worse than TOAR-MSS and TOAR-CC. Furthermore,
the targeted ad influence in dataset 1 is larger than dataset 2; one possible reason is that the road
segment distribution and user mobility pattern.
With respect to running time efficiency, as “linear algorithms,” the MCSRS algorithm and Naive-

Heur algorithm are fastest. Due to traversing the solution space iteratively, the GloGdy algorithm
needs more running time to construct the desired optimal solution. Because of the bitwise muta-
tion operation, the running time of the EAMC algorithm expands exponentially with the increase
of search space. So the evolution over time is rather slow. Although several pruning strategies
have been adopted, the nature of quasi-enumeration makes the B&B algorithm time-consuming.
Furthermore, due to local enumeration procedure, TOAR-MSS is time-consuming compared with
mCCEA and TOAR-CC. Note that our outdoor advertisement recommendation problem is not a
time-intensive task as product recommendation in an E-commerce scenario. For the companies to
launch an advertising campaign, they definitely wishes to maximize the influence/product benefit
first, even if might take some time to get the optimal result. Therefore, the running efficiency can
be acceptable in practical applications.
Varying the Scale of Billboards R: We also investigate the performance of all algorithms

when varying the scale of billboards R from 4,000 to 6,000 with 1,000 increments, where the bud-
get Cmax remains the same as 400,000 dollars. The experimental results are reported in Figure 6.
From it, we make the following observations. First, we can find that generally the performances
of the five algorithms are similar to their performances on the above experiments. It also verifies
that our proposed approaches maintain good stability with the increase of search space. Second,
with the increasing of R, more possible billboards would be examined and chosen. Thus, the re-
turned targeted influence becomes larger. For running efficiency, the linear algorithms,MCSRS and
NaiveHeur’s, running efficiency is unaffected (they just scan a limited number of billboards), while
other algorithms’ running times increase accordingly. Note that it is not obvious on the logarithmic
axis.
Varying Budget Cmax : We inspect the performance of all algorithms when varying the pro-

motion budget Cmax from 300,000, 400,000, to 500,000 dollars, where |R | is fixed to 3,000. We con-
duct experiments on these two datasets, respectively, and the experimental results are reported in
Figure 7. Actually, with the increasing of promotion budget, the achieved targeted ad influence
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Fig. 6. The experimental results with varying |R |.

Fig. 7. The experimental results with varying Cmax .

from all the involved approaches increases accordingly, as more billboards could be rented. More-
over, as adopting a sequential search mode, the running times of NaiveHeur, EAMC, and TOAR-
MSS obviously increase more than the other algorithms.
Parameter Sensitivity: We also examine the impact of relevant parameters to the final al-

gorithm performance. First, the impact of parameter k in the graph embedding process is also
examined. The candidate billboards are set as 3,000 and the ad budget Cmax as 400,000. The cor-
responding results are reported in Figure 8(a) and (b). For space limitations, here we just conduct
the comparison experiments on the TOAR-MSS algorithm. Obviously, with the increase of k , the
achieved ad influence decreases accordingly. The reason is that when k is larger, it means that
more interdependencies will be ignored during the variable decomposition. Moreover, when k

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 2, Article 29. Publication date: January 2022.



Data-driven Targeted Advertising Recommendation System for Outdoor Billboard 29:21

Fig. 8. The impact of graph embedding-based decomposition on TOAR-MSS.

Table 1. The Impact of Budget Allocation on TOAR-CC

Ad Influence BCHS-I BCHS-II

Dataset 1 2,426 2,497

Dataset 2 2,389 2,425

becomes large, the number of variables contained in each subcomponent will decrease in an aver-
age manner. Thus, the computation time of the enumeration procedure will decrease.
Thenwe examine the effect of graph embedding technique on the final advertising influence per-

formance via comparing our proposed method with the direct graph clustering. Note that, for the
sake of fair comparison, k-means clustering is employed as the direct graph clustering method,
and the parameter of k is equal for the same value. The corresponding results are present in
Figure 8(c), where “Cluster 1” and “Cluster 2” denote our proposed approach and the direct k-
means clustering, respectively. From the reported results, it is found that the graph embedding
technique promotes the final performance of targeted advertising recommendation. One potential
reason for this is that the graph embedding can well capture the implicit correlation relationship
between different nodes, i.e., outdoor billboards. As the scales of decomposed subproblems in these
two methods are the same, the running efficiency has no difference between them. Thus, we omit
the relevant result here.
Next, we investigate the different budget allocation strategies, i.e., BCHS-I and BCHS-II, in

the TOAR-CC algorithm. The problem settings are the same as above. The experimental results
are listed in Table 1. From the results, we observe that BCHS-II is better than BCHS-I. The pos-
sible reason is that BCHS-II employs a fine-grained allocation strategy during subcomponent
evolutionary.

6 CONCLUSION

Based onmulti-source urban data, we propose and study a problem of targeted outdoor advertising
recommendations. Given a set of billboards and a predefined budget, it strives to response to an ad
query and return a subset of billboards maximizing the total targeted advertising influence within
budget constraint. By utilizing users’ mobility patterns and advertising repetition effects, we build
a tailored targeted ad influence model and formalize our problemwith a constrained combinatorial
optimization problem. To effectively solve it, based on a divide-and-conquer strategy, we develop
two approaches, namely the TOAR-MSS and TOAR-CC algorithms. Using two real-world datasets,
we conduct extensive experiments to verify the solution effectiveness and search efficiency of our
proposed approaches.
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