
Vol.:(0123456789)1 3

Mobile Networks and Applications
https://doi.org/10.1007/s11036-022-01978-8

Adaptive Clustered Federated Learning for Heterogeneous Data
in Edge Computing

Biyao Gong1 · Tianzhang Xing1 · Zhidan Liu2 · Junfeng Wang1 · Xiuya Liu1

Accepted: 9 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Although federated learning has been widely used in collaborative training of machine learning models, its practical uses
are still challenged by heterogeneous data across clients. To alleviate the impact of non-IID data issue, we present an adap-
tive clustered federated learning approach, ������ , which can classify clients into suitable clusters according to their local
data distribution and train a specialized model for the clients of each cluster. By exploiting the implicit connection between
local model weights and data distribution on clients, ������ relies on partial selected model weights to measure the data
similarity between clients and adaptively groups them into the optimal number of clusters. Experimental results on three
benchmark datasets with various non-IID data settings demonstrate that ������ achieves comparably high model accuracy
as the state-of-the-art works, yet with a significant reduction on the communication cost.

Keywords  Federated learning · Clustered federated learning · Non-IID challenge · Edge computing

1  Introduction

Nowadays hundreds of millions of IoT devices around the
world will keep generating huge amount of data every day.
Edge computing [5, 30] is a more natural solution than send-
ing huge amount of data over the network to cloud servers
[17], due to bandwidth and privacy constraints. To further
avoid the privacy leakage risk of edge computing applica-
tions, such as mobile application recommendation [14], fed-
erated learning becomes an effective solution to analyze and
process the huge amount of data stored in edge nodes [27].

Federated learning [18, 29] is a novel computing paradigm
of distributed machine learning that is able to collectively
train a globally shared model across multiple decentralized
clients (e.g., mobile devices) holding local data samples,
without exchanging them. Thanks to its protections on data
privacy and data security, federated learning has been widely
used in many applications, e.g., natural language processing
[34], computer vision [15], medicine [6] and finance [33].

Despite the huge advantages, the applications of federated
learning in practice still encounter several major challenges,
one of which is the non-IID data issue [1, 18]. Since users
may have different device usage patterns, thus the resultant
data samples and corresponding labels are usually not inde-
pendent and identically distribution (i.e., non-IID). Previous
studies demonstrate that joint learning over heterogeneous
data will not only increase communication cost for con-
vergence of the shared model, but also greatly degrade the
model accuracy [21]. As a result, non-IID data across client
devices will hinder further adoptions of federated learning
in domains like recommender systems, where non-IID data
is preferable for improving personalized services [7, 31].

Because data samples on client devices cannot be
accessed or audited by the centralized server, previous works
thus implicitly address non-IID data issue with novel model
updating strategies. For example, McMahan et al. [18] pre-
sented the Federated Averaging ( FedAvg ) algorithm that

 *	 Tianzhang Xing
	 xtz@nwu.edu.cn

 *	 Zhidan Liu
	 liuzhidan@szu.edu.cn

	 Biyao Gong
	 gby@stumail.nwu.edu.cn

	 Junfeng Wang
	 wangjunfeng@stumail.nwu.edu.cn

	 Xiuya Liu
	 lxya@stumail.nwu.edu.cn

1	 School of Information Science and Technology, Northwest
University, Xi’an 710127, China

2	 College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen 518060, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-022-01978-8&domain=pdf

	 Mobile Networks and Applications

1 3

computes one shared model by averaging model parameters
from all client devices, instead of applying traditional gradi-
ent decent updates. A recent work [25] optimized FedAvg by
intelligently selecting the clients to participate in each round
of federated learning using deep reinforcement learning. Due
to the heterogeneous data distributions, a single model may
not achieve the best performance for all clients, while mul-
tiple specialized models are required for providing better
services. Therefore, an emerging framework, named as Clus-
tered Federated Learning (CFL) [22], has been proposed
to effectively alleviate the impact of non-IID data, while
still preserving the performance in terms of model accu-
racy and communication cost. Most of existing CFL-based
approaches [3, 7, 22] primarily group clients into clusters
with jointly trainable data distributions and accordingly train
a shared model for each cluster. Specifically, they measure
the similarity between clients’ data distributions indirectly
based on their local model updates or the gradients.

Although CFL framework is attractive, the existing CFL-
based approaches are still inefficient. First of all, they mainly
exploit local model updates or the gradients to approxi-
mately represent the unknown data distribution of each cli-
ent, while we find such an approximation is not effective
and efficient to guide the clustering of participant clients.
Abundant local model updates or gradients make it computa-
tionally hard to measure the similarity between clients’ data
distributions, and meanwhile cause a long process for the
model convergence. In addition, the performance of CFL-
based approaches heavily relies on the optimal number � of
clusters. The number � , however, is empirically set in previ-
ous works. In principle, a method to automatically choose
the optimal � that can best reflect the data distributions of
all client devices is desired.

To address the limitations of existing works, we propose
an Adaptive Clustered Federated Learning ( ������ ) to auto-
matically group clients into suitable clusters. By considering
the implicit connection between model weights and client’s
data distribution [4, 20, 25, 28], ������ proposes to group
clients based on the model weights derived by training on
each client’s local data. To reduce data amount for trans-
ferring and similarity calculation, ������ further refines
the selection of model weights on each client. Based on the
representative model weights of clients, ������ makes use
of the hierarchical clustering to iteratively classify clients
into the optimal number of clusters. Moreover, ������ has
a lightweight yet effective mechanism to incorporate the
new-coming clients into suitable clusters, without obscur-
ing already trained models. And ������ can be applied
to recommender systems by clustering users with similar
preferences to recommend more comprehensive content
for them. We experimentally evaluate ������ on different
benchmark datasets with various non-IID settings. Experi-
mental results show that ������ can achieve comparably

high model accuracy as state-of-the-art works, yet with a
great reduction on communication cost.

2 � Related Work

We discuss the most related works on addressing the data
heterogeneity issue in federated learning as follows.

Federated learning and non-IID data. Unbalanced data,
including unbalanced distribution and unbalanced sample
size, is quite common in the federated setting, where users
usually have different device usage patterns, while non-IID
data across client devices will significantly harm the per-
formance of federated learning. Specifically, for a movie
recommendation application, different users may have dif-
ferent types of preferences, e.g., user A likes action movies,
while user B prefers comedy movies, which leads to different
distributions of data for different users, i.e., non-IID data;
in addition, different users may use the application at differ-
ent frequencies, which also leads to different sample sizes
for different users, i.e., unbalanced data. Non-IID data can
cause more serious performance loss to federal learning than
unbalanced data. Thus, recent studies [9, 12] have showed
that non-IID data will cause slow or even no convergence in
the training phase of federated learning, resulting in much
more communication rounds. Therefore, how to address the
non-IID data issue becomes a hot research topic in feder-
ated learning. McMahan et al. [18] proposed the federated
optimization algorithm FedAvg , which aggregates a global
model by weighted averaging the parameters of each local
model to alleviate the impact of non-IID data. However, Li et
al. [13] theoretically proved that non-IID data will increase
the communication cost of FedAvg . To speed up the training
of federated learning, a recent work [25] improved FedAvg
by actively selecting devices to participate in each round of
training through a deep reinforcement learning model. More-
over, some works leveraged the heterogeneous data across
client devices to train personalized models by exploiting
techniques like transfer learning [26] and multi-task learn-
ing [24].

Clustered federated learning (CFL) is an emerging
framework to attack data heterogeneity for efficient feder-
ated learning [22]. The CFL framework proposes to group
all client devices into clusters based on their local data dis-
tributions and trains an independent model for the clients
of each cluster. Since data samples of clients cannot be
accessed, [3, 22] thus suggested to group clients based on
the cosine similarity of their local model updates or gradi-
ents. More specifically, Sattler et al. [22] proposed FMTL ,
which iteratively divides clients into clusters. Initially, all
clients form a cluster to train a model. Latter, the server
calculates the cosine similarity between local model updates
of clients in the same cluster, and divides the cluster into two

Mobile Networks and Applications	

1 3

new clusters according to clients’ similarities. FMTL repeats
above operations until no new cluster is generated. Ghosh
et al. [7] proposed IFCA that evaluates the experience loss
of � global models over clients’ local data and then assigns
a client to the cluster, where the global model with the low-
est experience loss is located. However, the performance
of IFCA heavily relies on number � that is empirically set.
Although these CFL-based approaches have shown attrac-
tive performance, they are still not sufficiently efficient, just
as discussed in the next section.

3 � Background and Motivation

3.1 � Federated Learning

Federated learning is a privacy-protected framework that
allows distributed clients to train machine learning model
collaboratively without exchanging their local data [18]. In
federated settings, there are usually m clients and one central
server, where clients are responsible for collecting and stor-
ing data, and using the data to train local models, and the
server is responsible for aggregating local models in some
way to build a globally shared model. The server and clients
communicate according to a predetermined communication
protocol. Because all raw data are stored by distributed cli-
ents, the central server cannot access them and thus has no
prior knowledge of the data distributions across devices.

To implement the idea of federated learning, McMahan
et al. [18] firstly proposed a federated averaging algorithm
( FedAvg ) to optimize the communication efficiency of feder-
ated learning over real-world data, which are usually hetero-
geneous across different client devices. Specifically, FedAvg
trains a globally shared model by weighted averaging the
parameters of clients’ local models, and the goal of FedAvg
is typically to minimize the following objective:

where we assume client i has local dataset Di , ni = ‖‖Di
‖‖

and N =
∑m

i=1
ni . The local objective fi can be defined

as calculating local empirical risk on the dataset Di .
Note that the empirical loss function in federated learn-
ing usually depends on the specific task. For instance,
for multi-class tasks, cross-entropy loss is defined as
fi(�) =

∑C

a=1
p(y = a)�x∣y=a[log(fa(x, �))] , where fa repre-

sents the probability of predicting sample x as the class a,
and C is number of label classes.

It is experimentally proved that FedAvg can approximate
the model trained on centrally collected data given the
data across all clients are IID [18]. In practice, however,
the actual data produced by different clients are usually

(1)min
�

{
�(�) ≜

m∑

i=1

ni

N
fi(�)

}
,

heterogeneous and thus non-IID. The data heterogeneity
issue will severely harm the convergence and performance
of federated learning in practical applications. Recently, a
promising framework, named clustered federated learning
(CFL) [22], has been proposed to address the data heteroge-
neity issue, and already attracted some research efforts. We
formally define the CFL framework as follows.

Definition 1  (Clustered Federated Learning (CFL)) Given
m client devices, ℂ =

{
c1,⋯ , cm

}
 , owning non-IID data,

CFL aims to group these devices into a set of disjoint clus-
ters G = {��,⋯ , ��} , where

⋃�

i=1
�� = ℂ and �� ∩ �� = ∅

( i ≠ j ). The device data of each cluster are approximately IID
and can be used to train a shared model with good perfor-
mance in terms of communication cost and model accuracy.

There exist some novel CFL-based approaches [3, 7, 22],
and they mainly differ in obtaining clusters G with differ-
ent similarity measures and � settings. Specifically, [22]
utilizes the cosine similarity between local model updates
or gradients to measure the similarity between clients’ data
distributions. [7] randomly generates � global models, and
then iteratively assigns client ci into cluster �� once the j-
th model can derive the highest accuracy for ci ’s data. In
addition, [3] also adopts the cosine similarity between local
model updates, and divides clients into � clusters through
the k-means algorithm.

3.2 � Motivation

Although CFL-based solutions [3, 7, 22] have shown great
advantages than FedAvg over non-IID data, they are still
insufficiently efficient due to their clustering strategies. We
examine their performance and illustrate the limitations with
experiments.

In our experiments, we will train several CNN models
with PyTorch on the CIFAR-10 dataset. For a clear illustra-
tion, we train CNN models over m = 100 client devices with
non-IID setting � = 0.8 through federated learning (Please
see more experimental settings in Sect. 6.1). By analyzing
the design and experimental results of existing CFL-based
approaches, we observe their limitations as follows:

(1)	 Hard to set the optimal � . Most of the existing
approaches [3, 7] need to specify the number of clus-
ters � in advance, while in reality the data distribu-
tions across clients are unknown and thus the optimal
� is difficult to determine. We conduct an experiment
to study the impact of � on model accuracy by run-
ning the approach in [7] for 20 communication rounds.
Figure 1(a) plots the results. When we only train one
model for all clients (i.e., � = 1 that works similarly
as FedAvg ), the model accuracy is the lowest, which

	 Mobile Networks and Applications

1 3

implies that training one single model across non-IID
data is inadequate. In addition, when we increase the
cluster number � , the average model accuracy improves
as well and achieves the best when � = 12 . When we
further increase � , the average accuracy, however,
drops. This experiment demonstrates that � is highly
relevant with model accuracy and an adaptive mecha-
nism to find the optimal � is important for CFL-based
approaches.

(2)	 Unstable clustering efficiency. There indeed exist a
few CFL-based approaches [22] that are able to group
clients into a suitable number of clusters. Taking FMTL
proposed in [22] as an example, once an initial clus-
ter has achieved a stationary model, it would be fur-
ther separated into two smaller clusters for training
more specialized models. Therefore, FMTL serves as
a post-processing method of federated learning and it
requires a long time to derive the optimal � clusters.
We implement FMTL and conduct an experiment to
test its clustering efficiency. For a clear illustration, we
select 30 out of 100 clients, which can be divided into
three clusters, to participate in the federated learning
for 50 communication rounds. Figure 1(b) compares
the performances of FMTL and FedAvg . It sees that
FedAvg performs much stably than FMTL . Although
FMTL can search for the best setting of � , it needs to
cluster clients for several times and the efficiency is not
good.

(3)	 Should all model weights be used? When we adopt
federated learning to train deep leaning models for
distributed client devices, CFL-based approaches usu-
ally involve the calculation of model similarity which
reflects the data distribution, using model weights or
model updates. For example, Table 1 summarizes the
number of model weights for three simple CNN models
designed for different datasets (See more details about
the datasets and models in Sect. 6.1). These models
are simple, while in practice they are usually more
complex, but in mobile computing, federated learning
systems usually have to deal with tens of thousands of

models. If the similarity between a large number of
models is calculated at the same time, it will undoubt-
edly put a huge pressure on the server. In addition,
existing literature has already shown that there are dif-
ferences between different layers in the same model and
that the weights at higher levels are more task-related
compared to the weights at lower levels [16, 19, 32].
So, is it possible that the model similarity calculated
using partial weights is more conducive to clustering
than using all weights?

Considering above limitations, we thus propose an adaptive
clustered federated learning approach – ������ , which owns
the following valuable merits:

•	 A better indicator of data distribution similarity to guide
stable and efficient client clustering.

•	 An automatic mechanism to find the optimal � for better
model accuracy and communication cost.

4 � Observation

Although the existing literature has shown that there are
differences between different layers in the same model [16,
19, 32], there is no literature available to study how such dif-
ferences affect federated learning. In this section, we further
experimentally investigate the differences between different
layers of the model in federated learning.

We construct a multi-classification task for images over
CIFAR-10 [10] with VGG16 [23], Fig. 2 shows four differ-
ent distance matrices are computed based on the weights

Table 1   Statistics of three CNN model weights

Model Total weights Weights per layer

MnistCNN 33500 500 / 25000 / 8000
CifarCNN 6850 450 / 2400 / 4000
FmnistCNN 21200 400 / 12800 / 8000

Fig. 1   The empirical study
of existing CFL-based
approaches (a) Impact of κ (b)
Clustering efficiency

(a)

First Clustering

Second Clustering

(b)

Mobile Networks and Applications	

1 3

of the different four layers in VGG16. To simulate non-IID
data across clients, we set up 10 different clients and directly
divided them into two groups based on the kind of labels
that were assigned.

From Fig. 2, we can observe that the distance matrix
based on the weights of the different layers in the model
reflects the different clustering of clients. Specifically,
Fig. 2(a) and (b) show the distance matrices based on two
convolutional layers respectively. However, we cannot obvi-
ously acquire the cluster structure of the clients from them,
while the clustering phenomenon of clients can be clearly
observed from Fig. 2(c) and (d). Combining the above exper-
imental results and existing literature [16, 19, 32], we can
conclude that the model difference caused by non-IID data
are mainly in the fully connected layers or layers with clas-
sifier function.

5 � Methodology

5.1 � Overview

Our proposal ������ follows CFL framework’s workflow
as well. At the high level, ������ adaptively classifies m
clients into � clusters, i.e., G =

{
��,⋯ , ��

}
 , based on a novel

similarity measure on their underlying data distributions.
Instead of training only one single global model for all cli-
ents, the clients of each group �� will collectively train one
shared model with objective defined as follows:

where n�� and ncj represent the number of data samples for
cluster �� and client cj , respectively, and fij(���) calculates the
empirical risk on cj ’s local dataset Dj.

(2)min
���

{
�(���) ≜

∑

cj∈��

ncj

n��

fij(���)

}

Figure 3 illustrates the framework of our proposal
������ . The cycle of ������ is similar to FedAvg, and we
embed the client clustering process into the cycle of FedAvg.
Specifically, after several communication rounds between
the server and the clients, as described in FedAvg, the server
calculates the similarity matrix between models based on the
partial model weights uploaded by each client. Based on the
similarity matrix of model weights, our proposed adaptive
clustering can group the clients with similar data distribution
into the same cluster. It is noted that the above clustering
process is done in one communication round. Given m par-
ticipate clients, ������ lets each client train a local model
using its own data. Different from local model updates or
gradients, it is believed that the model weights can better
represent ci ’s data distribution and ������ proposes to clus-
ter clients based on the similarity of their model weights.
Instead of employing all weights of a model, ������ care-
fully selects partial model weights as the representation of
a client’s data distribution (Sect. 5.2). At the server side,
������ adaptively classifies all clients into � clusters based
on the similarity of their partial model weights by leveraging
the hierarchical clustering algorithm (Sect. 5.3). The cluster-
ing results are then sent back to clients and each group will
collaboratively train a shared model. Furthermore, ������
can also incorporate new client cnew , and intelligently groups
it to cluster �∗ that introduces the minimum empirical risk
after accepting cnew (Sect. 5.4).

5.2 � Selection of Model Weights

It is observed that there exist an implicit connection between
data distribution on a client ci and the model weights trained
on ci ’s dataset [25]. Therefore, ������ makes use of client
ci ’s model weights to comprehensively represent its data
distribution. Once the local model of each client is trained,
the distribution difference between clients’ local data can
be measured by the difference between their model weights,

(a) (b) (c) (d)

Fig. 2   Visualization of the distance matrices based on the weights
of the four different layers, where Conv denotes convolutional layer
and FL denotes fully connected layer. The lighter color in the figure

indicates the smaller value of the corresponding position in the dis-
tance matrix, i.e., the more similar the two models are (a) Layer 1
(Conv) (b) Layer 7 (Conv) (c) Layer 14 (FL) (d) Layer 16 (FL)

	 Mobile Networks and Applications

1 3

which is referred as model distance. To quantify the model
distance between any two clients ci and cj , we calculate the
l2 distance between their model weights as:

In principle, if two clients have similar data distributions,
they tend to train models with more similar weights com-
pared to clients with dissimilar data, and thus the distance
between model weights will be smaller [20, 22, 25, 28].
Hence, model distance can be used as an effective indica-
tor to guide the clustering of clients. After obtaining model
weights of all clients, the server will calculate a distance
matrix M of size m × m . Each item Mij represents the model
distance dist(ci, cj) between clients ci and cj . Assuming the
model weight size for each client is p, then the computation
overheads for calculating M is O(m2p2).

Considering that federated learning usually involves tens
of thousands of client devices, while target machine learn-
ing models (in particular deep learning models) could be
complex with numerous parameters, e.g., the VGG16 model
contains 138M weights [23]. As a result, the computation
cost for model weights based clustering would be extremely
huge and thus affects the clustering efficiency.

We have experimentally demonstrated that the higher-
layers weights of the model reflect the differences caused
by having non-IID data better than the lower-layers weights.
Therefore, if the model similarity is calculated using all
weights when the number of low-layers weights is a high
proportion of the model, a bad similarity matrix will be
obtained thus reducing the accuracy of clustering.

To reduce the computation overheads and improve clus-
tering accuracy, we choose partial weights 𝜃̂ci of the local

(3)dist(ci, cj) =
‖‖‖�ci − �cj

‖‖‖l2
.

model on client ci , rather than all model weights �ci , for simi-
larity measures. For deep learning models proposed for clas-
sification tasks, e.g., CNN models, the convolutional layers
are designed to extract features of the input, while the fully
connected layer aims to achieve the goal of classification.
Therefore, the weights of fully connected layer are task-
specific, and thus are more task-related. In ������ , we thus
select the partial weights, which include weights and bias
from fully connected layers with the least number of param-
eters, to approximately represent the whole model. We use
a convolutional neural network as an example. In fact, we
select the layer with the lowest number of weights from the
layers with classifier function in the model, including CNN,
RNN and MLP, as a representative of the all model weights.

Specifically, the partial model weights are determined by
𝜃̂ci = argmin ||𝜃[a]

ci
||l1 , a ∈ � , where � represents the set of

layers for client ci ’s model and ||�[a]||l1 returns the number
of weights in the a-th fully connected layer. We select partial
model weights for each clients, and use these weights to
calculate distance matrix M . Since the size of 𝜃̂ci is much
smaller than �ci , the computation cost is thus greatly reduced.

5.3 � Adaptive Clustering

To boost the clustering of all client devices, ������ requires
each client ci to report some statistics about its local dataset
Di , including the number of sample classes Lci and Shannon
Entropy sci . Specifically, sci is computed as

(4)sci = −
�

j∈{1,⋯Lci
}

bj

‖Di‖
log2(

bj

‖Di‖
)

Fig. 3   The framework of our
proposal ������ Adaptive Clustering

a) Pre-clustering

{ ̅ , … , ̅ } ← { , … , }

b) Hierarchical Clustering

= { ,… , } ← { ̅ , … , ̅ }

Selection of Model Weights
{ , … , }

New Client
∗ = ,

Global models

{ , … , }

Local models

{ , … , }

Local Modeling
{ , … , }

Mobile Networks and Applications	

1 3

where bj is the number of data samples for class j and ‖Di‖
is the total number of data samples on client ci . Intuitively,
if client devices have similar number of sample classes and
Shannon Entropy, they may have similar data distributions
and will be grouped together with a higher probability. Thus,
we can pre-cluster such clients and then adjust the initial
clusters through their partial model weights. ������ clas-
sifies all clients into clusters with the following two stages:

(1)	 Pre-clustering stage. The server collects simple statis-
tics of data distribution from each client, and roughly
classifies all clients into clusters Go =

{
𝐠̄𝟏,⋯ , 𝐠̄𝐤

}

according to their Shannon Entropy with a gap of 10%.
(2)	 Hierarchical clustering stage. For each cluster 𝐠̄𝐣

belonging to Go , the server will calculate a distance
matrix Mj for its cluster members. Compared to com-
pute model distances among m clients, the total com-
putation costs for deriving distance matrices for all

initial clusters are further reduced. Based on the dis-
tance matrices, i.e., {M1,⋯M

k} , for all initial clus-
ters, the server runs hierarchical clustering algorithm
[2] to perform fine-grained clustering on all clients,
without specifying the desired number of clusters. In
general, hierarchical clustering relies on an agglom-
erative strategy. It calculates the similarity between
any two data points, merges the two most similar data
points and iterates this process until the termination
condition is met. In our work, the distance matrices are
used as the input of hierarchical clustering, and

initially all clients have been pre-clustered. The
nearest clusters are merged iteratively until the distance
between them is greater than the distance threshold � .
The distance threshold � in hierarchical clustering can
be set enlighteningly, depending on the obtained hier-
archy, which is simple and less costly compared to the
setting of parameters in other algorithms. Finally, we
will obtain � clusters G =

{
��,⋯ , ��

}
 , where clients

of each cluster should have the most similar data dis-
tributions and can train a shared model achieving the
best performance. Unlike existing methods that require
the developer to set the number of clusters � , adaptive
clustering can find the optimal � from the similarity
matrix, as long as the similarity matrix can reflect the
client cluster signs. Algorithm 1 shows the details of
the clustering process.

5.4 � Incorporating New Client

In practice, due to unstable client communication or other
resource constraints (e.g., energy power on mobile devices),
client devices may join in or drop out of the federated learn-
ing process. The client quit events actually have no influ-
ences on the model training of their original clusters. How-
ever, we need to carefully handle the events of new-coming
clients. New-coming clients include clients that are not in the
existing client set and clients whose local data has changed.
If the clients with changed local data are not re-clustered,

	 Mobile Networks and Applications

1 3

serious non-IID data issue may occur within the clients clus-
ter. In order to group each new client cnew into one appro-
priate cluster, cnew is required to train a local model using
its own data, and then transmits partial selected weights to
the server. For each cluster, ������ maintains a copy of
its partial model weights. Once receiving the partial model
weights from new client cnew , the server will calculate the
model distances between cnew ’s model and all global models
of existing clusters. The cluster �∗ , which has the minimum
model distance with cnew as expressed in Eq. (5), will accept
cnew , and updates its shared model with data owned by cli-
ent cnew.

It is possible that cnew has distinct data distribution from
existing client devices, thus it can form a new cluster indi-
vidually once the model distances between cnew and any
existing cluster is larger than a threshold � . In practice, the
threshold � is usually set to the maximum distance between
existing cluster models, i.e., 𝜀 = max dist(𝜃̂�� , 𝜃̂��) . Moreover,
when some client devices have significant changes on the
usage behaviors, they will have quite different data distribu-
tions accordingly. Such clients can also be treated as new
clients to join in other existing clusters or form new ones.
Algorithm 2 depicts the pseudocode of incorporating a new
client.

(5)�∗ = argmin
��

dist(𝜃̂cnew , 𝜃̂��), �� ∈ G.

Privacy and security analysis: Combining our proposed
weight selection, adaptive clustering and incorporating new
client can achieve a more efficient and more adaptive CFL
approach. In addition, similar to FedAvg, ������ only
requires individual clients to report local model weights and
the Shannon entropy computed locally. Since the Shannon
entropy is computed locally at each client, the server cannot
know the specific data distribution of the client nor can it
infer the raw data of the client.

6 � Evaluation

6.1 � Experimental Setup

We have implemented ������ with PyTorch, and conducted
performance evaluation in a powerful server that is equipped
with AMD 2600X CPU and GTX 1660Ti GPU. In ������ ,
we set threshold � = 1.4 and � = 1.8 . We compared ������
with baseline approaches by training popular CNN models
on benchmark datasets under different non-IID data settings.

Baseline approaches. We choose FedAvg [18] and two
representative CFL-based approaches, i.e., FMTL [22] and
IFCA [7], for performance comparisons. As introduced
in Sect. 2, FedAvg trains a single model by averaging the
weights of all clients’ local models, while both FMTL and
IFCA follow CFL framework. In particular, FMTL works
with an empirical � setting, while IFCA can form the suit-
able clusters.

Datasets and models. We evaluate all approaches on
three publicly open datasets with well-tuned model param-
eters and different data distributions, following non-IID data
settings similar as [18] and [25].

•	 MNIST [11] contains 10 classes of handwritten digits,
where the size of each sample is 28 × 28 . We train a CNN
model, i.e., MnistCNN, which has two 5 × 5 convolu-
tional layers and each convolutional layer is followed by a

2 × 2 max-pooling layer. The numbers of output channels
for the two convolutional layers are 20 and 50, respec-
tively. Each output channel has a bias. Each client uses
the batch size as 100 for model training.

•	 CIFAR-10 [10] contains 10 classes of RGB images,
where the size of each sample is 32 × 32 . We train a CNN
model, i.e., CifarCNN, which has two 5 × 5 convolutional
layers and each convolutional layer is followed by a 2 × 2
max-pooling layer. The numbers of output channels for

Mobile Networks and Applications	

1 3

the two convolutional layers are 6 and 16, respectively.
Each output channel has a bias. On each client, the batch
size is set as 50.

•	 FashionMNIST [8] contains 10 classes of images, where
the size of each sample is 28 × 28 . We train a CNN
model, i.e., FmnistCNN, which has two 5 × 5 convolu-
tional layers and each convolutional layer is followed by a
2 × 2 max-pooling layer. The numbers of output channels
for the two convolutional layers are 16 and 32, respec-
tively. Each output channel has a bias. Each client uses
the batch size as 150 for model training.

Table 1 summarizes the weight statistics about the three
models. We adopt two strategies to simulate the non-IID
data distributions. (1) Similar as [25], we use a parameter
� to produce different levels of non-IID data. For instances,
� = 1.0 means that each client only contains samples of one
class, and � = 0.8 means that 80% of the samples in each cli-
ent belong to the same class while the remaining 20% belong
to other classes. (2) Similar as [18], each client contains two
classes of samples, and there are 100 clients, which can be
divided into 10 groups according to their local data. We use
� = B to denote this setting. For all datasets and models,
we set the learning rate � at training to 0.01, which allows
the local model to converge quickly and correctly. And the
number of local epochs is to 1, which is consistent with the
FMTL.

Performance metrics: We use the number of communi-
cation rounds and model accuracy as the performance met-
rics. In general, fewer communication rounds and higher
model accuracy are preferable.

6.2 � Results and Analysis

Performance comparison. Table 2 shows the performance
comparisons among all approaches by training models in
50 rounds. For each experiment, we record the final model
accuracy and the communication rounds to achieve this
accuracy. For example, the result 97.03%(15) in Table 2
means that the final model accuracy is 97.03% and FedAvg
achieves this accuracy at the 15-th round. In general, when
we increase � (i.e., from 0.5 to 1.0), the average model accu-
racy of all approaches except FedAvg improves. It is because
when � increases, clients’ data are more heterogeneous, and
one single model trained by FedAvg becomes inadequate to
accurately model all distributed data. In contrary, CFL-based
approaches perform better by clustering clients owning sim-
ilar data distributions to train an independent model. For
the second setting (i.e., � = B ), CFL-based approaches also
significantly outperform FedAvg on both model accuracy
and communication rounds. Among the three CFL-based
approaches, although IFCA has won more times of the high-
est accuracy than ������ , we find the accuracy gap between

������ and IFCA is extremely small, i.e., 0.04% ∼ 1.05% .
On the other hand, we find ������ can always have the few-
est rounds to achieve the converged accuracy, which implies
that our clustering results are much better than both FMTL
and IFCA through correctly distinguishing clients’ data
distributions. Table 3 shows the ground truth of number of
clusters and the actual number of clusters under different
experimental settings. Only at � = 0.5 , there is a slight gap
between the actual value and ground truth, while at other
experimental settings ground truth and actual values agree.
This shows that our method can find the optimal number of
clusters in most experimental settings.

In summary, our proposal ������ is able to achieve com-
parably higher model accuracy as the state-of-the-art works,
e.g., IFCA , yet with a significant reduction on communica-
tion rounds, e.g., on average by 6.26×.

Table 2   Performance comparisons of different approaches over dif-
ferent datasets and various non-IID data settings. The number in
brackets indicates communication rounds to converge to final accu-
racy. The best results in each experiment setting are marked in bold

� Approach MNIST CIFAR-10 FMNIST

0.5 FedAvg 97.03% (15) 35.40% (38) 81.94% (22)
FMTL 96.77% (10) 53.94% (31) 83.12% (16)
IFCA 96.12% (8) 58.53% (6) 85.19% (14)
������ 96.53% (4) 57.51% (2) 84.97% (7)

0.8 FedAvg 96.62% (14) 31.20% (42) 76.03% (18)
FMTL 97.22% (12) 63.43% (25) 85.56% (16)
IFCA 98.06% (8) 79.61% (3) 91.23% (11)
������ 99.12% (5) 79.87% (2) 91.56% (9)

1.0 FedAvg 94.37% (20) 26.15% (33) 79.07% (30)
FMTL 97.64% (15) 82.27% (38) 97.03% (36)
IFCA 99.83% (5) 99.81% (6) 99.96% (4)
������ 99.67% (2) 99.73% (3) 99.92% (2)

B FedAvg 95.95% (16) 44.61% (32) 81.80% (26)
FMTL 97.65% (24) 78.85% (37) 93.73% (33)
IFCA 99.38% (5) 86.95% (14) 97.59% (6)
������ 99.12% (3) 85.90% (10) 98.93% (3)

Table 3   The ground truth of number of clusters and the actual num-
ber of clusters under different experimental settings

� Approach MNIST CIFAR-10 FMNIST

0.5 Ground truth 5 10 5
Practical 5 8 4

0.8 Ground truth 5 10 5
Practical 5 10 5

1.0 Ground truth 5 10 5
Practical 5 10 5

B Ground truth 10 10 10
Practical 10 10 10

	 Mobile Networks and Applications

1 3

Complete vs partial model weights. We conduct an exper-
iment to examine the effectiveness of model weight selection,
and compare the performances of ������ with complete
weights and partial weights. Table 4 presents the results in
non-IID settings � = 0.8 and � = B on the three datasets.
Surprisingly, we find that ������ with partial weights out-
performs the version with complete weights in terms of both
model accuracy and communication rounds. The reason may
be that the majority of CNN model weights come form con-
volutional layers, while they have little distinction and thus
interfere the similarity measures among clients. As a result, the
complete model weights cannot be a good indicator to guide
the client clustering. In contrary, the model weights selected by
������ are more task-specific and can effectively distinguish
the underlying data distributions among clients.

To further verify whether using the fully connected layer
with the least number of weights gives similar clustering
results as the fully connected layer with a high number of
weights, we add a fully connected layer to the MnistCNN,
CifarCNN and FmnistCNN. The number of weights of
the two fully connected layers are 80000 and 8000 for
MnistCNN, 40000 and 4000 for CifarCNN and 80000 and
8000 for FmnistCNN, respectively. Figure 5 shows the
model accuracy when the model similarity matrix is cal-
culated using the first fully connected layer and the second
fully connected layer, respectively.

Because ������ selects partial model weights for cluster-
ing, it thus can reduce the computation overhead of calculat-
ing the similarity between clients. As shown in Fig. 4, the
computation time is significantly reduced to within 1 second
when compared to clustering with complete model weights.

Impact of new clients. To study the impact of new cli-
ents, we add 10 new clients after the training phase of all

shared models (i.e., in the 20-th round), where we set � = 0.5
and � = 1.8 for this experiment. Figure 5 plots the results on
the three datasets. The accuracy on each dataset will slightly
decrease when new clients are added, but ������ can quickly
include new clients to the appropriate clusters and meanwhile
new clients will not affect the final model accuracy.

7 � Conclusion

This paper proposes an efficient clustered federated learning
framework, ������ , to address the data heterogeneity issue.
By exploiting the implicit connections between data distri-
bution and model weights, ������ proposes to use partial
well-selected model weights to group clients with non-IID
data into clusters and trains a specialized model for clients of
each cluster. ������ can solve the non-IID problem in feder-
ated learning well and can be applied to several scenarios,
especially in recommender systems. For example, in recom-
mender system applications, users with similar preferences
are divided into groups so that more comprehensive content

Table 4   Performance comparisons between clustering with complete
weights and clustering with only partial weights

� Weights MNIST CIFAR-10 FMNIST

0.8 Complete 95.94% (12) 32.47% (37) 77.68% (19)
Partial 99.12% (5) 79.87% (3) 91.56% (9)

B Complete 95.84% (14) 38.81% (23) 77.51% (19)
Partial 99.12% (3) 85.90% (10) 98.93% (3)

Table 5   Performance comparisons between clustering with weights
of first fully connected layer and second fully connected layer. The
first fully connected layer has more weights and the second fully con-
nected layer has fewer weights

� Weights MNIST CIFAR-10 FMNIST

0.8 First 99.17% 79.79% 91.60%
Second 99.14% 79.84% 91.56%

B First 99.14% 85.95% 99.06%
Second 99.12% 86.10% 98.93%

Fig. 4   Computation overhead

New Clients

Fig. 5   Impact of new clients

Mobile Networks and Applications	

1 3

can be recommended for users. We evaluate ������ on three
open datasets with various non-IID data settings. Experimental
results demonstrate that ������ achieves comparably high model
accuracy as state-of-the-art approaches, yet with a significant
reduction on the communication cost, e.g., on average by 6.26×.

Acknowledgements  This work was supported in part by Interna-
tional Cooperation Project of Shaanxi Province (No. 2020KW-004),
the China Postdoctoral Science Foundation (No. 2017M613187), the
Shaanxi Science and Technology Innovation Team Support Project
under grant agreement (No. 2018TD-026), the China NSFC Grant
(No.62172284) and the Natural Science Foundation of Guangdong
(General Program No.2020A1515011502).

Data Availability  The datasets i.e., MNIST [11], CIFAR-10 [10] and
FashionMNIST [8], analysed during the current study are available
from http://​yann.​lecun.​com/​exdb/​mnist/, http://​www.​cs.​toron​to.​edu/​ ~
kriz/​cifar.​html and https://​github.​com/​zalan​dores​earch/​fashi​on-​mnist

References

	 1.	 Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A,
Ivanov V, Kiddon C, Konečnỳ J, Mazzocchi S, McMahan B et al
(2019) Towards federated learning at scale: System design. Pro-
ceedings of Machine Learning and Systems 1:374–388

	 2.	 Dasgupta S, Long PM (2005) Performance guarantees for hierar-
chical clustering. J Comput Syst Sci 70(4):555–569

	 3.	 Duan M, Liu D, Ji X, Liu R, Liang L, Chen X, Tan Y (2020)
Fedgroup: Ternary cosine similarity-based clustered federated
learning framework toward high accuracy in heterogeneous data.
arXiv preprint arXiv:201006870

	 4.	 Gao H, Liu C, Yin Y, Xu Y, Li Y (2021a) A hybrid approach to
trust node assessment and management for vanets cooperative
data communication: Historical interaction perspective. IEEE
Transactions on Intelligent Transportation Systems

	 5.	 Gao H, Yin Y, Han G, Zhao W (2021b) Edge computing: Enabling
technologies, applications, and services. Transactions on Emerg-
ing Telecommunications Technologies 32(6)

	 6.	 Gao H, Zhou L, Kim JY, Li Y, Huang W (2021c) Applying proba-
bilistic model checking to the behavior guidance and abnormality
detection for mci patients under wireless sensor network. ACM
Transactions on Sensor Networks https://​doi.​org/​10.​1145/​34994​26

	 7.	 Ghosh A, Chung J, Yin D, Ramchandran K (2020) An efficient
framework for clustered federated learning. Adv Neural Inf Pro-
cess Syst 33:19586–19597

	 8.	 Han X, Kashif R, Roland V (2017) The fashionmnist dataset.
online: https://​github.​com/​zalan​dores​earch/​fashi​on-​mnist

	 9.	 Hsieh K, Phanishayee A, Mutlu O, Gibbons P (2020) The non-iid
data quagmire of decentralized machine learning. In: International
Conference on Machine Learning, pp 4387–4398

	10.	 Krizhevsky A, Hinton G, et al. (2014) The cifar-10 dataset. online:
http://​www.​cstor​onto.​edu/​~kriz/​cifar.​html

	11.	 LeCun Y (1998) The mnist database of handwritten digits. online:
http://yann lecun com/exdb/mnist/

	12.	 Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2020a)
Federated optimization in heterogeneous networks. vol 2, pp 429–450

	13.	 Li X, Huang K, Yang W, Wang S, Zhang Z (2020b) On the con-
vergence of fedavg on non-iid data. In: International Conference
on Learning Representations

	14.	 Liang T, Sheng X, Zhou L, Li Y, Gao H, Yin Y, Chen L (2021)
Mobile app recommendation via heterogeneous graph neural net-
work in edge computing. Appl Soft Comput 103:107162

	15.	 Liu Y, Huang A, Luo Y, Huang H, Liu Y, Chen Y, Feng L, Chen T,
Yu H, Yang Q (2020) Fedvision: An online visual object detection
platform powered by federated learning. Proceedings of the AAAI
Conference on Artificial Intelligence 34:13172–13179

	16.	 Long M, Cao Y, Cao Z, Wang J, Jordan MI (2018) Transferable
representation learning with deep adaptation networks. IEEE
Trans Pattern Anal Mach Intell 41(12):3071–3085

	17.	 Ma X, Xu H, Gao H, Bian M (2021) Real-time multiple-workflow
scheduling in cloud environments. IEEE Trans Netw Serv Man-
age. https://​doi.​org/​10.​1109/​TNSM.​2021.​31253​95

	18.	 McMahan B, Moore E, Ramage D, Hampson S, Arcas BA (2017)
Communication-efficient learning of deep networks from decen-
tralized data. In: Artificial intelligence and statistics, pp 1273–1282

	19.	 Mou L, Meng Z, Yan R, Li G, Xu Y, Zhang L, Jin Z (2016) How
transferable are neural networks in nlp applications? In: Conference
on Empirical Methods in Natural Language Processing, pp 479–489

	20.	 Ouyang X, Xie Z, Zhou J, Huang J, Xing G (2021) Clusterfl: a
similarity-aware federated learning system for human activity rec-
ognition. In: Proceedings of the 19th Annual International Confer-
ence on Mobile Systems, Applications, and Services, pp 54–66

	21.	 Sattler F, Wiedemann S, Müller KR, Samek W (2019) Robust
and communication-efficient federated learning from non-iid
data. IEEE transactions on neural networks and learning systems
31(9):3400–3413

	22.	 Sattler F, Müller KR, Samek W (2020) Clustered federated learn-
ing: Model-agnostic distributed multitask optimization under
privacy constraints. IEEE transactions on neural networks and
learning systems 32(8):3710–3722

	23.	 Simonyan K, Zisserman A (2014) Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:14091556

	24.	 Smith V, Chiang CK, Sanjabi M, Talwalkar AS (2017) Federated
multi-task learning. vol 30

	25.	 Wang H, Kaplan Z, Niu D, Li B (2020) Optimizing federated
learning on non-iid data with reinforcement learning. In: IEEE
Conference on Computer Communications, pp 1698–1707

	26.	 Wang K, Mathews R, Kiddon C, Eichner H, Beaufays F, Ramage
D (2019) Federated evaluation of on-device personalization. arXiv
preprint arXiv:191010252

	27.	 Wang Z, Xu H, Liu J, Huang H, Qiao C, Zhao Y (2021) Resource-
efficient federated learning with hierarchical aggregation in edge
computing. In: IEEE Conference on Computer Communications,
IEEE, pp 1–10

	28.	 Xie M, Long G, Shen T, Zhou T, Wang X, Jiang J, Zhang C (2021)
Multi-center federated learning. arXiv preprint arXiv:210808647

	29.	 Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learn-
ing: Concept and applications. ACM Transactions on Intelligent
Systems and Technology 10(2):1–19

	30.	 Yin Y, Cao Z, Xu Y, Gao H, Li R, Mai Z (2020a) Qos prediction
for service recommendation with features learning in mobile edge
computing environment. IEEE Transactions on Cognitive Com-
munications and Networking 6(4):1136–1145

	31.	 Yin Y, Huang Q, Gao H, Xu Y (2020b) Personalized apis recom-
mendation with cognitive knowledge mining for industrial sys-
tems. IEEE Transactions on Industrial Informatics

	32.	 Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable
are features in deep neural networks? vol 27

	33.	 Zheng W, Yan L, Gou C, Wang FY (2021) Federated meta-learn-
ing for fraudulent credit card detection. In: Proceedings of the
Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, pp 4654–4660

	34.	 Zhu X, Wang J, Hong Z, Xiao J (2020) Empirical studies of
institutional federated learning for natural language processing.
In: Findings of the Association for Computational Linguistics:
EMNLP, pp 625–634

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/%20%7e%20kriz/cifar.html
http://www.cs.toronto.edu/%20%7e%20kriz/cifar.html
https://github.com/zalandoresearch/fashion-mnist
https://doi.org/10.1145/3499426
https://github.com/zalandoresearch/fashion-mnist
http://www.cstoronto.edu/%7ekriz/cifar.html
https://doi.org/10.1109/TNSM.2021.3125395

	Adaptive Clustered Federated Learning for Heterogeneous Data in Edge Computing
	Abstract
	1 Introduction
	2 Related Work
	3 Background and Motivation
	3.1 Federated Learning
	3.2 Motivation

	4 Observation
	5 Methodology
	5.1 Overview
	5.2 Selection of Model Weights
	5.3 Adaptive Clustering
	5.4 Incorporating New Client

	6 Evaluation
	6.1 Experimental Setup
	6.2 Results and Analysis

	7 Conclusion
	Acknowledgements
	References

