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Abstract
Although federated learning has been widely used in collaborative training of machine learning models, its practical uses 
are still challenged by heterogeneous data across clients. To alleviate the impact of non-IID data issue, we present an adap-
tive clustered federated learning approach, ������ , which can classify clients into suitable clusters according to their local 
data distribution and train a specialized model for the clients of each cluster. By exploiting the implicit connection between 
local model weights and data distribution on clients, ������ relies on partial selected model weights to measure the data 
similarity between clients and adaptively groups them into the optimal number of clusters. Experimental results on three 
benchmark datasets with various non-IID data settings demonstrate that ������ achieves comparably high model accuracy 
as the state-of-the-art works, yet with a significant reduction on the communication cost.

Keywords  Federated learning · Clustered federated learning · Non-IID challenge · Edge computing

1  Introduction

Nowadays hundreds of millions of IoT devices around the 
world will keep generating huge amount of data every day. 
Edge computing [5, 30] is a more natural solution than send-
ing huge amount of data over the network to cloud servers 
[17], due to bandwidth and privacy constraints. To further 
avoid the privacy leakage risk of edge computing applica-
tions, such as mobile application recommendation [14], fed-
erated learning becomes an effective solution to analyze and 
process the huge amount of data stored in edge nodes [27]. 

Federated learning [18, 29] is a novel computing paradigm 
of distributed machine learning that is able to collectively 
train a globally shared model across multiple decentralized 
clients (e.g., mobile devices) holding local data samples, 
without exchanging them. Thanks to its protections on data 
privacy and data security, federated learning has been widely 
used in many applications, e.g., natural language processing 
[34], computer vision [15], medicine [6] and finance [33].

Despite the huge advantages, the applications of federated 
learning in practice still encounter several major challenges, 
one of which is the non-IID data issue [1, 18]. Since users 
may have different device usage patterns, thus the resultant 
data samples and corresponding labels are usually not inde-
pendent and identically distribution (i.e., non-IID). Previous 
studies demonstrate that joint learning over heterogeneous 
data will not only increase communication cost for con-
vergence of the shared model, but also greatly degrade the 
model accuracy [21]. As a result, non-IID data across client 
devices will hinder further adoptions of federated learning 
in domains like recommender systems, where non-IID data 
is preferable for improving personalized services [7, 31].

Because data samples on client devices cannot be 
accessed or audited by the centralized server, previous works 
thus implicitly address non-IID data issue with novel model 
updating strategies. For example, McMahan et al. [18] pre-
sented the Federated Averaging ( FedAvg ) algorithm that 
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computes one shared model by averaging model parameters 
from all client devices, instead of applying traditional gradi-
ent decent updates. A recent work [25] optimized FedAvg by 
intelligently selecting the clients to participate in each round 
of federated learning using deep reinforcement learning. Due 
to the heterogeneous data distributions, a single model may 
not achieve the best performance for all clients, while mul-
tiple specialized models are required for providing better 
services. Therefore, an emerging framework, named as Clus-
tered Federated Learning (CFL) [22], has been proposed 
to effectively alleviate the impact of non-IID data, while 
still preserving the performance in terms of model accu-
racy and communication cost. Most of existing CFL-based 
approaches [3, 7, 22] primarily group clients into clusters 
with jointly trainable data distributions and accordingly train 
a shared model for each cluster. Specifically, they measure 
the similarity between clients’ data distributions indirectly 
based on their local model updates or the gradients.

Although CFL framework is attractive, the existing CFL-
based approaches are still inefficient. First of all, they mainly 
exploit local model updates or the gradients to approxi-
mately represent the unknown data distribution of each cli-
ent, while we find such an approximation is not effective 
and efficient to guide the clustering of participant clients. 
Abundant local model updates or gradients make it computa-
tionally hard to measure the similarity between clients’ data 
distributions, and meanwhile cause a long process for the 
model convergence. In addition, the performance of CFL-
based approaches heavily relies on the optimal number � of 
clusters. The number � , however, is empirically set in previ-
ous works. In principle, a method to automatically choose 
the optimal � that can best reflect the data distributions of 
all client devices is desired.

To address the limitations of existing works, we propose 
an Adaptive Clustered Federated Learning ( ������ ) to auto-
matically group clients into suitable clusters. By considering 
the implicit connection between model weights and client’s 
data distribution [4, 20, 25, 28], ������ proposes to group 
clients based on the model weights derived by training on 
each client’s local data. To reduce data amount for trans-
ferring and similarity calculation, ������ further refines 
the selection of model weights on each client. Based on the 
representative model weights of clients, ������ makes use 
of the hierarchical clustering to iteratively classify clients 
into the optimal number of clusters. Moreover, ������ has 
a lightweight yet effective mechanism to incorporate the 
new-coming clients into suitable clusters, without obscur-
ing already trained models. And ������ can be applied 
to recommender systems by clustering users with similar 
preferences to recommend more comprehensive content 
for them. We experimentally evaluate ������ on different 
benchmark datasets with various non-IID settings. Experi-
mental results show that ������ can achieve comparably 

high model accuracy as state-of-the-art works, yet with a 
great reduction on communication cost.

2 � Related Work

We discuss the most related works on addressing the data 
heterogeneity issue in federated learning as follows.

Federated learning and non-IID data. Unbalanced data, 
including unbalanced distribution and unbalanced sample 
size, is quite common in the federated setting, where users 
usually have different device usage patterns, while non-IID 
data across client devices will significantly harm the per-
formance of federated learning. Specifically, for a movie 
recommendation application, different users may have dif-
ferent types of preferences, e.g., user A likes action movies, 
while user B prefers comedy movies, which leads to different 
distributions of data for different users, i.e., non-IID data; 
in addition, different users may use the application at differ-
ent frequencies, which also leads to different sample sizes 
for different users, i.e., unbalanced data. Non-IID data can 
cause more serious performance loss to federal learning than 
unbalanced data. Thus, recent studies [9, 12] have showed 
that non-IID data will cause slow or even no convergence in 
the training phase of federated learning, resulting in much 
more communication rounds. Therefore, how to address the 
non-IID data issue becomes a hot research topic in feder-
ated learning. McMahan et al. [18] proposed the federated 
optimization algorithm FedAvg , which aggregates a global 
model by weighted averaging the parameters of each local 
model to alleviate the impact of non-IID data. However, Li et 
al. [13] theoretically proved that non-IID data will increase 
the communication cost of FedAvg . To speed up the training 
of federated learning, a recent work [25] improved FedAvg 
by actively selecting devices to participate in each round of 
training through a deep reinforcement learning model. More-
over, some works leveraged the heterogeneous data across 
client devices to train personalized models by exploiting 
techniques like transfer learning [26] and multi-task learn-
ing [24].

Clustered federated learning (CFL) is an emerging 
framework to attack data heterogeneity for efficient feder-
ated learning [22]. The CFL framework proposes to group 
all client devices into clusters based on their local data dis-
tributions and trains an independent model for the clients 
of each cluster. Since data samples of clients cannot be 
accessed, [3, 22] thus suggested to group clients based on 
the cosine similarity of their local model updates or gradi-
ents. More specifically, Sattler et al. [22] proposed FMTL , 
which iteratively divides clients into clusters. Initially, all 
clients form a cluster to train a model. Latter, the server 
calculates the cosine similarity between local model updates 
of clients in the same cluster, and divides the cluster into two 
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new clusters according to clients’ similarities. FMTL repeats 
above operations until no new cluster is generated. Ghosh 
et al. [7] proposed IFCA that evaluates the experience loss 
of � global models over clients’ local data and then assigns 
a client to the cluster, where the global model with the low-
est experience loss is located. However, the performance 
of IFCA heavily relies on number � that is empirically set. 
Although these CFL-based approaches have shown attrac-
tive performance, they are still not sufficiently efficient, just 
as discussed in the next section.

3 � Background and Motivation

3.1 � Federated Learning

Federated learning is a privacy-protected framework that 
allows distributed clients to train machine learning model 
collaboratively without exchanging their local data [18]. In 
federated settings, there are usually m clients and one central 
server, where clients are responsible for collecting and stor-
ing data, and using the data to train local models, and the 
server is responsible for aggregating local models in some 
way to build a globally shared model. The server and clients 
communicate according to a predetermined communication 
protocol. Because all raw data are stored by distributed cli-
ents, the central server cannot access them and thus has no 
prior knowledge of the data distributions across devices.

To implement the idea of federated learning, McMahan 
et al.  [18] firstly proposed a federated averaging algorithm 
( FedAvg ) to optimize the communication efficiency of feder-
ated learning over real-world data, which are usually hetero-
geneous across different client devices. Specifically, FedAvg 
trains a globally shared model by weighted averaging the 
parameters of clients’ local models, and the goal of FedAvg 
is typically to minimize the following objective:

where we assume client i has local dataset Di , ni = ‖‖Di
‖‖ 

and N =
∑m

i=1
ni . The local objective fi can be defined 

as calculating local empirical risk on the dataset Di . 
Note that the empirical loss function in federated learn-
ing usually depends on the specific task. For instance, 
for multi-class tasks, cross-entropy loss is defined as 
fi(�) =

∑C

a=1
p(y = a)�x∣y=a[log(fa(x, �))] , where fa repre-

sents the probability of predicting sample x as the class a, 
and C is number of label classes.

It is experimentally proved that FedAvg can approximate 
the model trained on centrally collected data given the 
data across all clients are IID [18]. In practice, however, 
the actual data produced by different clients are usually 

(1)min
�

{
�(�) ≜

m∑

i=1

ni

N
fi(�)

}
,

heterogeneous and thus non-IID. The data heterogeneity 
issue will severely harm the convergence and performance 
of federated learning in practical applications. Recently, a 
promising framework, named clustered federated learning 
(CFL) [22], has been proposed to address the data heteroge-
neity issue, and already attracted some research efforts. We 
formally define the CFL framework as follows.

Definition 1  (Clustered Federated Learning (CFL)) Given 
m client devices, ℂ =

{
c1,⋯ , cm

}
 , owning non-IID data, 

CFL aims to group these devices into a set of disjoint clus-
ters G = {��,⋯ , ��} , where 

⋃�

i=1
�� = ℂ and �� ∩ �� = ∅ 

( i ≠ j ). The device data of each cluster are approximately IID 
and can be used to train a shared model with good perfor-
mance in terms of communication cost and model accuracy.

There exist some novel CFL-based approaches [3, 7, 22], 
and they mainly differ in obtaining clusters G with differ-
ent similarity measures and � settings. Specifically, [22] 
utilizes the cosine similarity between local model updates 
or gradients to measure the similarity between clients’ data 
distributions. [7] randomly generates � global models, and 
then iteratively assigns client ci into cluster �� once the j-
th model can derive the highest accuracy for ci ’s data. In 
addition, [3] also adopts the cosine similarity between local 
model updates, and divides clients into � clusters through 
the k-means algorithm.

3.2 � Motivation

Although CFL-based solutions [3, 7, 22] have shown great 
advantages than FedAvg over non-IID data, they are still 
insufficiently efficient due to their clustering strategies. We 
examine their performance and illustrate the limitations with 
experiments.

In our experiments, we will train several CNN models 
with PyTorch on the CIFAR-10 dataset. For a clear illustra-
tion, we train CNN models over m = 100 client devices with 
non-IID setting � = 0.8 through federated learning (Please 
see more experimental settings in Sect. 6.1). By analyzing 
the design and experimental results of existing CFL-based 
approaches, we observe their limitations as follows: 

(1)	 Hard to set the optimal � . Most of the existing 
approaches [3, 7] need to specify the number of clus-
ters � in advance, while in reality the data distribu-
tions across clients are unknown and thus the optimal 
� is difficult to determine. We conduct an experiment 
to study the impact of � on model accuracy by run-
ning the approach in [7] for 20 communication rounds. 
Figure 1(a) plots the results. When we only train one 
model for all clients (i.e., � = 1 that works similarly 
as FedAvg ), the model accuracy is the lowest, which 
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implies that training one single model across non-IID 
data is inadequate. In addition, when we increase the 
cluster number � , the average model accuracy improves 
as well and achieves the best when � = 12 . When we 
further increase � , the average accuracy, however, 
drops. This experiment demonstrates that � is highly 
relevant with model accuracy and an adaptive mecha-
nism to find the optimal � is important for CFL-based 
approaches.

(2)	 Unstable clustering efficiency. There indeed exist a 
few CFL-based approaches [22] that are able to group 
clients into a suitable number of clusters. Taking FMTL 
proposed in [22] as an example, once an initial clus-
ter has achieved a stationary model, it would be fur-
ther separated into two smaller clusters for training 
more specialized models. Therefore, FMTL serves as 
a post-processing method of federated learning and it 
requires a long time to derive the optimal � clusters. 
We implement FMTL and conduct an experiment to 
test its clustering efficiency. For a clear illustration, we 
select 30 out of 100 clients, which can be divided into 
three clusters, to participate in the federated learning 
for 50 communication rounds. Figure 1(b) compares 
the performances of FMTL and FedAvg . It sees that 
FedAvg performs much stably than FMTL . Although 
FMTL can search for the best setting of � , it needs to 
cluster clients for several times and the efficiency is not 
good. 

(3)	 Should all model weights be used? When we adopt 
federated learning to train deep leaning models for 
distributed client devices, CFL-based approaches usu-
ally involve the calculation of model similarity which 
reflects the data distribution, using model weights or 
model updates. For example, Table 1 summarizes the 
number of model weights for three simple CNN models 
designed for different datasets (See more details about 
the datasets and models in Sect. 6.1). These models 
are simple, while in practice they are usually more 
complex, but in mobile computing, federated learning 
systems usually have to deal with tens of thousands of 

models. If the similarity between a large number of 
models is calculated at the same time, it will undoubt-
edly put a huge pressure on the server. In addition, 
existing literature has already shown that there are dif-
ferences between different layers in the same model and 
that the weights at higher levels are more task-related 
compared to the weights at lower levels [16, 19, 32]. 
So, is it possible that the model similarity calculated 
using partial weights is more conducive to clustering 
than using all weights?

Considering above limitations, we thus propose an adaptive 
clustered federated learning approach – ������ , which owns 
the following valuable merits:

•	 A better indicator of data distribution similarity to guide 
stable and efficient client clustering.

•	 An automatic mechanism to find the optimal � for better 
model accuracy and communication cost.

4 � Observation

Although the existing literature has shown that there are 
differences between different layers in the same model [16, 
19, 32], there is no literature available to study how such dif-
ferences affect federated learning. In this section, we further 
experimentally investigate the differences between different 
layers of the model in federated learning.

We construct a multi-classification task for images over 
CIFAR-10 [10] with VGG16 [23], Fig. 2 shows four differ-
ent distance matrices are computed based on the weights 

Table 1   Statistics of three CNN model weights

Model Total weights Weights per layer

MnistCNN 33500 500 / 25000 / 8000
CifarCNN 6850 450 / 2400 / 4000
FmnistCNN 21200 400 / 12800 / 8000

Fig. 1   The empirical study 
of existing CFL-based 
approaches (a) Impact of κ (b) 
Clustering efficiency 

(a)

First Clustering

Second Clustering

(b)
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of the different four layers in VGG16. To simulate non-IID 
data across clients, we set up 10 different clients and directly 
divided them into two groups based on the kind of labels 
that were assigned.

From Fig. 2, we can observe that the distance matrix 
based on the weights of the different layers in the model 
reflects the different clustering of clients. Specifically, 
Fig. 2(a) and (b) show the distance matrices based on two 
convolutional layers respectively. However, we cannot obvi-
ously acquire the cluster structure of the clients from them, 
while the clustering phenomenon of clients can be clearly 
observed from Fig. 2(c) and (d). Combining the above exper-
imental results and existing literature [16, 19, 32], we can 
conclude that the model difference caused by non-IID data 
are mainly in the fully connected layers or layers with clas-
sifier function.

5 � Methodology

5.1 � Overview

Our proposal ������ follows CFL framework’s workflow 
as well. At the high level, ������ adaptively classifies m 
clients into � clusters, i.e., G =

{
��,⋯ , ��

}
 , based on a novel 

similarity measure on their underlying data distributions. 
Instead of training only one single global model for all cli-
ents, the clients of each group �� will collectively train one 
shared model with objective defined as follows:

where n�� and ncj represent the number of data samples for 
cluster �� and client cj , respectively, and fij(���) calculates the 
empirical risk on cj ’s local dataset Dj.

(2)min
���

{
�(���) ≜

∑

cj∈��

ncj

n��

fij(���)

}

Figure  3 illustrates the framework of our proposal 
������ . The cycle of ������ is similar to FedAvg, and we 
embed the client clustering process into the cycle of FedAvg. 
Specifically, after several communication rounds between 
the server and the clients, as described in FedAvg, the server 
calculates the similarity matrix between models based on the 
partial model weights uploaded by each client. Based on the 
similarity matrix of model weights, our proposed adaptive 
clustering can group the clients with similar data distribution 
into the same cluster. It is noted that the above clustering 
process is done in one communication round. Given m par-
ticipate clients, ������ lets each client train a local model 
using its own data. Different from local model updates or 
gradients, it is believed that the model weights can better 
represent ci ’s data distribution and ������ proposes to clus-
ter clients based on the similarity of their model weights. 
Instead of employing all weights of a model, ������ care-
fully selects partial model weights as the representation of 
a client’s data distribution (Sect. 5.2). At the server side, 
������ adaptively classifies all clients into � clusters based 
on the similarity of their partial model weights by leveraging 
the hierarchical clustering algorithm (Sect. 5.3). The cluster-
ing results are then sent back to clients and each group will 
collaboratively train a shared model. Furthermore, ������ 
can also incorporate new client cnew , and intelligently groups 
it to cluster �∗ that introduces the minimum empirical risk 
after accepting cnew (Sect. 5.4).

5.2 � Selection of Model Weights

It is observed that there exist an implicit connection between 
data distribution on a client ci and the model weights trained 
on ci ’s dataset [25]. Therefore, ������ makes use of client 
ci ’s model weights to comprehensively represent its data 
distribution. Once the local model of each client is trained, 
the distribution difference between clients’ local data can 
be measured by the difference between their model weights, 

(a) (b) (c) (d)

Fig. 2   Visualization of the distance matrices based on the weights 
of the four different layers, where Conv denotes convolutional layer 
and FL denotes fully connected layer. The lighter color in the figure 

indicates the smaller value of the corresponding position in the dis-
tance matrix, i.e., the more similar the two models are  (a) Layer 1 
(Conv) (b) Layer 7 (Conv) (c) Layer 14 (FL) (d) Layer 16 (FL)
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which is referred as model distance. To quantify the model 
distance between any two clients ci and cj , we calculate the 
l2 distance between their model weights as:

In principle, if two clients have similar data distributions, 
they tend to train models with more similar weights com-
pared to clients with dissimilar data, and thus the distance 
between model weights will be smaller [20, 22, 25, 28]. 
Hence, model distance can be used as an effective indica-
tor to guide the clustering of clients. After obtaining model 
weights of all clients, the server will calculate a distance 
matrix M of size m × m . Each item Mij represents the model 
distance dist(ci, cj) between clients ci and cj . Assuming the 
model weight size for each client is p, then the computation 
overheads for calculating M is O(m2p2).

Considering that federated learning usually involves tens 
of thousands of client devices, while target machine learn-
ing models (in particular deep learning models) could be 
complex with numerous parameters, e.g., the VGG16 model 
contains 138M weights [23]. As a result, the computation 
cost for model weights based clustering would be extremely 
huge and thus affects the clustering efficiency.

We have experimentally demonstrated that the higher-
layers weights of the model reflect the differences caused 
by having non-IID data better than the lower-layers weights. 
Therefore, if the model similarity is calculated using all 
weights when the number of low-layers weights is a high 
proportion of the model, a bad similarity matrix will be 
obtained thus reducing the accuracy of clustering.

To reduce the computation overheads and improve clus-
tering accuracy, we choose partial weights 𝜃̂ci of the local 

(3)dist(ci, cj) =
‖‖‖�ci − �cj

‖‖‖l2
.

model on client ci , rather than all model weights �ci , for simi-
larity measures. For deep learning models proposed for clas-
sification tasks, e.g., CNN models, the convolutional layers 
are designed to extract features of the input, while the fully 
connected layer aims to achieve the goal of classification. 
Therefore, the weights of fully connected layer are task-
specific, and thus are more task-related. In ������ , we thus 
select the partial weights, which include weights and bias 
from fully connected layers with the least number of param-
eters, to approximately represent the whole model. We use 
a convolutional neural network as an example. In fact, we 
select the layer with the lowest number of weights from the 
layers with classifier function in the model, including CNN, 
RNN and MLP, as a representative of the all model weights.

Specifically, the partial model weights are determined by 
𝜃̂ci = argmin ||𝜃[a]

ci
||l1 , a ∈ � , where � represents the set of 

layers for client ci ’s model and ||�[a]||l1 returns the number 
of weights in the a-th fully connected layer. We select partial 
model weights for each clients, and use these weights to 
calculate distance matrix M . Since the size of 𝜃̂ci is much 
smaller than �ci , the computation cost is thus greatly reduced.

5.3 � Adaptive Clustering

To boost the clustering of all client devices, ������ requires 
each client ci to report some statistics about its local dataset 
Di , including the number of sample classes Lci and Shannon 
Entropy sci . Specifically, sci is computed as

(4)sci = −
�

j∈{1,⋯Lci
}

bj

‖Di‖
log2(

bj

‖Di‖
)

Fig. 3   The framework of our 
proposal ������ Adaptive Clustering

a) Pre-clustering

{ ̅ , … , ̅ } ← { , … , }

b) Hierarchical Clustering

= { ,… , } ← { ̅ , … , ̅ }

Selection of Model Weights
{ , … , }

New Client
∗ = ,

Global models

{ , … , }

Local models

{ , … , }

Local Modeling 
{ , … , }
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where bj is the number of data samples for class j and ‖Di‖ 
is the total number of data samples on client ci . Intuitively, 
if client devices have similar number of sample classes and 
Shannon Entropy, they may have similar data distributions 
and will be grouped together with a higher probability. Thus, 
we can pre-cluster such clients and then adjust the initial 
clusters through their partial model weights. ������ clas-
sifies all clients into clusters with the following two stages: 

(1)	 Pre-clustering stage. The server collects simple statis-
tics of data distribution from each client, and roughly 
classifies all clients into clusters Go =

{
𝐠̄𝟏,⋯ , 𝐠̄𝐤

}
 

according to their Shannon Entropy with a gap of 10%.
(2)	 Hierarchical clustering stage. For each cluster 𝐠̄𝐣 

belonging to Go , the server will calculate a distance 
matrix Mj for its cluster members. Compared to com-
pute model distances among m clients, the total com-
putation costs for deriving distance matrices for all 

initial clusters are further reduced. Based on the dis-
tance matrices, i.e., {M1,⋯M

k} , for all initial clus-
ters, the server runs hierarchical clustering algorithm 
[2] to perform fine-grained clustering on all clients, 
without specifying the desired number of clusters. In 
general, hierarchical clustering relies on an agglom-
erative strategy. It calculates the similarity between 
any two data points, merges the two most similar data 
points and iterates this process until the termination 
condition is met. In our work, the distance matrices are 
used as the input of hierarchical clustering, and 

initially all clients have been pre-clustered. The 
nearest clusters are merged iteratively until the distance 
between them is greater than the distance threshold � . 
The distance threshold � in hierarchical clustering can 
be set enlighteningly, depending on the obtained hier-
archy, which is simple and less costly compared to the 
setting of parameters in other algorithms. Finally, we 
will obtain � clusters G =

{
��,⋯ , ��

}
 , where clients 

of each cluster should have the most similar data dis-
tributions and can train a shared model achieving the 
best performance. Unlike existing methods that require 
the developer to set the number of clusters � , adaptive 
clustering can find the optimal � from the similarity 
matrix, as long as the similarity matrix can reflect the 
client cluster signs. Algorithm 1 shows the details of 
the clustering process. 

5.4 � Incorporating New Client

In practice, due to unstable client communication or other 
resource constraints (e.g., energy power on mobile devices), 
client devices may join in or drop out of the federated learn-
ing process. The client quit events actually have no influ-
ences on the model training of their original clusters. How-
ever, we need to carefully handle the events of new-coming 
clients. New-coming clients include clients that are not in the 
existing client set and clients whose local data has changed. 
If the clients with changed local data are not re-clustered, 
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serious non-IID data issue may occur within the clients clus-
ter. In order to group each new client cnew into one appro-
priate cluster, cnew is required to train a local model using 
its own data, and then transmits partial selected weights to 
the server. For each cluster, ������ maintains a copy of 
its partial model weights. Once receiving the partial model 
weights from new client cnew , the server will calculate the 
model distances between cnew ’s model and all global models 
of existing clusters. The cluster �∗ , which has the minimum 
model distance with cnew as expressed in Eq. (5), will accept 
cnew , and updates its shared model with data owned by cli-
ent cnew.

It is possible that cnew has distinct data distribution from 
existing client devices, thus it can form a new cluster indi-
vidually once the model distances between cnew and any 
existing cluster is larger than a threshold � . In practice, the 
threshold � is usually set to the maximum distance between 
existing cluster models, i.e., 𝜀 = max dist(𝜃̂�� , 𝜃̂��) . Moreover, 
when some client devices have significant changes on the 
usage behaviors, they will have quite different data distribu-
tions accordingly. Such clients can also be treated as new 
clients to join in other existing clusters or form new ones. 
Algorithm 2 depicts the pseudocode of incorporating a new 
client.

(5)�∗ = argmin
��

dist(𝜃̂cnew , 𝜃̂��), �� ∈ G.

Privacy and security analysis: Combining our proposed 
weight selection, adaptive clustering and incorporating new 
client can achieve a more efficient and more adaptive CFL 
approach. In addition, similar to FedAvg, ������ only 
requires individual clients to report local model weights and 
the Shannon entropy computed locally. Since the Shannon 
entropy is computed locally at each client, the server cannot 
know the specific data distribution of the client nor can it 
infer the raw data of the client.

6 � Evaluation

6.1 � Experimental Setup

We have implemented ������ with PyTorch, and conducted 
performance evaluation in a powerful server that is equipped 
with AMD 2600X CPU and GTX 1660Ti GPU. In ������ , 
we set threshold � = 1.4 and � = 1.8 . We compared ������ 
with baseline approaches by training popular CNN models 
on benchmark datasets under different non-IID data settings.

Baseline approaches. We choose FedAvg [18] and two 
representative CFL-based approaches, i.e., FMTL [22] and 
IFCA [7], for performance comparisons. As introduced 
in Sect. 2, FedAvg trains a single model by averaging the 
weights of all clients’ local models, while both FMTL and 
IFCA follow CFL framework. In particular, FMTL works 
with an empirical � setting, while IFCA can form the suit-
able clusters.

Datasets and models. We evaluate all approaches on 
three publicly open datasets with well-tuned model param-
eters and different data distributions, following non-IID data 
settings similar as [18] and [25].

•	 MNIST [11] contains 10 classes of handwritten digits, 
where the size of each sample is 28 × 28 . We train a CNN 
model, i.e., MnistCNN, which has two 5 × 5 convolu-
tional layers and each convolutional layer is followed by a 

2 × 2 max-pooling layer. The numbers of output channels 
for the two convolutional layers are 20 and 50, respec-
tively. Each output channel has a bias. Each client uses 
the batch size as 100 for model training.

•	 CIFAR-10 [10] contains 10 classes of RGB images, 
where the size of each sample is 32 × 32 . We train a CNN 
model, i.e., CifarCNN, which has two 5 × 5 convolutional 
layers and each convolutional layer is followed by a 2 × 2 
max-pooling layer. The numbers of output channels for 
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the two convolutional layers are 6 and 16, respectively. 
Each output channel has a bias. On each client, the batch 
size is set as 50.

•	 FashionMNIST [8] contains 10 classes of images, where 
the size of each sample is 28 × 28 . We train a CNN 
model, i.e., FmnistCNN, which has two 5 × 5 convolu-
tional layers and each convolutional layer is followed by a 
2 × 2 max-pooling layer. The numbers of output channels 
for the two convolutional layers are 16 and 32, respec-
tively. Each output channel has a bias. Each client uses 
the batch size as 150 for model training.

Table 1 summarizes the weight statistics about the three 
models. We adopt two strategies to simulate the non-IID 
data distributions. (1) Similar as [25], we use a parameter 
� to produce different levels of non-IID data. For instances, 
� = 1.0 means that each client only contains samples of one 
class, and � = 0.8 means that 80% of the samples in each cli-
ent belong to the same class while the remaining 20% belong 
to other classes. (2) Similar as [18], each client contains two 
classes of samples, and there are 100 clients, which can be 
divided into 10 groups according to their local data. We use 
� = B to denote this setting. For all datasets and models, 
we set the learning rate � at training to 0.01, which allows 
the local model to converge quickly and correctly. And the 
number of local epochs is to 1, which is consistent with the 
FMTL.

Performance metrics: We use the number of communi-
cation rounds and model accuracy as the performance met-
rics. In general, fewer communication rounds and higher 
model accuracy are preferable.

6.2 � Results and Analysis

Performance comparison. Table 2 shows the performance 
comparisons among all approaches by training models in 
50 rounds. For each experiment, we record the final model 
accuracy and the communication rounds to achieve this 
accuracy. For example, the result 97.03%(15) in Table 2 
means that the final model accuracy is 97.03% and FedAvg 
achieves this accuracy at the 15-th round. In general, when 
we increase � (i.e., from 0.5 to 1.0), the average model accu-
racy of all approaches except FedAvg improves. It is because 
when � increases, clients’ data are more heterogeneous, and 
one single model trained by FedAvg becomes inadequate to 
accurately model all distributed data. In contrary, CFL-based 
approaches perform better by clustering clients owning sim-
ilar data distributions to train an independent model. For 
the second setting (i.e., � = B ), CFL-based approaches also 
significantly outperform FedAvg on both model accuracy 
and communication rounds. Among the three CFL-based 
approaches, although IFCA has won more times of the high-
est accuracy than ������ , we find the accuracy gap between 

������ and IFCA is extremely small, i.e., 0.04% ∼ 1.05% . 
On the other hand, we find ������ can always have the few-
est rounds to achieve the converged accuracy, which implies 
that our clustering results are much better than both FMTL 
and IFCA through correctly distinguishing clients’ data 
distributions. Table 3 shows the ground truth of number of 
clusters and the actual number of clusters under different 
experimental settings. Only at � = 0.5 , there is a slight gap 
between the actual value and ground truth, while at other 
experimental settings ground truth and actual values agree. 
This shows that our method can find the optimal number of 
clusters in most experimental settings.

In summary, our proposal ������ is able to achieve com-
parably higher model accuracy as the state-of-the-art works, 
e.g., IFCA , yet with a significant reduction on communica-
tion rounds, e.g., on average by 6.26×.

Table 2   Performance comparisons of different approaches over dif-
ferent datasets and various non-IID data settings. The number in 
brackets indicates communication rounds to converge to final accu-
racy. The best results in each experiment setting are marked in bold

� Approach MNIST CIFAR-10 FMNIST

0.5 FedAvg 97.03% (15) 35.40% (38) 81.94% (22)
FMTL 96.77% (10) 53.94% (31) 83.12% (16)
IFCA 96.12% (8) 58.53% (6) 85.19% (14)
������ 96.53% (4) 57.51% (2) 84.97% (7)

0.8 FedAvg 96.62% (14) 31.20% (42) 76.03% (18)
FMTL 97.22% (12) 63.43% (25) 85.56% (16)
IFCA 98.06% (8) 79.61% (3) 91.23% (11)
������ 99.12% (5) 79.87% (2) 91.56% (9)

1.0 FedAvg 94.37% (20) 26.15% (33) 79.07% (30)
FMTL 97.64% (15) 82.27% (38) 97.03% (36)
IFCA 99.83% (5) 99.81% (6) 99.96% (4)
������ 99.67% (2) 99.73% (3) 99.92% (2)

B FedAvg 95.95% (16) 44.61% (32) 81.80% (26)
FMTL 97.65% (24) 78.85% (37) 93.73% (33)
IFCA 99.38% (5) 86.95% (14) 97.59% (6)
������ 99.12% (3) 85.90% (10) 98.93% (3)

Table 3   The ground truth of number of clusters and the actual num-
ber of clusters under different experimental settings

� Approach MNIST CIFAR-10 FMNIST

0.5 Ground truth 5 10 5
Practical 5 8 4

0.8 Ground truth 5 10 5
Practical 5 10 5

1.0 Ground truth 5 10 5
Practical 5 10 5

B Ground truth 10 10 10
Practical 10 10 10
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Complete vs partial model weights. We conduct an exper-
iment to examine the effectiveness of model weight selection, 
and compare the performances of ������ with complete 
weights and partial weights. Table 4 presents the results in 
non-IID settings � = 0.8 and � = B on the three datasets. 
Surprisingly, we find that ������ with partial weights out-
performs the version with complete weights in terms of both 
model accuracy and communication rounds. The reason may 
be that the majority of CNN model weights come form con-
volutional layers, while they have little distinction and thus 
interfere the similarity measures among clients. As a result, the 
complete model weights cannot be a good indicator to guide 
the client clustering. In contrary, the model weights selected by 
������ are more task-specific and can effectively distinguish 
the underlying data distributions among clients.

To further verify whether using the fully connected layer 
with the least number of weights gives similar clustering 
results as the fully connected layer with a high number of 
weights, we add a fully connected layer to the MnistCNN, 
CifarCNN and FmnistCNN. The number of weights of 
the two fully connected layers are 80000 and 8000 for 
MnistCNN, 40000 and 4000 for CifarCNN and 80000 and 
8000 for FmnistCNN, respectively. Figure 5 shows the 
model accuracy when the model similarity matrix is cal-
culated using the first fully connected layer and the second 
fully connected layer, respectively.

Because ������ selects partial model weights for cluster-
ing, it thus can reduce the computation overhead of calculat-
ing the similarity between clients. As shown in Fig. 4, the 
computation time is significantly reduced to within 1 second 
when compared to clustering with complete model weights.

Impact of new clients. To study the impact of new cli-
ents, we add 10 new clients after the training phase of all 

shared models (i.e., in the 20-th round), where we set � = 0.5 
and � = 1.8 for this experiment. Figure 5 plots the results on 
the three datasets. The accuracy on each dataset will slightly 
decrease when new clients are added, but ������ can quickly 
include new clients to the appropriate clusters and meanwhile 
new clients will not affect the final model accuracy.

7 � Conclusion

This paper proposes an efficient clustered federated learning 
framework, ������ , to address the data heterogeneity issue. 
By exploiting the implicit connections between data distri-
bution and model weights, ������ proposes to use partial 
well-selected model weights to group clients with non-IID 
data into clusters and trains a specialized model for clients of 
each cluster. ������ can solve the non-IID problem in feder-
ated learning well and can be applied to several scenarios, 
especially in recommender systems. For example, in recom-
mender system applications, users with similar preferences 
are divided into groups so that more comprehensive content 

Table 4   Performance comparisons between clustering with complete 
weights and clustering with only partial weights

� Weights MNIST CIFAR-10 FMNIST

0.8 Complete 95.94% (12) 32.47% (37) 77.68% (19)
Partial 99.12% (5) 79.87% (3) 91.56% (9)

B Complete 95.84% (14) 38.81% (23) 77.51% (19)
Partial 99.12% (3) 85.90% (10) 98.93% (3)

Table 5   Performance comparisons between clustering with weights 
of first fully connected layer and second fully connected layer. The 
first fully connected layer has more weights and the second fully con-
nected layer has fewer weights

� Weights MNIST CIFAR-10 FMNIST

0.8 First 99.17% 79.79% 91.60%
Second 99.14% 79.84% 91.56%

B First 99.14% 85.95% 99.06%
Second 99.12% 86.10% 98.93%

Fig. 4   Computation overhead

New Clients

Fig. 5   Impact of new clients
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can be recommended for users. We evaluate ������ on three 
open datasets with various non-IID data settings. Experimental 
results demonstrate that ������ achieves comparably high model 
accuracy as state-of-the-art approaches, yet with a significant 
reduction on the communication cost, e.g., on average by 6.26×.
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