
182 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 1, JANUARY 1, 2022

mT-Share: A Mobility-Aware Dynamic Taxi
Ridesharing System

Zhidan Liu , Member, IEEE, Zengyang Gong, Jiangzhou Li, and Kaishun Wu , Member, IEEE

Abstract—Due to the wide availability of taxis in a city and
the tremendous benefits of ridesharing, taxi ridesharing becomes
promising and attractive in recent years. Existing taxi ridesharing
schemes simply match ride requests and taxis based on partial
trip information and omit the offline passengers, who will hail a
taxi at the roadside without submitting the ride requests to the
system. Thus, they are still not efficient and practical. In this
article, we consider the mobility-aware taxi ridesharing problem
and present mT-Share to address these limitations. mT-Share fully
exploits the mobility information of taxis and ride requests to
achieve efficient indexing of taxis/requests and better passenger–
taxi matching, while still satisfying the constraints on passengers’
deadlines and taxis’ capacities. Specifically, mT-Share makes use
of both geographical information and travel directions to index
taxis and ride requests and supports the shortest path-based
routing and probabilistic routing to serve both online and offline
ride requests. In addition, mT-Share proposes a novel payment
model to share the ridesharing benefits among the taxi driver and
passengers. Extensive evaluations using a large real-world taxi
data set demonstrate the efficiency and effectiveness of mT-Share,
which can respond each ride request in milliseconds and be with
moderate detour costs and passengers’ waiting time. Compared
to state-of-the-art schemes, mT-Share can serve 42% and 62%
more ride requests in peak and nonpeak hours, respectively.
Furthermore, mT-Share can save 8.6% taxi fare for passengers
and meanwhile increase 7.8% incomes for taxi drivers, when
compared with the regular taxi services.

Index Terms—Clustering, mobility pattern, payment model,
route planning, taxi ridesharing.

I. INTRODUCTION

R IDESHARING utilizes one vehicle to serve multiple
passengers, who have similar time schedules and

Manuscript received June 4, 2021; revised July 26, 2021; accepted
August 2, 2021. Date of publication August 5, 2021; date of current
version December 23, 2021. This work was supported in part by the
National Science Foundation of China (NSFC) under Grant 61802261,
Grant 61872248, and Grant U2001207; in part by the Guangdong Basic
and Applied Basic Research Foundation under Grant 2020A1515011502 and
Grant 2017A030312008; in part by the Shenzhen Science and Technology
Foundation under Grant ZDSYS20190902092853047 and Grant R2020A045;
in part by the Project of DEGP under Grant 2019KCXTD005; and in
part by the Guangdong “Pearl River Talent Recruitment Program” under
Grant 2019ZT08X603. This article was presented in part at the IEEE
36th International Conference on Data Engineering (IEEE ICDE 2020),
Dallas, TX, USA, April 20–24, 2020 [DOI: 10.1109/ICDE48307.2020.00088].
(Corresponding author: Kaishun Wu.)

Zhidan Liu, Jiangzhou Li, and Kaishun Wu are with the
College of Computer Science and Software Engineering, Shenzhen
University, Shenzhen 518060, China (e-mail: liuzhidan@szu.edu.cn;
lijiangzhou2018@email.szu.edu.cn; wu@szu.edu.cn).

Zengyang Gong is with the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology, Hong Kong
(e-mail: zgongae@cse.ust.hk).

Digital Object Identifier 10.1109/JIOT.2021.3102638

itineraries, and thus potentially brings many benefits for
an urban city, e.g., alleviating traffic congestion and reduc-
ing energy consumption [29]. Recently, taxi ridesharing
becomes promising because of the wide availability of taxis
in a city [24], [30], [53]. Different from the carpooling
services [16], [36], which normally serve static ride requests
with early planned routes, taxi ridesharing is relatively more
complex. This is because both taxis and ride requests are
extremely dynamic [29]. Once passengers need a ride, they
submit their requests immediately with no prior planning. Even
worse, some passengers prefer to hail a taxi at roadside with-
out explicitly submitting their requests. Compared to private
vehicles-based ridesharing [5], [11], [12], [36], taxis are oper-
ating all the time and thus are more flexible yet complex. These
properties cause taxi ridesharing especially challenging, since
ride requests have to be assigned to proper taxis timely and the
schedule/route of a shared taxi should be constantly updated
to guarantee the quality of service [28].

Some valuable efforts have been devoted to design taxi
ridesharing schemes [18], [28]–[30], [53]. For a given ride
request, these schemes usually make use of the request’s ori-
gin location and geographical distribution of available taxis
to determine a candidate taxi set, and then select the one,
which introduces the minimum detour cost while satisfying
other passengers’ service requirements, to serve the request.
Due to some practical limitations, however, the schemes are
not sufficiently efficient yet. First, most previous schemes only
utilize partial trip information, i.e., taxis’ current locations and
a request’s origin location, to determine the candidate taxi set.
As a result, they may not find the most suitable taxi to serve a
request. Second, existing schemes merely consider online ride
requests, while in practice, some passengers may be offline as
they hail a taxi at roadside. Thus, such passengers are invis-
ible to the system. Regarding users’ preferences of getting
taxi services, a recent taxi service research report shows that
41.68% of users prefer either online booking or offline hail-
ing, while 13.71% of users get taxi services only in an offline
manner [3]. As a matter of fact, the amount of offline requests
could be quite large (i.e., 13.71%–55.39% of users), and an
appropriate scheme is required to well handle such requests.

In this article, we will consider a practical taxi rideshar-
ing problem, namely, mobility-aware taxi ridesharing (MTR).
The MTR problem aims to completely exploit the mobil-
ity information from both taxis and ride requests, so as to
maximize the number of served requests and minimize the
overall detour cost, subject to the constraints of passengers’
deadlines and taxis’ capacities. However, we find that the MTR

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0211-877X
https://orcid.org/0000-0003-2216-0737

LIU et al.: mT-SHARE: MOBILITY-AWARE DYNAMIC TAXI RIDESHARING SYSTEM 183

problem is extremely challenging. The challenges primarily
stem from two aspects, namely, the high dynamics of online
requests and taxis and the uncertainty of offline requests.

To address the above problem and improve the exist-
ing schemes, we propose a novel taxi ridesharing scheme,
named mT-Share, by fully exploiting both the known mobility
information from ride requests and taxis and the hidden mobil-
ity patterns from historical data to match requests with the
most suitable taxis. The key idea of mT-Share is that the best
passenger–taxi matches should be the pairs of ride requests
and taxis, which have geographically close origins and des-
tinations and share the similar travel directions. Therefore,
mT-Share proposes the bipartite map partitioning and mobil-
ity clustering to efficiently index ride requests and taxis from
these two aspects, respectively. Thanks to the built indexes,
mT-Share can assign the most suitable taxi to serve a request
via the mobility clustering and a proper similarity measure.
With the map partitions, mT-Share enables two routing modes
and further optimizes passenger–taxi matching by improving
taxi scheduling efficiency, while simultaneously satisfying the
constraints on both requests’ deadlines and taxi’s capacity. By
considering the mobility patterns of taxi orders [10], [23],
we propose a novel probabilistic routing that allows shared
taxis to opportunistically encounter offline requests with much
higher probabilities. Furthermore, mT-Share proposes a pay-
ment model to share the ridesharing benefits among passengers
and taxi drivers.

We summarize the contributions of this work as follows.
1) We analyze and identify the limitations of previous taxi

ridesharing schemes and further consider the practical
MTR problem by exploiting the mobility information to
serve both online and offline ride requests.

2) We present mT-Share to well address the MTR problem.
By incorporating the holistic mobility information of
ride requests and taxis, mT-Share optimizes the indexing
of taxis/requests and passenger–taxi matching.

3) We further present a novel payment model that is able
to fairly share the ridesharing benefits among passengers
and drivers, so as to encourage more riders and taxi
drivers to join in the ridesharing campaign.

4) Extensive experiments have been performed to evalu-
ate mT-Share using a large real-world taxi data set.
The results demonstrate that mT-Share greatly outper-
forms the state-of-the-art schemes, e.g., serving 42% and
62% more ride requests in the peak and nonpeak hours,
respectively. Compared with no taxi ridesharing, mT-
Share saves 8.6% taxi fare for passengers and meanwhile
increases 7.8% incomes for taxi drivers.

The remainder of this article is organized as follows. We
review the related works in Section II. The MTR problem is
described in Section III. We present the design of mT-Share
in Section IV and evaluate the performances in Section V.
Finally, we conclude this article in Section VI.

II. RELATED WORK

A. Carpooling

Carpooling is also known as recurring ridesharing, which
primarily deals with routine commutes, e.g., between home

and workplace. As carpooling generally involves a few drivers
and riders, it can be solved with linear programming to get the
optimal solution [7]. GPS trajectories of users can be leveraged
to discover possible carpooling opportunity [16], [37], while
coRide [50] is proposed to design carpooling service’s sched-
ule and route. Compared to carpooling whose ride requests
can be known in a prior, the ride requests of taxi ridesharing
are generated instantaneously and the routes of shared taxis
are constantly changing. Therefore, taxi ridesharing is more
dynamic than carpooling.

Taxi ridesharing can be modeled as a variant of the famous
dial-a-ride problem (DARP). In general, DARP aims to design
the schedule and route for a number of riders between their
origins and destinations [13]. Note that riders in DARP are
assumed to specify their pick-up and drop-off locations in
advance. Existing works for DARP mainly consider the static
scenario [12], where ride requests are preknown.

B. Ridesharing

Recently, ridesharing has been widely studied because of its
attractive benefits [29]. The dynamic ridesharing can be modeled
as a combinatorial optimization problem and has been proved
to be NP-hard [8]. Thus, a variety of heuristic techniques
are proposed to optimize the two major stages of rideshar-
ing, i.e., candidate taxi searching [21], [34], [36], [39] and
ridesharing routing [19], [42], [57]. For example, Li et al. [21]
took both social relations between drivers and riders and the
revenue into consideration to select the top-k suitable vehi-
cles for a ride request. Similarly, social preferences are also
considered in the passengers–vehicle matching process [34].
Tong et al. [42], [45] have optimized route planning of shared
mobility with a smart insertion. In particular, two recent
works [44], [49] also make use of demand predictions to plan
ridesharing routes, so as to serve more compatible passengers.
Our work differs from them by considering both online and
offline ride requests, and meanwhile optimizing passenger–taxi
matching by fully exploiting the mobility information of ride
requests and taxis.

Because of wide availability of taxis in an urban city [10],
taxi ridesharing becomes promising and has already attracted
substantial research attentions [18], [24], [28]–[30], [53]. For
example, Ma et al. [29], [30] developed a mobile-cloud-
enabled taxi-sharing system called T-Share, and Ma et al. [28]
further considered the service quality of taxi ridesharing to
improve T-Share. In particular, Hou et al. [18] focused on
the transfer-allowed taxi ridesharing using battery-limited elec-
tric vehicles. Zhang et al. [53] further took the passenger’s
acceptance probability on taxi ridesharing into the design.
Different from our work, these works do not exploit mobil-
ity information to achieve appropriate passenger–taxi matching
and meanwhile have omitted the offline passengers.

Due to the increasing popularity of ridesharing, other factors
of the ridesharing, e.g., the pricing models [11], [21], [41],
ridesharing order dispatching [4], [20], [56], partner
selection [17], destination matching [31], privacy protec-
tion [35], [43], [47], riders’ satisfaction [12], and riders’ atti-
tude on ridesharing [53], have also been studied in the past
years.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

184 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 1, JANUARY 1, 2022

C. Taxi Demands and Dispatching

Taxis play an important role in urban transportation, and
thus it is essential to perceive taxi demands and well reposi-
tion taxis to balance the supply–demand gap. A great number
of works [40], [46], [52] have been made on taxi demand
predictions by processing massive historical taxi data. For
example, Geng et al. [15] proposed a deep learning model
to predict the region-level taxi ride-hailing demands. Different
from the works which predict demands in regular taxi services,
we predict the offline ride requests for taxi ridesharing that
is even more challenging. It is worth noting that a recent
work [23] presents a ridesharing routing scheme to serve
potential riders, which are predicted from the statistics of
mobility data. Our scheme differs from it by considering and
serving both online and offline requests.

Furthermore, many works [22], [25], [38], [52], [54], [55]
have explored the taxi dispatching problem given the known
taxi demands. Specifically, an order dispatching model is
proposed to maximize the matching success ratio of ride
requests and taxis in [52]. Lin et al. [22] presented a fleet
management system, which explicitly coordinates idle taxis
using the multiagent deep reinforcement learning (DRL) the-
ory. Similarly, Tang et al. [38] also applied DRL on the order
dispatching problem with a deep value network. Liu et al. [25]
improved DRL-based taxi dispatching solutions by considering
more context information. In addition, Zhao et al. [54] further
considered the preference-aware taxi dispatching using online
stable matching. These works dispatch a vacant taxi for each
individual ride request, while do not consider the ridesharing
among passengers.

III. PROBLEM STATEMENT

In this section, we present the definition, motivation, and the
problem statement of MTR. We summarize the key notations
used in this article in Table I.

A. Preliminary

Definition 1 (Road Network): A road network is modeled
as a directed graph G(V,E), where a vertex v ∈ V denotes
a geolocation (e.g., road intersection), and an edge (u, v) ∈
E represent a road segment that owns a weight cost(u, v) to
indicate the travel cost from u to v.

Specifically, the travel cost is estimated as either a travel
time or a travel distance. Once the travel speed of a taxi is
known, they can be easily converted from one to another. Thus,
we do not differentiate them throughout this article and use the
travel cost consistently. Similar as previous studies [29], [42],
we let traffic conditions to be stable, and thus the travel cost of
each edge is constant. However, our system could easily extend
to run with real-time traffic conditions if such information can
be timely derived from the transportation agency or be inferred
by some advanced traffic estimation methods [26], [27].

Based on a recent report [33], we assume that most riders
are willing to take the taxi ridesharing services. One rider can
either explicitly submit her ride request to the system via some
booking App or implicitly participate in the ridesharing by
hailing a taxi at roadside. The ridesharing system will select a

TABLE I
SUMMARY OF KEY NOTATIONS

suitable taxi to serve this request by investigating the statuses
of all taxis, and update the schedule/route of the chosen taxi,
subject to the service requirements.

Definition 2 (Ride Request): A ride request is denoted by
ri = <tri , ori , dri , eri> with a trip origin ori ∈ V and a trip
destination dri ∈ V. The ride request is released at time tri and
should be finished before time eri by delivering passengers
from origin ori to destination dri .

In real-world taxi ridesharing systems, we may adopt two
deadlines for pick-up and drop-off, respectively [30]. However,
a single deadline for delivery eri usually suffices [42]. Given
delivery deadline eri and travel cost cost(ori , dri) between ori to
dri , the pick-up deadline can be calculated as eri−cost(ori , dri).
The online request will be immediately known once ri is sub-
mitted, but the offline requests could be perceived only when
they are encountered by shared taxis. In particular, r̄i is used
to represent an offline request.

Definition 3 (Taxi Status): The instantaneous status of the
jth taxi is denoted by tj =< loctj ,Stj ,Rtj >, where loctj repre-
sents taxi tj’s current location, and Stj and Rtj are the schedule
and route of taxi tj, respectively.

Definition 4 (Taxi Schedule): A taxi schedule Stj =
{s1, s2, . . . , sm} is a sequence of events for a shared taxi, where
each event corresponds to pick-up or drop-off the ridesharing
passenger at some location, e.g., ori or dri of a ride request ri
and ori should appear ahead of dri .

Definition 5 (Taxi Route): A taxi route Rtj is generated for
a taxi schedule Stj . It includes the travel path for any two
consecutive events in schedule Stj .

Given the ride requests to share a taxi, a valid
taxi schedule is established to sequentially pick-up and
deliver passengers along a ridesharing route. In previous
works [11], [19], [29], [30], [42], travel path between two
consecutive event locations is usually set as the shortest path.
Therefore, a taxi route can be derived by concatenating a
sequence of such shortest paths. When ridesharing requests

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: mT-SHARE: MOBILITY-AWARE DYNAMIC TAXI RIDESHARING SYSTEM 185

are picked up or delivered by taxi tj, both Stj and Rtj should
be timely updated.

B. Motivation

The taxi ridesharing problem can be modeled as a com-
binatorial optimization problem and has been proved to be
NP-hard [8]. Previous works [18], [28]–[30], [53] thus have
proposed many heuristic techniques to match requests with
suitable shared taxis. Generally, they index all taxis and
requests using the grids of a road network and then process
each request ri through the following two major stages.

Stage 1 (Taxi Searching): Taxis within a range γ around
ri’s origin ori are chosen as candidate taxis for serving ri.

Stage 2 (Ridesharing Routing): The schedule of each can-
didate taxi tj is investigated by inserting ri’s pick-up and
drop-off events into Stj , subject to passengers’ delivery dead-
lines and taxi’s capacity. The taxi, which will introduce the
minimum cost (e.g., the minimum increased travel cost), is
usually selected as the one to serve ride request ri.

In practice, the searching range γ could be enlarged [53]
and the two stages can be repeated until one proper taxi is
finally found [30]. However, we observe that existing works
still suffer from the following two limitations.

1) Inefficient Passenger–Taxi Matching: Most of the exist-
ing works determine the candidate taxis with only the
given ride request’s origin location [28], [42], [53]. Even
though [29] and [30] utilize both origin and destination
to conduct a dual-side search, such location information
is separately considered. Besides, rather than searching
for the best taxi to serve a request, some schemes only
return the valid taxi that is the first discovered [29], [30].
Relying on such partial trip information, they cannot
filter out the invalid taxis at the beginning, and may
also miss the best solution, which has the minimum
ridesharing cost.

2) Omitting the Offline Ride Requests: The
existing works merely consider online ride
requests [18], [28]–[30], [53], while in practice, there
still exist many people who prefer to hail a taxi at road-
side without submitting their ride requests [23], [48].
As a concrete example, some elder citizens who are not
familiar with online taxi booking and the passengers
who forget to carry out mobile phones are unable to
issue online ride requests. According to the statistics on
users’ preferences of getting taxi services in a recent
taxi service research report [3], 44.61% of users only
prefer online booking, while 13.71% of users merely
hail taxis at the roadside. Furthermore, 41.68% of users
prefer either offline hailing or online booking. These
statistics indicate that the amount of potential offline
ride requests could be quite large, i.e., 13.71%–55.39%.
A practical taxi ridesharing system should consider
and serve such offline requests. In addition, offline
requests are also desirable for taxi drivers, especially
in nonpeak hours where online requests are inade-
quate [40]. Serving these offline passengers can improve

Fig. 1. Motivation example with three shared taxis (i.e., t1, t2, and t3),
one online request r1, and one offline request r̄2. Solid lines are current taxi
routes, dashed line is a planned route, and taxi routes are differentiated by
colors. The gray dashed circle is the searching range for request r1.

taxi utilization and meanwhile increase taxi drivers’
incomes [10].

We explain the above arguments with an example in Fig. 1,
where three shared taxis (i.e., t1, t2, and t3) travel along their
respective routes, and passenger r1 submits the ride request
to the system while passenger r̄2 will hail a taxi at roadside.
Once receiving r1’s request, existing schemes will determine
the candidate taxi set with a searching range around request
r1’s origin. Here, t1 and t2 are returned for serving r1. Then,
their schedules are examined, and this procedure will involve
extensive computations. We find that, however, t2 should never
be considered as it travels inversely with r1. The examination
of t2’s schedules thus introduces unnecessary computations.
Although t1 could serve r1 with some detour, we find that
t3 actually should be the best one to serve r1 without any
detour cost. However, t3 is even not considered as a candidate
taxi for r1. On the other hand, since passenger r̄2 does not
explicitly submit her request, existing schemes cannot assign
taxis to serve r̄2. If the system can perceive the existence of
r̄2, it can serve r̄2 as well by slightly adjusting t2’s route.

It is necessary and possible for a taxi ridesharing scheme
to consider both online and offline requests. On the one hand,
there exist many passengers who still hail a taxi at the roadside
rather than online booking [3], [10]. On the other hand, taxi
drivers also desire to serve offline requests to improve their
incomes, especially during the nonpeak hours where there are
more taxi supplies than online taxi demands [48]. As a con-
crete example, taxi drivers in China can serve offline requests
when they are not assigned with online requests. Furthermore,
the mobility patterns of urban travel demands provide us an
opportunity to predict the offline ride requests by exploiting
the historical statistics [23], [32], [46], and thus open a new
design space to improve the existing taxi ridesharing schemes.

C. Problem Definition

To improve existing works, we consider a novel MTR
problem as follows.

Definition 6 (Mobility-Aware Taxi Ridesharing Problem):
Given a set of online ride requests and offline ride requests
to predict, and a set of taxis on road network G, the MTR
problem aims to match requests with suitable shared taxis,
such that the number of served requests is maximized while the

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

186 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 1, JANUARY 1, 2022

total detour cost is also minimized. The arrangements should
meet the following two constraints.

1) Capacity Constraint: The number of passengers sharing
a taxi cannot exceed the taxi’s capacity at any time.

2) Time Constraint: Passengers of a request should be
delivered to their destinations before the specific deadline.

Challenges: Different from previous works, the MTR
problem considers both online requests and offline requests
to improve the efficiency and practicability of taxi rideshar-
ing. Since dynamic ridesharing is NP-hard [8], [12], [42], the
MTR problem is challenging to be solved as well, mainly due
to the following two challenges.

1) Both ride requests and taxis are quite dynamic, which
thus requires that both taxi schedules and routes should
be wisely and efficiently planned so as to guarantee
the service quality of ridesharing, e.g., minimizing the
detour costs.

2) Because the exact information of offline requests cannot
be known in advance, it is thus difficult for shared taxis
to well serve the offline ride requests. This uncertainty
further makes taxi scheduling and routing to be more
intricate.

IV. SYSTEM DESIGN

A. Overview

Fig. 2 illustrates the framework of mT-Share. In general,
mT-Share takes historical taxi data, real-time taxi statuses and
ride requests, and the road map as the input and arranges the
available taxis to dynamically serve both online and offline
ride requests. On the user side, passengers can either explicitly
report their ride requests to mT-Share or hail a shared taxi at
the roadside in an offline manner. On the taxi side, a shared
taxi continuously uploads its status, which includes current
location, available seats, etc., to the server and receives the
updated schedule/route from the server.

mT-Share has three major modules, i.e., Taxi/Request
Indexing, Passenger–Taxi Matching, and the Payment Model.
Specifically, the Taxi/Request Indexing module exploits the
mobility patterns that are discovered from historical taxi data
to divide the road map into partitions and classifies taxis and
ride requests into mobility clusters based on their travel direc-
tions. Both map partitions and mobility clusters are utilized
to index and track the shared taxis. With these indexes, the
Passenger–Taxi Matching module can effectively search can-
didate taxis and determine the best one, which introduces the
minimum detour cost, to serve a given request. mT-Share sup-
ports both basic routing and probabilistic routing and acceler-
ates them with the partition filtering. In particular, probabilistic
routing enables a shared taxi to meet suitable offline requests
with a much higher probability. Furthermore, mT-Share pro-
poses a payment model, which determines the taxi fares by
sharing the ridesharing benefits between a taxi driver and the
passengers.

B. Taxi/Request Indexing

mT-Share will index and track shared taxis and ride requests
based on both geographical location and travel direction,

Fig. 2. Framework of mT-Share.

which can be achieved by performing bipartite map partition-
ing and mobility clustering, respectively.

1) Bipartite Map Partitioning: Rather than dividing a road
network graph using geographical information [29], [30] or
popular pick-up locations [28], mT-Share classifies the vertices
of a road network graph into clusters based on their both geo-
graphical locations and transition patterns that are mined from
historical taxi data. Specifically, we use the k-means clustering
algorithm to initially classify all graph vertices into κ spatial
clusters according to their geographical locations (i.e., latitude
and longitude). Then, the map partitioning runs as follows.

1 Transition Probability Calculation: For each vertex vi

and the κ spatial clusters, we calculate a transition
probability vector �Bi of size κ . Each item Bij ∈ �Bi

(i = 1, 2, . . . ,N and j = 1, 2, . . . , κ) indicates the tran-
sition probability of ride requests that called a taxi at
vertex vi and traveled to any vertex of the jth spatial
cluster. The historical taxi data can be used to calculate
the transition probabilities.

2 Transition Clustering: We regard vector �Bi as vertex vi’s
mobility feature, and use k-means clustering to group all
graph vertices into kt transition clusters based on their
transition probability vectors. The vertices of a tran-
sition cluster will have the similar transition patterns.
Empirically, we let kt < κ , and set kt = 20 for mT-Share
by default.

3 Geo-Clustering on Transition Clusters: For each tran-
sition cluster of size n, we group its vertices into
�nκ/N + 1/2� spatial clusters based on their locations
through k-means clustering, where N = |V| denotes the
number of all vertices.

Our bipartite map partitioning will repeat the above three
steps until the κ spatial clusters derived in step 3 do not
change. These clusters are regarded as the final partitions
of the road network graph G, which is represented as P =
{Pz}κz=1. The vertices of a partition are both geographically
close and highly similar on their transition patterns. Such prop-
erties facilitate the prediction of suitable offline ride requests
by well supporting the probabilistic routing that is introduced
later. In Section V-C, we conduct experiments to study the
setting of κ and demonstrate the advantage of bipartite map
partitioning over the traditional grid-based method on finding
more offline passengers. Fig. 3(b) demonstrates the result of
applying the bipartite map partitioning on the road network
graph of Chengdu city, which is shown in Fig. 3(a).

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: mT-SHARE: MOBILITY-AWARE DYNAMIC TAXI RIDESHARING SYSTEM 187

Fig. 3. (a) Road network of Chengdu city, China. (b) Result of bipartite map
partitioning applied on (a), where we set κ = 20 just for a clear demonstration
and the partitions are differentiated by colors.

For each spatial partition, we calculate its center point as
the partition’s landmark. With the spatial partitions and their
corresponding landmarks, we construct a landmark graph G�

that will be exploited to speedup route planning.
Definition 7 (Landmark): The landmark of a spatial parti-

tion Pz is the vertex �z ∈ Pz, which has the minimum distance
to all other vertices of partition Pz.

Definition 8 (Landmark Graph): A landmark graph is rep-
resented as G�(V�,E�), where vertices in V� are the landmarks
of all partitions and an edge between two landmarks indicates
that their corresponding partitions are adjacent.

Note that the bipartite map partitioning could be periodically
executed with a relatively long interval, e.g., one year, when
sufficient new taxi data are accumulated to capture the latest
transition patterns of passengers in an urban city. Once the
map partitions are changed, the corresponding landmarks and
the landmark graph should also be accordingly updated.

2) Mobility Clustering: Different from existing works
that use location information to index taxis and requests
only [28]–[30], [36], [42], mT-Share builds a mobility vector
for each shared taxi or ride request, and further groups them
through mobility clustering based on their travel directions.

Definition 9 (Mobility Vector): A mobility vector �v is
defined as a vector pointing from an origin (lato, lngo) to a
destination (latd, lngd), denoted by �v = (lato, lngo, latd, lngd).

For each ride request ri, we use its origin ori and destination
dri to create the mobility vector �vri . For a taxi tj that serves m
passengers {ri}mi=1, we take its location loctj as the origin of
mobility vector �vtj , and regard the center of all destinations of
the shared passengers [i.e., ([

∑m
i=1 dri]/m)] as �vtj ’s destination.

We do not apply mobility clustering for the empty taxis, since
they have no fixed travel destinations.

We group taxis and requests into clusters according to their
mobility vectors as follows. The first ride request individually
forms the initial cluster, and each subsequent request will join
an existing cluster or form a new cluster. For each mobility
cluster Ca, we maintain a general mobility vector �vCa . The
origin and destination of �vCa are averagely calculated from
the origins and destinations of all cluster members, respec-
tively. Once a new ride request ri arrives, we compare its
mobility vector with each general mobility vector. If the travel

direction difference between them is sufficiently small, ri will
be included into cluster Ca. Specifically, cosine similarity is
adopted as the metric to measure the travel direction difference
θ of two vectors, i.e.,

cos(θ) = �vri · �vCa

||�vri || × ||�vCa ||
. (1)

When cos(θ) ≥ λ (where λ is a predefined parameter), ri is
considered to travel along a similar direction with these pas-
sengers in cluster Ca and they could share a taxi. Otherwise,
ri is forced to form a new mobility cluster. In principle,
a smaller λ (i.e., larger θ) would increase the ridesharing
chances by finding more candidate taxis for a ride request.
However, more candidate taxis require more examination time
on the taxi schedules and thus prolong response time for each
request.

mT-Share will update the mobility clusters and their corre-
sponding general mobility vectors only when the ride requests
are finished or new requests are received. The updating process
introduces negligible computation overheads.

3) Index of Taxis: mT-Share makes use of both map parti-
tions and mobility clusters to build the index structures, which
can facilitate candidate taxi searching for ride requests later.
• Map Partition-Based Indexing: For each map partition Pz,

mT-Share maintains a taxi list Pz.Lt to record taxi IDs,
which are now in or will arrive at map partition Pz within
a time threshold Tmp (e.g., 1 h). According to their arrival
time, these taxi IDs are sorted in an ascending order. The
taxi list Pz.Lt is dynamically updated.

• Mobility Cluster-Based Indexing: For each mobility clus-
ter Ca, mT-Share also maintains a taxi list Ca.Lt to contain
taxi IDs, which are now serving requests and meanwhile
traveling in a similar direction. The taxi list Ca.Lt should
be updated once mobility cluster Ca changes.

Memory Complexity: Based on our indexing structures, each
taxi could be indexed by several map partitions and (at most)
one mobility cluster, while each request is indexed by only one
mobility cluster. Thus, the memory complexity of mT-Share’s
indexing overhead is O((x+1)M+R), where M is the number
of all available taxis, x is the number of map partitions a taxi
could visit within time threshold Tmp, and R is the number of
all ride requests.

C. Passenger–Taxi Matching

For each request ri, mT-Share will determine its candi-
date taxis using the indexing structures, and then heuristically
investigate all possible taxi schedules to find the most suitable
taxi that introduces the minimum ridesharing cost to serve ri.

1) Candidate Taxi Searching: Different from existing
works, which may increase the searching range gradually and
only return one valid (but may not be the best) taxi [28]–[30],
[53], mT-Share aggressively searches the best taxi to serve
each request ri. More specifically, the candidate taxi search-
ing range γ for ri is set as the product of a typical taxi driving
speed and the waiting time �t that is estimated as

�t = eri − cost
(
ori , dri

)− tri (2)

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

188 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 1, JANUARY 1, 2022

Algorithm 1: Taxi Scheduling

1 Input: Ride request ri and candidate taxi set Tri ;
2 Output: A taxi with updated schedule/route for ri;
3 foreach taxi tj ∈ Tri do
4 foreach schedule instance S ′tj ← {Stj , ori , dri } do
5 if flag then
6 R′tj = ProbabilisticRouting(S ′tj , tj);
7 else
8 R′tj = BasicRouting(S ′tj , tj);

9 ω = cost(R′tj)− cost(Rtj);

10 Select the taxi schedule instance with the minimum ω;

where eri − cost(ori , dri) and tri are the pick-up deadline and
the release time of ri, respectively. From the searching area
that centers at ri’s origin ori with radius γ , we derive a map
partition set Sri , which intersects with the searching area. For
each partition Pz ∈ Sri , we get its taxi list Pz.Lt. In addi-
tion, by comparing ri’s mobility vector to all existing mobility
clusters, we would find a mobility cluster Ca that shares the
similar travel direction with ri. Thus, mT-Share determines the
candidate taxi set Tri for ri as

Tri =
{
∪Pz∈Sri

Pz.Lt

}
∩ Ca.Lt (3)

mT-Share further refines set Tri using the following rules:
1) including empty taxis {tj}, where tj ∈ Pz.Lt (Pz ∈ Sri)
and Stj = ∅; 2) filtering out the taxis with no idle capacity;
and 3) filtering out the taxis, which cannot reach ri’s locating
partition Pi before ri’s pick-up deadline (that can be easily
checked from the taxi arrival time recorded in Pi.Lt). These
rules can remove the invalid taxis from candidate taxi set Tri ,
so as to save unnecessary computation costs.

2) Taxi Scheduling: Given set Tri , taxi scheduling will
find the most suitable taxi, which can serve ride request
ri while incurring the minimum detour cost. In theory, we
should rearrange all events of a taxi schedule Stj after incor-
porating the pick-up event ori and drop-off event dri of ri.
However, it is prohibited due to the huge computation over-
heads. Therefore, mT-Share adopts the same design choice as
existing works [28]–[30], [42], which inserts ori and dri into
Stj while retaining the existing schedule unchanged. The feasi-
bility of inserting ri into a schedule of taxi tj is mainly decided
by the time constraints of all requests that are currently served
by tj.

Algorithm 1 presents the taxi scheduling algorithm. For
each candidate taxi tj ∈ Tri , we enumerate all taxi sched-
ule instances by inserting event ori and dri into Stj , where ori

is ahead of dri . For each schedule instance S ′tj of taxi tj, we
will calculate a route and estimate the detour cost as

detour cost = cost
(
R′tj

)
− cost

(Rtj

)
(4)

where R′tj is the updated taxi route of Rtj once taxi tj picks
up request ri. To search the best taxi that incurs the minimum
detour cost to serve ri, mT-Share needs to check all schedule
instances of all candidate taxis.

Algorithm 2: Partition Filtering

1 Function PartitionFilter(sz, sz+1):
2 Find partition Pz, Pz+1, and landmark �z, �z+1;
3 P ← ∅;
4 foreach Pi ∈ P do
5 if Pi satisfies the two rules then
6 P = P ∪ {Pi};
7 return P;

Algorithm 3: Basic Routing

1 Function BasicRouting(S, tj):
2 R← ∅;
3 for z = 1 to (|S| − 1) do
4 P = PartitionFilter (sz, sz+1);
5 Build subgraph Gz from P;
6 Find the shortest path Rz using the Dijkstra’s algorithm

on Gz;
7 R = R
� Rz;

8 return R;

To effectively serve both online and offline requests,
mT-Share supports two routing modes. A shared taxi normally
travels with the basic routing mode. When there are inade-
quate online requests, the taxi that has sufficient empty seats
can enable the probabilistic routing mode to calculate a route
to encounter suitable offline requests with a higher probability.
Specifically, in Algorithm 1, if indicator flag is true, mT-Share
invokes function ProbabilisticRouting() to compute a route for
opportunistically seeking offline requests. Otherwise, function
BasicRouting() is used to calculate the shortest path. mT-Share
optimizes both functions with PartitionFilter() by pruning the
searching space for fast route planning.

Because route planning usually bottlenecks the efficiency of
taxi scheduling [29], [42], mT-Share thus optimizes both basic
routing and probabilistic routing with a two-phase route plan-
ning. Given a taxi schedule instance S ′tj , mT-Share calculates

the travel path for each consecutive event pair (sz, sz+1) ∈ S ′tj
through two phases, i.e., partition filtering that reduces the
searching space of route planning and segment-level routing
that computes the final travel path. By concatenating these
travel paths of all consecutive event pairs (i.e., the operation

� in Algorithms 3 and 4), mT-Share finally derives route R′tj
for schedule S ′tj . Next, we will detail the two phases.

Phase 1 (Partition Filtering): We execute partition filter-
ing on landmark graph G�. For any two consecutive events
(sz, sz+1) ∈ S ′tj , we first retrieve their locating partitions Pz

and Pz+1, and the corresponding landmarks �z and �z+1. The
travel cost between �z and �z+1, i.e., cost(�z, �z+1), is used to
estimate the length of the shortest path between sz and sz+1.
Furthermore, we generate a mobility vector �vz using their two
landmarks. Then, we check each map partition Pi ∈ P using
the rules as follows.
• Travel Direction Rule: The direction difference θ between

the mobility vector, which points from �z to �i, and �vz is
small enough, i.e., cos(θ) ≥ λ.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: mT-SHARE: MOBILITY-AWARE DYNAMIC TAXI RIDESHARING SYSTEM 189

Fig. 4. (a) Illustration of partition filtering. The white partitions are filtered
out, and the gray ones are retained. (b) Probabilistic routing on P ′tj , where the
color of partitions indicates the probability (the darker the higher). A valid
taxi route is derived from the partition path H′tj = {Pz,P1,P2,Pz+1}.

• Travel Cost Rule: The travel cost of the path, which con-
nects �z and �z+1 via �i, is not obviously larger than the
travel cost of the shortest path between �z and �z+1, i.e.,

cost(�z, �i)+ cost(�i, �z+1) ≤ (1+ ε)× cost(�z, �z+1)

where ε is a predefined threshold. We conservatively set
ε as 1.0 for mT-Share.

We retain the map partitions, which satisfy the two rules,
into set Pz

tj . Algorithm 2 lists the pseudocode of partition fil-
tering. Fig. 4(a) illustrates partition filtering applied for events
(sz, sz+1), where gray partitions are retained into Pz

tj .
Phase 2 (Segment-Level Routing): Instead of planning a

route on the original graph G, mT-Share builds a subgraph
that consists of the vertices and edges from partitions in Pz

tj .
The subgraph greatly reduces the searching space of route
planning, and thus mT-Share will execute both basic routing
and probabilistic routing on this subgraph for better efficiency.
We detail the two routing modes as follows.
• Basic Routing: For any two consecutive events in a taxi

schedule instance S ′tj , it will calculate the shortest path. In
fact, the basic routing mode has been frequently adopted
by existing works for ridesharing routing [28]–[30], [42].
Similarly, mT-Share utilizes Dijkstra’s algorithm [14] to
compute the shortest path on the subgraph. Algorithm 3
sketches the pseudocode of the basic routing mode.

• Probabilistic Routing: This mode supports a shared
taxi to opportunistically meet some suitable offline ride
requests. We say a ride request ri is suitable only if ri
travels with the similar direction as the given taxi. Instead
of predicting the specified number of offline ride requests,
we propose to plan a probabilistic route to maximize
the probability of meeting suitable offline ride requests
for a given taxi. In principle, we should calculate the
probability of meeting suitable requests over each vertex
in graph G and search for the route that can accumu-
late the maximum probability of meeting suitable ride
requests. Such a probabilistic routing has been proved

to be NP-Complete [23] and thus is computationally
prohibitive.

Instead, mT-Share proposes a heuristic approach to calculate
probabilistic routes to avoid huge computations. Specifically,
for any two consecutive events (sz, sz+1) in schedule S ′tj ,
mT-Share exploits transition patterns among partitions to fur-
ther refine the set Pz

tj . Then, mT-Share builds another much
smaller subgraph from the refined partition set for probabilis-
tic route planning. We present the pseudocode of probabilistic
routing in Algorithm 4, and detail its main steps as follows.

1 Probability Calculation of Suitable Requests: For each
partition Pi ∈ Pz

tj and a given candidate taxi tj, we
determine a destination partition set Pd for the suitable
requests. For each partition Pa ∈ P, we build a mobility
vector �va using the landmarks of Pi and Pa. If the travel
direction difference θ between �va and taxi tj is suffi-
ciently small (i.e., cos(θ) ≥ λ), we will retain partition
Pa into set Pd. After obtaining set Pd, we compute a
probability πi of meeting suitable requests within Pi by
summing the transition probability of each vertex in Pi

to each potential destination in set Pd. During bipartite
map partitioning, we have already calculated the tran-
sition probabilities of any vertex to all partitions (see
Section IV-B1). Thus, these calculation results can be
reused.

2 Partition Path Planning: We build a landmark graph
Gz
� using the landmarks and edges of partitions in Pz

tj ,
where the landmark vertex of partition Pi is associated
with probability πi as the weight. In general, graph Gz

�

would be small, we thus is able to enumerate all possible
paths, each of which links the landmark of source parti-
tion and the landmark of destination partition, to find
the maximum weighted path. With landmark vertices
of the found path, we can retrieve their corresponding
partitions to form a partition path Hz

tj , which travels
from Pz to Pz+1. At the same time, Hz

tj accumulates
the maximum probability at the partition level.

3 Fine-Grained Route Planning Over Partition Path: We
construct another weighted graph Gz using the vertices
and edges of partitions in Hz

tj , where each vertex vc is
associated with a weight (1/ψc) (ψc > 0). Specifically,
ψc is the accumulated transition probability from ver-
tex vc to the destination partition set Pd of vc’s locating
partition. We calculate the shortest path with Dijkstra’s
algorithm [14] on graph Gz. The derived path should
have the minimum weights and meanwhile satisfy the
deadline constraints of passengers who share taxi tj.
This path is the final taxi route Rz that has the high-
est probability to meet suitable offline requests between
(sz, sz+1).

If no valid taxi route is found in step 3 , the suboptimal
partition path on Pz

tj in step 2 is returned. mT-Share will
repeat the latter two steps until a valid taxi route (i.e., meeting
requests’ delivery deadlines) for event sz and sz+1 is found.
To avoid endless searching, we set the attempt times as 5.
Otherwise, the taxi schedule instance is discarded when there
exists no feasible route to link the two events. Finally, mT-
Share concatenates all the paths of all consecutive event pairs

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

190 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 1, JANUARY 1, 2022

Algorithm 4: Probabilistic Routing

1 Function ProbabilisticRouting(S, tj):
2 R← ∅;
3 for z = 1 to (|S| − 1) do
4 P = PartitionFilter (sz, sz+1);
5 Calculate probability πi of meeting suitable offline

requests for partition Pi ∈ P;
 step 1
6 Build weighted landmark subgraph Gz

�
from P;

7 attempt = 0;
8 while true do
9 Select the maximum weighted path from �z to

�z+1 on Gz
�

to form the partition path H;

 step 2

10 Build weighted subgraph Gz from H;
11 Find the shortest path Rz using the Dijkstra’s

algorithm on Gz;
 step 3
12 attempt = attempt + 1;
13 if Rz is valid then
14 break;

15 else if attempt > 5 then
16 return ∅;
17 R = R
� Rz;

18 return R;

to derive the final taxi route. Fig. 4(b) illustrates the partition
path and the final path for two consecutive events.

Since probabilistic routing is more computationally expen-
sive than the basic routing, a shared taxi tj may enable it
only when tj has sufficient empty seats and there are inade-
quate online requests. When taxi tj encounters an offline ride
request r̄i, we envision that the taxi driver can report r̄i to
the server through some App. Then, the server will inves-
tigate tj’s schedule and route. Taxi tj will serve r̄i only if
there exists a valid schedule that guarantees the service qual-
ity for all requests (including offline request r̄i). Otherwise,
the server will quickly dispatch another taxi to serve r̄i. The
interaction indeed may introduce a slight delay, however, it
brings potential benefits for both offline passengers and taxi
drivers. Currently, mT-Share plans a probabilistic route to
maximize the probability of meeting offline requests given
the requests’ delivery deadlines. How to balance the trade-
off between this probability and the total detour costs will be
explored in our future work.

Time Complexity: Now, we analyze the time complexity of
mT-Share’s passenger–taxi matching, which involves the four
algorithms. To process each request ri, mT-Share needs to
investigate all possible schedule instances of each candidate
taxi in set Tri and then chooses the taxi that will introduce
the minimum detour cost to serve ri. If mT-Share adopts basic
routing, the time complexity is O(|Tri |m3κ), where |Tri | is
the size of candidate taxi set Tri , m is the number of events
in a taxi schedule, and κ is the total number of map par-
titions in P. If mT-Share enables the probabilistic routing,
the time complexity will be O(|Tri |m3ND|P|/κ), where D
is the amount of historical taxi data for calculating transi-
tion probabilities, |P| is the number of partitions retained by

Algorithm 2, and N/κ is the average vertex number of all par-
titions. Similar as previous studies [12], [42], we assume the
shortest path query will take O(1) time, because the shortest
paths between any two graph vertices could be prepared and
cached.

D. Payment Model

A ridesharing system should bring financial benefits for both
ridesharing passengers and taxi drivers, so as to attract more
participators. Some payment models have been proposed for
the carpooling services [50]. Their involved requests are static
and the fares are usually precalculated. Thus, they cannot work
well for dynamic taxi ridesharing. There indeed exist some
payment models proposed for dynamic ridesharing [5], [6],
[9], [11], [23], [30], [51]. The models in [9], [11], and [23]
calculate ridesharing fare for each individual passenger with
a fixed discounting rate, and do not explicitly consider the
benefits for drivers. Although [5], [6], [29], [30], and [51]
consider both passengers and drivers, their models heavily rely
on users’ profiles [6] or the complex auction theory [5], [51],
and thus cannot be sufficiently flexible and scalable for taxi
ridesharing that needs to handle a large number of drivers
and passengers. The payment model in [29] even may require
passengers to pay more if they detour more distances [5], and
thus is not fair. Thus, it is necessary to design a payment model
that can fairly share ridesharing benefits between taxi drivers
and passengers.

The benefits of taxi ridesharing mainly come from the saved
travel distance of a ridesharing route when compared to no
ridesharing that delivers passengers separately along different
routes. Specifically, the benefit B for taxi ridesharing with n
shared passengers is

B =
n∑

i=1

f s
ri
− F (5)

where f s
ri

is the regular taxi fare with no ridesharing for ride
request ri, and F is the regular taxi fare for a distance equaling
to the length of ridesharing route. The total fare of n passen-
gers without ridesharing is given by

∑n
i=1 f s

ri
, while the taxi

ridesharing fare is F . Their difference is thus the rideshar-
ing benefit B. mT-Share partitions the benefit between the taxi
driver and all passengers (as a group) with a rate β. A driver
will obtain benefit (1−β)×B, while all ridesharing passengers
share the benefit β × B.

mT-Share splits the benefit among passengers proportionally
according to their detour rates. Specifically, the detour rate
is defined as the ratio between the detour distance and the
shortest path length. For ride request ri that arrives at the
destination, the detour rate is

σi = η +
cost

(Rri

)− cost
(Rs

ri

)

cost
(Rs

ri

) (6)

where Rri is the shared route ri has traveled, Rs
ri

is the shortest
path for request ri, and η is the base rate. Note that base rate η
is introduced to guarantee that all passengers can gain benefits
from the ridesharing even they do not take any detour, e.g., all
ride requests have the same pick-up and drop-off locations. For

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: mT-SHARE: MOBILITY-AWARE DYNAMIC TAXI RIDESHARING SYSTEM 191

a ride request rj that has not been completed yet, the detour
rate is assumed as

σj = η +
cost

(Rrj

)+ cost

(

Rs(
dri ,drj

)

)

− cost
(
Rs

rj

)

cost
(
Rs

rj

) (7)

where Rrj is the shared route rj has already traveled, and we
assume the taxi will deliver rj with the shortest path for the
remaining trip, i.e., Rs

(dri ,drj)
denotes the shortest path from

ri’s destination to rj’s destination.
Therefore, for ride request ri that arrives at the destination

now, the taxi ridesharing benefit will be β×B×(σi/[
∑n

z=1 σz]),
and thus the taxi ridesharing fare is

fri = f s
ri
− β × B × σi

∑n
z=1 σz

. (8)

From this payment model, we see a passenger will not pay
more than the regular taxi service and a taxi driver can earn
more from the ridesharing. In addition, passengers with rel-
atively large detour rates can receive more compensations.
Therefore, the payment model will largely encourage more
passengers and taxi drivers to participate in taxi ridesharing.

V. PERFORMANCE EVALUATION

A. Experimental Setup

1) Data Set: We perform extensive experiments with a
large taxi data set that is publicly released by Didi’s GAIA
initiative [1]. The data set totally has 7 065 907 taxi transac-
tions, which were collected within the 2nd Ring Road from
Chengdu city, China, in 2016. Specifically, each transaction
includes a transaction ID, a taxi ID, and a ride request, which
consists of the release time, the pick-up latitude/longitude, and
the drop-off latitude/longitude. We employ the data from two
specific time periods to simulate two representative ridesharing
scenarios.
• Peak Scenario: In general, taxis have to handle a large

number of online requests during the peak hours. Thus,
the offline requests are ignored in this scenario. The data
from 8:00 A.M. to 9:00 A.M. of a typical workday that has
the most hourly requests, i.e., 29 534, is used to evaluate
mT-Share in the peak hours.

• Nonpeak Scenario: During nonpeak hours, most taxis
have sufficient idle capacity while there exist inadequate
online requests. Thus, taxi drivers can exploit probabilis-
tic routing to seek offline passengers. Here, we assume a
taxi with half of the capacity in idle will enable the prob-
abilistic routing. The data from 10:00 A.M. to 11:00 A.M.
of a typical weekend, i.e., 15 480 ride requests, is used
to evaluate mT-Share in the nonpeak hours. Besides, we
randomly pick 5000 requests out of all and make their
release time and origin/destination to be invisible to the
system. These requests are viewed as the offline requests.

We use the rest taxi data for bipartite map partition-
ing and probability calculations of meeting suitable requests.
Statistics about the taxi data are shown in Fig. 5. Fig. 5(a)
presents the average taxi utilization in workdays and week-
ends. The taxi utilization is defined as the proportion of

(a)

(b)

Fig. 5. Statistic of the taxi data set on (a) average taxi utilization ratio and
(b) travel time distribution of taxi trips.

serving requests within each hour. From Fig. 5(a), we see
that the utilization ratios of 8:00 A.M.–9:00 A.M. in workdays
and 10:00 A.M.–11:00 A.M. in weekends are 56% and 41%,
respectively. Fig. 5(b) further shows the travel time distribu-
tion of all taxi trips in the data set, e.g., the 90-percentile and
50-percentile trip travel time are 30 and 15 min, respectively.

We download road network data within the 2nd Ring Road
of Chengdu city from OpenStreetMap [2] and model the road
network as a directed graph G(V,E), which contains 214 440
vertices and 466 330 edges in total, covering an area of more
than 70 km2. The testing road network is shown in Fig. 3(a).

2) Compared Schemes: We compared mT-Share against the
following four baseline schemes.
• No-Sharing operates as the regular taxi service with

no ridesharing at all. It assigns a ride request to the
geographically nearest idle taxi within the searching
range γ .

• T-Share [29], [30], one of the state-of-the-art schemes,
indexes all requests and taxis using grids and selects can-
didate taxis by conducting a dual-side search from both
origin and destination of a request with the searching
range γ . However, it only returns the first valid candidate
rather than the best one.

• pGreedyDP [42], one of the state-of-the-art schemes,
indexes all requests and taxis using grids like T-Share,
and selects candidate taxis within the searching range
γ around the request ri’s origin. To improve the taxi
scheduling efficiency, it determines the event insertions
of ri into an existing schedule through dynamic program-
ming.

• mT-Sharepro is the version of mT-Share with enabled
probabilistic routing. Since it will introduce huge compu-
tation costs, mT-Sharepro is only evaluated in the nonpeak
scenario. It is desirable for taxi drivers to serve offline
requests during such periods that have inadequate online
requests [10], [48].

For fair comparisons, we adjust the settings of T-Share and
pGreedyDP, and enable them to serve offline requests as well.
Along the taxi route provided by T-Share or pGreedyDP, if
a taxi tj that has sufficient empty seats happens to meet suit-
able offline requests r̄i, which can be validly inserted into tj’s

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

192 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 1, JANUARY 1, 2022

schedule, then taxi tj could serve request r̄i. Similarly, they
serve offline ride requests only in nonpeak scenario as well.

3) Performance Metrics: We evaluate all the schemes on
the following performance metrics.
• Number of served requests is the number of ride requests,

which have been timely served.
• Response time is the processing time for a ridesharing

scheme to match a suitable taxi with the request.
• Detour time represents the extra travel time when com-

pared to the travel time with no ridesharing for a request.
• Waiting time is measured as the time difference between

the time a shared taxi picks up the passengers and the
time passengers released the request.

4) Implementation: We implemented mT-Share and
all compared schemes in Python. Similar as previous
works [11], [12], [42], we premap each ride request ri’s
origin and destination to the closest vertex in road network
graph G, respectively. We set the delivery deadline eri of
request ri with the flexible factor ρ. This factor indicates the
extra travel cost that can be tolerable by passengers when
compared to the shortest path [12]. Given the release time
tri and travel cost cost(ori , dri) of request ri, the delivery
deadline of ri is thus expressed as

eri = tri + cost
(
ori , dri

)× ρ. (9)

We set the initial location of each taxi as a random ver-
tex from graph G. When a taxi tj is delivering passengers,
it should abide by the established taxi schedule Stj and taxi
route Rtj . As with previous studies [11], [23], [55], we assume
that all taxis drive with a constant speed as 15 km/h for sim-
plicity. By default, we fix the searching range γ = 2.50 km
that is equivalent to a waiting time of �t = 10 min. In
addition, we fix β = 0.80 and η = 0.01 for the payment
model.

We conduct the experimental evaluations on a server with
Intel Core i7-6700 CPU@3.40 GHz and 16-GB memory. Each
experimental setting will be repeated ten times and we only
report the average results. To speedup the route planning, we
precalculate the shortest paths for any two vertices in graph
G and the travel cost for any two landmarks in graph G�,
and cache these results in the memory [19], [55] for quick
retrieves by all schemes. We summarize the parameter settings
in Table II, where the default values are marked in bold.

B. Performance Comparison

We compared mT-Share with baseline schemes in both peak
scenario and nonpeak scenario by varying the number of taxis
from 500 to 3000, with a step of 500, similar as [29] and [42].

1) Comparisons in the Peak Scenario: Fig. 6 shows that
the four schemes can serve more requests when there are
more available taxis. With No-Sharing, a taxi can accomplish
about two ride requests on average within one peak hour.
Compared to No-Sharing, taxi ridesharing can indeed serve
much more requests. From Fig. 6, we find that pGreedyDP
outperforms T-Share because it has optimized the rideshar-
ing routing and thus is able to find better passenger–taxi
matches. Among all the schemes, mT-Share serves the most

TABLE II
SETTING OF MAJOR PARAMETERS

Fig. 6. Served requests in peak scenario.

Fig. 7. Response time in peak scenario.

requests since mT-Share has optimized both candidate taxi
searching and passenger–taxi matching by efficiently exploit-
ing the mobility information. Taking the case of 3000 taxis as
an example, No-Sharing, T-Share, pGreedyDP, and mT-Share
have served 6534, 8441, 8868, and 11 906 ride requests,
respectively. Compared to T-Share and pGreedyDP, i.e., the
state-of-the-art works, mT-Share can serve 42% and 36% more
ride requests, respectively.

When there are more available taxis, the response time of
all schemes increases, as shown in Fig. 7. No-Sharing can
respond a request within 1 ms. mT-Share will take a bit more
time to process a request than T-Share, and pGreedyDP has
the largest response time. It is possibly because pGreedyDP
spends much time to determine the low bound detour cost
for each candidate taxi. In general, mT-Share responds a ride
request within 35–140 ms and outperforms pGreedyDP by 4–
10 times on the metric of response time.

To better understand the results in Figs. 6 and 7, we
present the average numbers of candidate taxis for a request
for different schemes in Table III. With the same search-
ing range γ , No-Sharing has the smallest candidate taxi set
since it only considers vacant taxis. T-Share has much fewer
candidate taxis than pGreedyDP and mT-Share because its

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: mT-SHARE: MOBILITY-AWARE DYNAMIC TAXI RIDESHARING SYSTEM 193

TABLE III
AVERAGE NUMBER OF CANDIDATE TAXIS IN Peak Scenario

Fig. 8. Detour time in peak scenario.

Fig. 9. Waiting time in peak scenario.

dual-side search mistakenly removes many possible taxis [42].
pGreedyDP has the most candidate taxis among the four
schemes. According to the candidate taxi searching strategy
in Section IV-C, mT-Share will aggressively consider all pos-
sible candidate taxis in the partitions that intersect with the
searching range, and filter out invalid candidates by compar-
ing the travel directions of a taxi and the request. As a result,
mT-Share can initially remove many invalid candidate taxis
while preserving possible ones. These are the reasons why
mT-Share can respond each request quickly while serving the
most requests.

Fig. 8 reports the detour time. No-Sharing introduces no
detour, while the ridesharing schemes have detour time of
1–4 min. More taxis potentially allow all ridesharing schemes
to search a more suitable taxi for a request, which thus reduces
the detour time. In general, T-Share has the minimum detour
time, while mT-Share is quite close to T-Share and holds the
second place. However, pGreedyDP nearly doubles the detour
time of T-Share. Compared to pGreedyDP, mT-Share improves
the average detour time by 31%–40%.

We study the waiting time of all schemes and report the
results in Fig. 9. In general, more taxis potentially allow each
scheme to find a nearby taxi to serve each request, and thus

Fig. 10. Served requests in nonpeak scenario.

Fig. 11. Response time in nonpeak scenario.

the waiting time can be reduced. With no ridesharing, No-
Sharing has the minimum taxi supplies among all schemes
given the same number of taxis. Thus, it has a relatively
larger waiting time around 1 min. T-Share has the smallest
waiting time since it usually returns the nearest vacant taxi.
Both mT-Share and pGreedyDP try to maximize the num-
ber of served requests and minimize the total detour costs,
they thus have large waiting time. mT-Share has a bit longer
waiting time than pGreedyDP, while the gap is quite small,
i.e., < 0.5 min.

2) Comparisons in the Nonpeak Scenario: The number
of served requests in the nonpeak scenario is shown in
Fig. 10. By comparing with Fig. 6, we observe that the
advantage of ridesharing over No-Sharing is diminishing. This
is possible because there are much fewer requests in the
nonpeak hours. We even see that T-Share has similar per-
formances as No-Sharing on the number of served requests
in some settings. mT-Share and mT-Sharepro still serve much
more requests than T-Share and pGreedyDP. The probabilis-
tic routing indeed helps mT-Sharepro to serve more requests,
e.g., improving mT-Share by 13%–24%. Compared to T-Share
and pGreedyDP, i.e., state-of-the-art schemes, mT-Sharepro
can serve 62% and 58% more requests, respectively.

Fig. 11 shows the response time of all schemes in the non-
peak scenario. Comparing to their results in Fig. 7, we find
No-Sharing, T-Share, pGreedyDP, and mT-Share have quite
similar performances both scenarios. As probabilistic rout-
ing involves huge computation costs for finding the route
with the highest probability of meeting suitable requests,
the response time of mT-Sharepro is thus much greater than
mT-Share, i.e., 2.5–4.5 times slower. The performance gap
between mT-Sharepro and pGreedyDP becomes smaller when

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

194 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 1, JANUARY 1, 2022

Fig. 12. Detour time in nonpeak scenario.

Fig. 13. Waiting time in nonpeak scenario.

there are more taxis. However, mT-Sharepro still responds a
ride request much faster than pGreedyDP with 81%–497%
performance gain. Figs. 7 and 11 also demonstrate that our
scheme has a good scalability and can respond each request
quickly.

Since the route planning algorithms of No-Sharing, T-Share,
pGreedyDP, and mT-Share are the same in both scenarios, their
detour time results in the nonpeak scenario as shown in Fig. 12
are quite similar with the results in the peak scenario in Fig. 8.
Because probabilistic routing may return some long taxi routes
to encounter offline passengers by chance, mT-Sharepro has
the largest detour time among all schemes. Even so, the detour
time difference between mT-Sharepro and pGreedyDP is still
small, i.e., ≤ 0.5 min. It implies that mT-Sharepro greatly
improves pGreedyDP at a minor cost.

We present the waiting time of all schemes in Fig. 13. We
observe an obvious decrease in the trend of waiting time when
the number of available taxis is increased. Compared to the
results in Fig. 9, the waiting times of the five schemes in
the nonpeak scenario become larger. This is because we have
fewer requests in the nonpeak hours, and a taxi usually needs
to travel more distances to pick up the passengers. Because of
the probabilistic routing, mT-Sharepro has the largest waiting
time, e.g., 2 min longer than pGreedyDP.

3) Memory Overhead: The ridesharing schemes usually
index both taxis and ride requests to accelerate the passenger–
taxi matching, which consumes system memory. We thus
compared their memory overheads with 3000 taxis in the
peak scenario, which indicates the upper bound of memory
costs. It is worth noting that mT-Share and mT-Sharepro
have the same memory costs. Table IV presents the statis-
tic results. Compared to T-Share and pGreedyDP, mT-Share

(a)

(b)

Fig. 14. Impact of the (a) number of partitions κ and (b) taxi capacity in
peak scenario.

TABLE IV
STATISTICS OF MEMORY OVERHEAD FOR RIDESHARING SCHEMES

builds indexes with both map partitions and mobility clusters,
and thus mT-Share has about 39.5% and 38.7% larger indexes,
respectively. As a result, mT-Share consumes 16.0% and
40.7% more memories than T-Share and pGreedyDP, respec-
tively. Fortunately, such memory overheads are negligible
since current servers are equipped with sufficient memory.

C. Detailed Evaluation

Next, we will conduct experiments to explore the impacts
of important parameters and alternative designs for mT-Share.

1) Impact of Partition Number κ: In this experiment, we
vary the partition number κ while keeping other settings in
peak scenario. As shown in Fig. 14(a), for the three schemes,
the number of served requests increases at the beginning and
then decreases beyond κ = 150. The κ values, either too small
or oversize, will lead to fewer candidate taxis, and thus influ-
ence ridesharing performances. When κ is varied from 50 to
150, the average size of candidate taxi sets increases by 17%
and meanwhile the number of served requests increases from
8234 to 8753. In contrary, more partitions lead to a shrinking
candidate taxi set, and the served ride requests are reduced.

2) Impact of Capacity: Except varying the taxi capacity,
we conduct this experiment using default settings as well in
the peak scenario. When the taxi capacity is enlarged, the
same number of available taxis will have much more supplies
and thus they could serve more ride requests. As shown in
Fig. 14(b), the larger taxi capacity brings more served ride
requests. Specifically, compared to capacity = 2, mT-Share
serves 12% more requests when capacity = 6.

3) Impact of Map Partitioning Strategies: Rather than
using grids on the road network graph as previous
works [29], [30], [39], [42], mT-Share instead adopts a bipar-
tite map partitioning strategy, which considers both geograph-
ical information and mobility patterns. We compare the per-
formances of mT-Share with different partitioning strategies in
both scenarios with the default settings, and present the results

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: mT-SHARE: MOBILITY-AWARE DYNAMIC TAXI RIDESHARING SYSTEM 195

TABLE V
COMPARISONS OF DIFFERENT MAP PARTITION STRATEGIES

Fig. 15. Impact of searching range γ on detour time and waiting time in
peak scenario.

in Table V. We see bipartite map partitioning indeed improves
the performances in both scenarios. Specifically, bipartite map
partitioning improves the number of served requests by 6%
at least, while reducing the detour time by 3%–7%. The
results prove that mobility-aware map partitioning can benefit
ridesharing.

4) Impact of Searching Range γ : All schemes determine a
candidate taxi set for each request with a searching range γ ,
and we study its impacts on the detour time and waiting time
in the peak scenario. Fig. 15 shows that a larger searching
range γ usually leads to more both detour time and waiting
time. No-Sharing has no detour at all. Typically, ridesharing
schemes will find more candidate taxis in a larger searching
range, and the selected taxi may be farther from the requests
and meanwhile has more detour cost. The sum of detour time
and waiting time can implicitly represent the service quality
of a taxi ridesharing scheme, where a larger value indicates
that the passengers need to spend more extra time for the taxi
trip. Fig. 15 reports that T-Share wins the best service quality
and mT-Share has better service quality than pGreedyDP.

5) Impact of Routing Schemes: We study whether prob-
abilistic routing benefits for finding offline requests. In this
experiment, we combine basic routing or probabilistic routing
with T-Share, pGreedyDP, or mT-Share, and then run each
combinatorial scheme in the nonpeak scenario with default
settings. Fig. 16 illustrates the compositions of served requests
for different combinations. From Fig. 16(a), although the basic
routing-based schemes may encounter a few offline passengers
by chance, probabilistic routing indeed enlarges the probabil-
ity by serving more offline requests, as shown in Fig. 16(b).
By comparing Fig. 16(a) and (b), we find that probabilistic
routing brings 89%, 46%, and 34% more offline requests for
T-Share, pGreedyDP, and mT-Share, respectively. By exploit-
ing the mobility patterns for effective route planning, overall
they serve 26%, 17%, and 14% more requests, respectively.

(a) (b)

Fig. 16. Impact of (a) basic routing and (b) probabilistic routing in nonpeak
scenario.

Fig. 17. Impact of ρ on the average waiting time of passengers.

Fig. 18. Impact of ρ on average detour time and number of served requests.

6) Impact of Flexible Factor ρ: We perform experiments to
explore the impact of the flexible factor ρ in the peak scenario
with default settings. First, we study the impact of ρ on the
passengers’ waiting time and plot the results in Fig. 17. As
ρ does not influence No-Sharing, we thus omit it. A larger ρ
essentially indicates that passengers can tolerant more detour
time, and thus much farther taxi may be selected to serve
them, resulting in longer waiting time. Generally, T-Share has
the shortest waiting time, and mT-Share has relatively longer
waiting time. The performance gap between pGreedyDP and
mT-Share is quite small, i.e., < 1.2 min.

Fig. 18 shows that when we increase ρ, the detour time
also increases. The shared taxis can serve more requests with
a larger ρ, but the number of served requests slightly increases
beyond ρ = 1.3. It implies that more detour time brings about
negligible benefit when we choose even larger ρ. For example,
the number of served requests and detour time are 8753 and
2.5 min, respectively, when ρ = 1.3. The numbers increase to
9140 and 3.6 min, respectively, when ρ = 1.4. It means that

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

196 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 1, JANUARY 1, 2022

Fig. 19. Impact of ρ on the fare reduction of passengers and the profit
increase of drivers.

Fig. 20. Impact of maximum travel direction difference θ .

4% improvement on served requests comes at the expense of
48% increase of detour time.

We study the monetary benefits of ridesharing for both pas-
sengers and taxi drivers based on our payment model. Fig. 19
shows that taxi ridesharing indeed has economic advantages.
Specifically, a larger flexible factor ρ will save more fares
for ridesharing passengers while the profit for taxi drivers is
decreasing. This is because larger ρ cannot lead to a remark-
able increase of served requests (as reported in Fig. 18) while
the travel distance grows greatly. As a result, the benefit is
reduced for drivers. Specifically, the passengers can save 8.6%
taxi fare while the drivers can obtain 7.8% more incomes when
ρ = 1.3, which is a good setting for both sides.

7) Impact of Threshold λ: We study the impact of parame-
ter λ in mobility clustering by varying the maximum travel
direction difference θ from 30◦ to 75◦. The experiment is
performed in the peak scenario with default settings. Fig. 20
shows that when we increase θ (i.e., decreasing λ), the num-
ber of served requests increases slightly while the response
time increases greatly. This is because a smaller λ brings
more candidate taxis for each request and thus enhances the
ridesharing chances. However, it also introduces huge compu-
tation costs to examine the possible taxi schedules. Therefore,
we adopt λ = 0.707 (i.e., θ = 45◦) to balance the number
of served requests and the response time for a better system
performance.

8) Impact of Used Data Amounts: To investigate the scal-
ability of our system, we make use of the taxi data during
7:00 A.M.–20:00 P.M. of one typical workday and one typical
weekend for experiments. We run mT-Share and mT-Sharepro
for workday data and weekend data, respectively. For each

(a)

(b)

Fig. 21. Impact of the used data amounts on (a) execution time and
(b) response time.

setting of experiments on weekend data, we assume one third
of all requests as the offline. We gradually increase the hours
of used taxi data and present the results in Fig. 21. As shown
in Fig. 21(a), the total execution time raises linearly, when
we increase the data amounts for both workday and weekend.
For all the 13 h of taxi data, mT-Share can complete all cal-
culations within 4 h for workday data. Although probabilistic
routing takes time, mT-Sharepro can still finish within 6 h for
weekend data. Fig. 21(b) shows that the response time is quite
stable in both workday and weekend. Specifically, the average
response time for workday and weekend are 110 and 420 ms,
respectively. These results prove that our scheme is computa-
tionally efficient and can well scale to large amounts of data
for a large city.

VI. CONCLUSION

This article presents a novel dynamic taxi rideshar-
ing scheme—mT-Share, which fully exploits the mobility
information of taxis and ride requests. To improve the exist-
ing works, mT-Share utilizes both map partitions and mobility
clusters to index taxis and ride requests and has optimized
passenger–taxi matching with efficient routing. In particular,
mT-Share supports the shared taxis to well serve both online
and offline ride requests. Based on a large real-world taxi
data set, our experimental evaluations show that mT-Share can
respond each request within milliseconds and greatly outper-
forms the state-of-the-art works, e.g., serving 42% and 62%
more ride requests in peak and nonpeak hours, respectively.

REFERENCES

[1] Gaia Initiative. Accessed: Jun. 1, 2021. [Online]. Available:
https://outreach.didichuxing.com/research/opendata

[2] Openstreetmap. Accessed: Jun. 1, 2021. [Online]. Available: http://www.
openstreetmap.org/

[3] Taxi Service Research Report. Accessed: Jun. 1, 2021. [Online].
Available: http://www.transformcn.com/Topics/2018-08/02/b7944fb3-
1b99-4840-89d7-eecaaec67bea.pdf

[4] A. O. Al-Abbasi, A. Ghosh, and V. Aggarwal, “Deeppool: Distributed
model-free algorithm for ride-sharing using deep reinforcement learn-
ing,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4714–4727,
Dec. 2019.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: mT-SHARE: MOBILITY-AWARE DYNAMIC TAXI RIDESHARING SYSTEM 197

[5] M. Asghari, D. Deng, C. Shahabi, U. Demiryurek, and Y. Li, “Price-
aware real-time ride-sharing at scale: An auction-based approach,” in
Proc. 24th ACM SIGSPATIAL Int. Conf. Adv. Geograph. Inf. Syst. (GIS),
2016, pp. 1–10.

[6] M. Asghari and C. Shahabi, “An on-line truthful and individually rational
pricing mechanism for ride-sharing,” in Proc. 25th ACM SIGSPATIAL
Int. Conf. Adv. Geograph. Inf. Syst. (GIS), 2017, pp. 1–10.

[7] R. Baldacci, V. Maniezzo, and A. Mingozzi, “An exact method for the
car pooling problem based on Lagrangean column generation,” Oper.
Res., vol. 52, no. 3, pp. 422–439, 2004.

[8] X. Bei and S. Zhang, “Algorithms for trip-vehicle assignment in ride-
sharing,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 3–9.

[9] B. Cao, L. Alarabi, M. F. Mokbel, and A. Basalamah, “SHAREK: A
scalable dynamic ride sharing system,” in Proc. 16th IEEE Int. Conf.
Mobile Data Manag. (MDM), 2015, pp. 4–13.

[10] P. S. Castro, D. Zhang, C. Chen, S. Li, and G. Pan, “From taxi GPS
traces to social and community dynamics: A survey,” ACM Comput.
Surveys, vol. 46, no. 2, p. 17, 2013.

[11] L. Chen, Q. Zhong, X. Xiao, Y. Gao, P. Jin, and C. S. Jensen, “Price-and-
time-aware dynamic ridesharing,” in Proc. IEEE 34th Int. Conf. Data
Eng. (ICDE), 2018, pp. 1061–1072.

[12] P. Cheng, H. Xin, and L. Chen, “Utility-aware ridesharing on road
networks,” in Proc. ACM Int. Conf. Manag. Data (SIGMOD), 2017,
pp. 1197–1210.

[13] J.-F. Cordeau and G. Laporte, “The dial-a-ride problem (DARP):
Variants, modeling issues and algorithms,” Quart. J. Belgian French
Italian Oper. Res. Soc., vol. 1, no. 2, pp. 89–101, 2003.

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[15] X. Geng et al., “Spatiotemporal multi-graph convolution network for
ride-hailing demand forecasting,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 3656–3663.

[16] W. He, K. Hwang, and D. Li, “Intelligent carpool routing for urban
ridesharing by mining GPS trajectories,” IEEE Trans. Intell. Transp.
Syst., vol. 15, no. 5, pp. 2286–2296, Oct. 2014.

[17] Y. He, J. Ni, X. Wang, B. Niu, F. Li, and X. Shen, “Privacy-preserving
partner selection for ride-sharing services,” IEEE Trans. Veh. Technol.,
vol. 67, no. 7, pp. 5994–6005, Jul. 2018.

[18] Y. Hou, W. Zhong, L. Su, K. Hulme, A. W. Sadek, and C. Qiao,
“TASeT: Improving the efficiency of electric taxis with transfer-allowed
rideshare,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9518–9528,
Dec. 2016.

[19] Y. Huang, F. Bastani, R. Jin, and X. S. Wang, “Large scale real-time
ridesharing with service guarantee on road networks,” Proc. VLDB
Endowm., vol. 7, no. 14, pp. 2017–2028, 2014.

[20] M. Li et al., “Efficient ridesharing order dispatching with mean field
multi-agent reinforcement learning,” in Proc. World Wide Web Conf.
(WWW), 2019, pp. 983–994.

[21] Y. Li et al., “Top-k vehicle matching in social ridesharing: A price-
aware approach,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 3,
pp. 1251–1263, Mar. 2021.

[22] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet
management via multi-agent deep reinforcement learning,” in Proc.
24th ACM SIGKDD Int. Conf. Knowl. Disc. Data Min. (KDD), 2018,
pp. 1774–1783.

[23] Q. Lin, L. Dengt, J. Sun, and M. Chen, “Optimal demand-aware ride-
sharing routing,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
2018, pp. 2699–2707.

[24] Z. Liu, Z. Gong, J. Li, and K. Wu, “Mobility-aware
dynamic taxi ridesharing,” in Proc. IEEE 36th Int. Conf.
Data Eng. (ICDE), 2020, pp. 961–972. [Online]. Available:
https://ieeexplore.ieee.org/xpl/conhome/9093725/proceeding

[25] Z. Liu, J. Li, and K. Wu, “Context-aware taxi dispatching at city-scale
using deep reinforcement learning,” IEEE Trans. Intell. Transp. Syst.,
early access, Nov. 3, 2020, doi: 10.1109/TITS.2020.3030252.

[26] Z. Liu, Z. Li, M. Li, W. Xing, and D. Lu, “Mining road network correla-
tion for traffic estimation via compressive sensing,” IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 7, pp. 1880–1893, Jul. 2016.

[27] Z. Liu, P. Zhou, Z. Li, and M. Li, “Think like a graph: Real-time traffic
estimation at city-scale,” IEEE Trans. Mobile Comput., vol. 18, no. 10,
pp. 2446–2459, Oct. 2019.

[28] Q. Ma, Z. Cao, K. Liu, and X. Miao, “QA-Share: Toward an efficient
QoS-aware dispatching approach for urban taxi-sharing,” ACM Trans.
Sens. Netw., vol. 16, no. 2, pp. 1–21, 2020.

[29] S. Ma, Y. Zheng, and O. Wolfson, “T-Share: A large-scale dynamic taxi
ridesharing service,” in Proc. IEEE 29th Int. Conf. Data Eng. (ICDE),
2013, pp. 410–421.

[30] S. Ma, Y. Zheng, and O. Wolfson, “Real-time city-scale taxi rideshar-
ing,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 7, pp. 1782–1795,
Jul. 2015.

[31] V. M. de Lira, R. Perego, C. Renso, S. Rinzivillo, and V. C. Times,
“Boosting ride sharing with alternative destinations,” IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 7, pp. 2290–2300, Jul. 2018.

[32] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and
L. Damas, “Predicting taxi–passenger demand using streaming data,”
IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1393–1402,
Sep. 2013.

[33] Online New York Post news. (2016). Apps See Surge in Riders
Willing to Get Comfy With Strangers. [Online]. Available:
https://nypost.com/2016/08/13/apps-see-surge-in-riders-willing-to-
get-comfy-with-strangers/

[34] S. Saisubramanian, C. Basich, S. Zilberstein, and C. V. Goldman,
“Satisfying social preferences in ridesharing services,” in Proc. IEEE
Intell. Transp. Syst. Conf. (ITSC), 2019, pp. 3720–3725.

[35] A. B. Sherif, K. Rabieh, M. M. E. A. Mahmoud, and X. Liang, “Privacy-
preserving ride sharing scheme for autonomous vehicles in big data era,”
IEEE Internet Things J., vol. 4, no. 2, pp. 611–618, Apr. 2017.

[36] N. Ta, G. Li, T. Zhao, J. Feng, H. Ma, and Z. Gong, “An efficient ride-
sharing framework for maximizing shared route,” IEEE Trans. Knowl.
Data Eng., vol. 30, no. 2, pp. 219–233, Feb. 2018.

[37] L. Tang, Z. Duan, Y. Zhu, J. Ma, and Z. Liu, “Recommendation
for ridesharing groups through destination prediction on trajectory
data,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2, pp. 1320–1333,
Feb. 2021.

[38] X. Tang et al., “A deep value-network based approach for multi-driver
order dispatching,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Disc.
Data Min., 2019, pp. 1780–1790.

[39] R. S. Thangaraj, K. Mukherjee, G. Raravi, A. Metrewar, N. Annamaneni,
and K. Chattopadhyay, “Xhare-a-Ride: A search optimized dynamic ride
sharing system with approximation guarantee,” in Proc. IEEE 33rd Int.
Conf. Data Eng. (ICDE), 2017, pp. 1117–1128.

[40] Y. Tong et al., “The simpler the better: A unified approach to
predicting original taxi demands based on large-scale online platforms,”
in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., 2017,
pp. 1653–1662.

[41] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic pricing
in spatial crowdsourcing: A matching-based approach,” in Proc. ACM
SIGMOD Int. Conf. Manag. Data, 2018, pp. 773–788.

[42] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” Proc. VLDB Endowm,
vol. 11, no. 11, pp. 1633–1646, 2018.

[43] D. Wang and X. Zhang, “Secure ride-sharing services based on a consor-
tium blockchain,” IEEE Internet Things J., vol. 8, no. 4, pp. 2976–2991,
Feb. 2021.

[44] J. Wang et al., “Demand-aware route planning for shared mobility
services,” Proc. VLDB Endowm., vol. 13, no. 7, pp. 979–991, 2020.

[45] Y. Xu, Y. Tong, Y. Shi, Q. Tao, K. Xu, and W. Li, “An efficient insertion
operator in dynamic ridesharing services,” in Proc. IEEE 35th Int. Conf.
Data Eng. (ICDE), 2019, pp. 1022–1033.

[46] H. Yao et al., “Deep multi-view spatial-temporal network for taxi
demand prediction,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 2588–2595.

[47] H. Yu, H. Zhang, X. Yu, X. Du, and M. Guizani, “PGRide: Privacy-
preserving group ridesharing matching in online ride hailing services,”
IEEE Internet Things J., vol. 8, no. 7, pp. 5722–5735, Apr. 2021.

[48] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie, “T-finder: A recommender
system for finding passengers and vacant taxis,” IEEE Trans. Knowl.
Data Eng., vol. 25, no. 10, pp. 2390–2403, Oct. 2013.

[49] C. F. Yuen, A. P. Singh, S. Goyal, S. Ranu, and A. Bagchi, “Beyond
shortest paths: Route recommendations for ride-sharing,” in Proc. World
Wide Web Conf. (WWW), 2019, pp. 2258–2269.

[50] D. Zhang et al., “Carpooling service for large-scale taxicab networks,”
ACM Trans. Sens. Netw., vol. 12, no. 3, p. 18, 2016.

[51] J. Zhang, D. Wen, and S. Zeng, “A discounted trade reduction mecha-
nism for dynamic ridesharing pricing,” IEEE Trans. Intell. Transp. Syst.,
vol. 17, no. 6, pp. 1586–1595, Jun. 2016.

[52] L. Zhang et al., “A taxi order dispatch model based on combinatorial
optimization,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., 2017, pp. 2151–2159.

[53] W. E. Zhang, A. Shemshadi, Q. Z. Sheng, Y. L. Qin, X. Xu, and
J. Yang, “A user-oriented taxi ridesharing system with large-scale urban
GPS sensor data,” IEEE Trans. Big Data, vol. 7, no. 2, pp. 327–340,
Jun. 2021.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TITS.2020.3030252

198 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 1, JANUARY 1, 2022

[54] B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and Y. Zeng, “Preference-
aware task assignment in on-demand taxi dispatching: An online
stable matching approach,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 2245–2252.

[55] L. Zheng, L. Chen, and J. Ye, “Order dispatch in price-aware rideshar-
ing,” Proc. VLDB Endowm., vol. 11, no. 8, pp. 853–865, 2018.

[56] L. Zheng, P. Cheng, and L. Chen, “Auction-based order dispatch and
pricing in ridesharing,” in Proc. IEEE 35th Int. Conf. Data Eng. (ICDE),
2019, pp. 1034–1045.

[57] M. Zhu, X.-Y. Liu, and X. Wang, “An online ride-sharing path-planning
strategy for public vehicle systems,” IEEE Trans. Intell. Transp. Syst.,
vol. 20, no. 2, pp. 616–627, Feb. 2019.

Zhidan Liu (Member, IEEE) received the Ph.D.
degree in computer science and technology from
Zhejiang University, Hangzhou, China, in 2014.

He worked as a Research Fellow with Nanyang
Technological University, Singapore. In 2017, he
joined Shenzhen University, Shenzhen, China, as an
Assistant Professor. His research interests include
distributed sensing and mobile computing, big data
analytics, Internet of Things, and urban computing.

Zengyang Gong received the B.S. degree in
computer science and technology from Wuhan
University of Science and Technology, Wuhan,
China, in 2017, and the master’s degree in computer
science and technology from Shenzhen University,
Shenzhen, China, in 2020. He is currently pursu-
ing the Ph.D. degree with Hong Kong University of
Science and Technology, Hong Kong.

His research interests are in the areas of big data,
including traffic modeling, pervasive computing, and
urban computing.

Jiangzhou Li received the B.S. degree in
software engineering from Qingdao University,
Qingdao, China, in 2018. He is currently pur-
suing the master’s degree with the College
of Computer Science and Software Engineering,
Shenzhen University, Shenzhen, China, under the
supervision of Dr. Z. Liu.

His research interests are in the areas of big
data, including data analysis, urban computing, and
reinforcement learning.

Kaishun Wu (Member, IEEE) received the Ph.D.
degree in computer science and engineering from
Hong Kong University of Science and Technology
(HKUST), Hong Kong, in 2011.

He worked as a Research Assistant Professor with
HKUST. In 2013, he joined Shenzhen University,
Shenzhen, China, as a Distinguish Professor. He
has coauthored two books and published over
100 high-quality research papers in international
leading journals and primer conferences, such as
IEEE TRANSACTIONS ON MOBILE COMPUTING,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ACM
MobiCom, and IEEE INFOCOM. He is the inventor of six U.S. and over 90
Chinese pending patents.

Dr. Wu received the 2012 Hong Kong Young Scientist Award, the 2014
Hong Kong ICT Awards: Best Innovation, and the 2014 IEEE ComSoc
Asia–Pacific Outstanding Young Researcher Award. He is an IET Fellow.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on May 16,2022 at 02:19:24 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

