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Abstract. Characterizing human driver’s driving behaviors from GPS
trajectories is an important yet challenging trajectory mining task. Pre-
vious works heavily rely on high-quality GPS data to learn such driv-
ing style representations through deep neural networks. However, they
have overlooked the driving contexts that greatly govern drivers’ driv-
ing activities and the data sparsity issue of practical GPS trajectories
collected at a low-sampling rate. To address the limitations of existing
works, we present an adversarial driving style representation learning
approach, named Radar. In addition to summarizing statistic features
from raw GPS data, Radar also extracts contextual features from three
aspects of road condition, geographic semantic, and traffic condition. We
further exploit the advanced semi-supervised generative adversarial net-
works to construct our learning model. By jointly considering statistic
features and contextual features, the trained model is able to efficiently
learn driving style representations even from sparse trajectories. Exper-
iments on two benchmark applications, i.e., driver number estimation
and driver identification, with a large real-world GPS trajectory dataset
demonstrate that Radar can outperform the state-of-the-art approaches
by learning more effective and accurate driving style representations.

Keywords: GPS trajectory · Multi-source data · Driving style
representation · Generative adversarial networks

1 Introduction

The advances of GPS and wireless communication techniques have enhanced the
ability of various systems in collecting the spatio-temporal vehicular trajectories.
The massive GPS trajectories stimulate a number of trajectory mining tasks for
better understanding human mobility patterns and behaviors [29], among which
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characterizing human driver’s driving behaviors is an important yet challeng-
ing task. Similar as the bio-metrics, it is believed that each driver also has a
distinguishable pattern of driving, which is referred as driving style [13]. Specif-
ically, driving style reflects a driver’s fine-grained behavioral habits of steering
and speed control and their temporal combinations [2]. Learning drivers’ driving
style representations from their trajectories can benefit many intelligent applica-
tions, e.g., driving assessment and assistance [25], driver-vehicle interaction [13],
autonomous driving [12], and etc. In addition, auto insurance companies have
been interested in utilizing the driving style information for risk assessments and
personalized insurance pricing [9].

In the literature, some valuable efforts have been made to derive the driving
style representations. Traditional approaches heavily rely on the data collected
from automobile sensors (e.g., controller area network buses) [6] or dedicated
sensors (e.g., high-definition cameras) [8] for driving style learning. However, it
is difficult to retrieve data from automobile sensors while dedicated devices will
incur installation costs. Recent studies [2,10,30] turn to leverage deep learning
models to process GPS trajectories for learning the driving style representations.
Compared to automobile and dedicated sensors, GPS sensor data are often eas-
ier to access and thus are more popular in large-scale study [2,29]. These works,
however, require high-frequency rate of GPS data collections, which may be pro-
hibited due to privacy and energy consumption [15]. Furthermore, these works
merely focus on feature extractions from GPS data, but have overlooked the
instant driving context information, such as road conditions and traffic condi-
tions. As a result, they are inadequate to acquire accurate driving style repre-
sentations.

Despite these research efforts, it is still non-trivial to efficiently learn driving
style representation from GPS trajectories, mainly due to following challenges.
First, practical GPS data are usually collected at a low-sampling rate, e.g., 1
sample per 30 s [15], and are probably sparse, i.e., there may be insufficient
qualified data to train a deep learning model [10]. Second, driving is a complex
activity and the resultant driving style is influenced by many factors. The GPS
trajectory data themselves cannot capture the complete view of a driver’s driving
style, and hence the external context information should be taken into account.
However, how to properly integrate the features from GPS data and context
information into one model needs to be well designed and thus is challenging.

In this paper, we present an adversarial driving style representation learning
approach, named Radar, which extracts comprehensive features from multi-
source data and builds a semi-supervised generative adversarial networks
(SGAN) based model to learn driving style representations from these extracted
features. To better describe a driver’s driving behaviors, Radar not only trans-
forms raw GPS trajectory data to fine-grained statistic features about driver’s
habits of steering and speed control, but also additionally considers each GPS
trajectory’s contextual features, which are captured by three aspects of road con-
dition, geographic semantic, and traffic condition. In particular, different from
the specific GPS locations, geographic semantic encodes high-level geographic
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features of a trajectory by mapping it to the whole city area. These driving
contexts greatly govern a driver’s driving activity, and thus are important com-
plements for learning driving styles. To tackle data sparsity issue, Radar makes
use of SGAN to construct the learning model, which equally treats statistic
features and contextual features as the input to learn the driving style represen-
tations. Our learning model consists of three different components: generator,
discriminator, and classifier, which work together to not only classify drivers
from inputted trajectories but also generate fake samples close to the training
data. As a result, Radar’ learning model can achieve better generalization abil-
ity through both data augmentation and the competition between generator and
discriminator.

In summary, the contributions of our work are as follows:

– To the best of our knowledge, we are the first to consider the problem of
context-aware driving style representation learning from sparse trajectories,
which improves existing works by considering the driving contexts.

– We propose an adversarial driving style representation learning approach –
Radar, which exploits multi-source data and a SGAN based learning model
to efficiently learn driving style representations from practical trajectories.

– We conduct extensive experiments with two benchmark applications, namely
driver number estimation and driver identification, using a large real-world
trajectory dataset. Experimental results demonstrate Radar outperforms
state-of-the-art approaches, e.g., on average improving the accuracy of driver
number estimation and driver identification by 9.6% and 5.6%, respectively.

The remainder of the paper is organized as follows. We review related works
in Sect. 2. The problem statement is presented in Sect. 3. We elaborate and eval-
uate our proposed approach in Sect. 4 and Sect. 5, respectively. Finally, Sect. 6
concludes this paper.

2 Related Work

The related works can be grouped into two categories: driving behavior analysis
and trajectory mining. We review and discuss these works as follows.

Driving Behavior Analysis. Extensive studies have been conducted on the
driving behavior analysis. Previous works primarily rely on the data collected
from automobile sensors, e.g., on-board diagnostic systems [9], controller area
network buses [6], and digital cameras [8], to analyze drivers’ driving behaviors.
For example, Ezzini et al. utilize the measurements taken from various in-vehicle
sensors to realize driver identification and fingerprinting [3]. However, it is rel-
atively difficult to collect data from these automobile sensors, while dedicated
devices like cameras bring installation costs. These constraints greatly limit their
usability. Some recent works [1] resort to collect driving data using the internal
sensors in smartphones and analyze the sensing data for monitoring drivers’
behaviors. These works concern about driving safety, rather than driving styles.
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Compared to automobile sensors, GPS sensor data are much easier to col-
lect and GPS trajectory based driving behavior analysis has attracted many
research efforts [2,10,25,27] in recent years. For example, Yang et al. analyze
GPS traces of peer vehicles to proactively alter drivers of the vehicles with dan-
gerous behaviors nearby [27]. By jointly modeling the peer and temporal depen-
dencies of driving trajectories, Wang et al. enable the applications of driving
score prediction and risk area detection [25]. The two works, however, mainly
concern the identification of dangerous driving behaviors, rather than captur-
ing a driver’s latent driving styles. Instead, Dong et al. propose an autoencoder
regularized deep neural network and a trip encoding framework to learn drivers’
driving styles directly from GPS trajectories [2]. Tung et al. propose a trajectory-
to-image representation framework that encodes both geographic features and
driving behaviors of trajectories into multi-channel images [10]. Although the
two works can achieve remarkable performances, they are still not sufficiently
efficient and practical. First, they require high-quality GPS trajectories that are
collected at a high-sampling rate such 1 Hz, while most practical GPS trajec-
tories are collected at a low frequency, e.g., 1 sample per 30 s, due to concerns
of energy consumption and privacy [15]. Second, they merely extract features
from GPS data while overlooking the driving contexts, within which a trajec-
tory has been generated. Our approach overcomes these limitations by utilizing
multi-source data to fully describe driving behaviors and the advanced SGAN
modeling, and thus can learn more effective and accurate driving style represen-
tations.

Trajectory Mining. The wide availability of GPS trajectories has inspired a
wide range of applications [29], e.g., urban traffic estimation [17] and prediction
[16], personalized recommender systems [28], and ridesharing [14]. To enable
such applications, various trajectory mining tasks have been widely studied,
e.g., trajectory pattern mining [11], trajectory-user linking [30], and etc.. In
particular, trajectory-user linking, which links trajectories to users who produce
them, is quite relevant to our work. Existing works on this problem mainly
analyze mobility trajectories by exploiting various deep learning models to learn
the semantic trajectory representations [4,19,22,30]. For example, Feng et al.
present a deep learning framework to link heterogeneous mobility data, which
are collected from different online services, to the users [4]. Ren et al. build a
spatio-temporal Siamese network model to predict whether an income set of
trajectories belong to a certain agent based on historical trajectory data [22].
In addition, Miao et al. utilize recurrent networks with attention mechanism to
solve the trajectory-user linking problem [19]. Different from these works, we aim
to learn drivers’ driving style representations from practical GPS trajectories,
which involves more complex human behaviors and thus is more challenging.
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3 Problem Statement

3.1 Definitions and Notations

The GPS trajectory data are collected when a set of drivers U = {u1, · · · , u|U|}
drive their vehicles, which have been equipped with GPS sensors, on a road
network. The GPS trajectory set Tui

generated by driver ui implicitly encodes
ui’s driving style. Accurately learning the driving style representation can ben-
efit many potential applications, such as driving assessment and assistance [25],
driver-vehicle interaction [13], autonomous driving [12], and so on.

Definition 1 (GPS trajectory). Let T i
j ∈ Tui

denotes the j-th trajectory gen-
erated by driver ui. Specifically, T i

j = {g1, · · · , g|T i
j |} is a time-ordered sequence

of GPS records, where each record is denoted as a tuple < ts, lat, lng, v, dir >,
indicating that ui’s vehicle located at latitude lat and longitude lng at time ts,
with instant travel speed v in direction dir.

Due to GPS localization errors, we have to map raw GPS locations to their
actual locations on the roads through map matching techniques [20]. Therefore,
a trajectory Tj

1 could be mapped to a travel route Rj on the road network G.

Definition 2 (Road network). A road network is modelled as graph G =
{V, E}, where V represents the set of road intersections and E represents the
set of road segments in a city. In addition, each road segment has following
attributes: ID of road segment, road type, number of lanes, and one-way indica-
tor.

Definition 3 (Travel route). The travel route Rj for a GPS trajectory Tj is
denoted by a sequence of road segments, i.e., Rj = {e1, e2, · · · , e|Rj |}, on road
network G, where ei ∈ E is a road segment in route Rj and |Rj | is the number
of all traveled road segments. Note that end point of ei is the start point of ei+1.

3.2 Problem Statement

Definition 4 (Context-aware driving style representation learning).
Given a set of GPS trajectories generated by drivers in U, we aim to learn driv-
ing style representations for drivers in U by exploiting necessary context infor-
mation, so as to support applications like driver number estimation and driver
identification.

Different from previous works [2,10] that heavily rely on high-quality GPS
trajectories, we should devise an approach that works well for practical tra-
jectories and incorporates contextual information for much better driving style
representation learning. To that end, we have to address the following challenges.

1 We omit the upper-script if the context is clear.
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(1) Data sparsity. This challenge is arised from two aspects. On one hand, in
practice GPS data are usually collected at a low-sampling rate, e.g., 0.1Hz.
On the other hand, trajectories are of different lengths and may contain
deficient driving behavior information, resulting in insufficient qualified tra-
jectories. These factors will lead to low-quality data for training the deep
learning models and thus impair their performances.

(2) Balanced integration of features from GPS data and contextual information.
Although driving contexts would benefit driving style representation learn-
ing, how to efficiently encode these contextual information and further grace-
fully integrate features extracted from raw GPS data and driving contexts
should be wisely designed. The driving contexts involve various information,
and the resultant feature vectors may be of different dimensions.

4 The Design

4.1 Overview

Figure 1 illustrates the architecture of our approach, which consists of three
major modules: GPS data transformation, driving context representation, and
learning model. At high-level, Radar takes raw GPS trajectories and road map
as the input, and exploits the modules of GPS data transformation and driving
context representation to extract features from a GPS trajectory and the cor-
responding contexts. The integrated feature tensors are fed into learning model
to compute driving style representations, which can support many trajectory
mining applications, e.g., driver number estimation and driver identification.

GPS 
Trajectories

Road Map

GPS Data Transformation

Driving Context Representation

...

Feature fusion

Sliding window Statistic features

Learning Model

Feature tensor

Generator 

Noise z

Road condition

Geographic semantic

Traffic condition

Map 
matching

Route 

Applications 

Driver identification

Driver number 
estimation

Real / Fake

Domain
classification

D

Fig. 1. The architecture of Radar.

Specifically, GPS data transformation utilizes a sliding window to calculate
various statistics of the GPS data, which finally form the statistic feature matrix.
For the driving context representation modules, it firstly applies map matching
technique to transform each GPS trajectory to an actual travel route. With
this route, Radar derives context information about road conditions, geographic
semantic (i.e., geographical distribution of the route over the whole city area),
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and traffic conditions. These context information are fused to form a contex-
tual feature matrix. Lastly, both statistic feature matrix and contextual feature
matrix are integrated as the input for the learning model. In particular, we adopt
the emerging semi-supervised generative adversarial network architecture [21] for
building our model to learn effective and accurate driving style representations.

4.2 GPS Data Transformation

Instead of inputting raw GPS data to deep learning models, we will transform
each GPS trajectory into more stable statistic features. Similar as previous work
[2], we divide a GPS trajectory into segments of a fixed length Ls, with a shift
of Ls

2 to avoid much information loss between any two adjacent segments. We
employ five basic features to capture the instantaneous vehicular movement fea-
tures, namely speed norm, difference of speed norm, acceleration norm, difference
of acceleration norm, and angular speed. To reduce the possible impact of out-
liers, we further divide a segment into frames of a fixed size Lf , with a shift Lf

2 .
For each frame, we calculate seven statistics for each basic feature, including
mean, minimum, maximum, 25%, 50% and 75% quartiles, and standard devia-
tion. For each trajectory Tj consisting of a sequence of time-ordered GPS records
in the form of gi =< ts, lat, lng, v, dir >, we can easily calculate speed statistics
using travel speed v, acceleration statistics with location (lat, lng), and angular
statistics with travel direction dir, respectively. As a result, we can derive a set of
statistic feature matrices, each of which consists of 5×7 = 35 rows and 2×� Ls

Lf
�

columns. A statistic feature matrix encodes the driving behavior information of
a trajectory segment, and serves as partial input to the learning model with its
class label (i.e., the driver identifier) as the original GPS trajectory Tj .

In our implementation, we set Ls = 195 and Lf = 6 for the best performance.
Therefore, we obtain a set of statistic feature matrices of size 35 × 64 for each
trajectory. In particular, if a trajectory segment is shorter than Ls, we will pad
zeros into the matrix, so as to unify the size of all statistic feature matrices. In
principle, long trajectories contain more information about the driving behaviors,
and thus are more preferable for the model training.

4.3 Driving Context Representation

Since driving activities will be implicitly governed by the surrounding driving
environment, thus Radar also takes driving context information into consider-
ation to let machines deeply “understand” drivers’ behaviors especially under
certain circumstances. In the design of Radar, we particularly consider the three
contexts of road conditions, geographic semantic, and traffic conditions.

Figure 2 illustrates how Radar processes each raw GPS trajectory to generate
the contextual features. For each GPS trajectory Tj , we firstly recover the travel
route Rj through map matching techniques [20]. Since GPS data transformation
module outputs one statistic feature matrix for each trajectory segment, thus
the driving context representation module operates on trajectory segment and
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Fig. 2. The framework of driving context representation module.

its associated travel route segment as well, and accordingly produces one con-
textual feature matrix. Based on road network G, the s-th trajectory segment
Tjs and its travel route segment Rjs, we derive each context representation as
follows.

Road Condition. We utilize static road attributes of road type, number of
lanes, and one-way indicator to characterize road conditions. Let nt, n�, and
no to represent the numbers of possible values in the three types of categori-
cal attributes, we thus employ three attribute vectors of length nt, n�, and no,
respectively, to encode the attributes of each road segment, respectively. Specif-
ically, one-hot encoding is adopted to generate the attribute vectors. Given a
travel route Rjs, we derive road type vectors of road segments covered by Rjs,
and sequentially connect them into one vector, which describes the road types
a vehicle had traveled when generating trajectory Tjs. In addition, we adopt
an embedding layer to reduce the dimensionality of the sparse attribute vector.
Similarly, we apply the same operations to the attributes of road lanes and one-
way, and derive their attribute vectors for route Rjs, respectively. Finally, we
concatenate the three embedding vectors into one vector of size 195 × 1.

Geographic Semantic. The GPS data only reflect the instantaneous driving
statuses, but not capture the high-level geographic semantic of a trajectory, e.g.,
origin, destination, and traveled regions. Thus, Radar maps each GPS trajectory
segment to the whole city area to derive its geographic semantic representation,
which is formally defined as follows.

Definition 5 (Geographic semantic representation). We partition the city
area into N ×N grids. For each trajectory Tj, we compute a geographic semantic
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representation matrix Mj, where we set Mj [a, b] = 1 if the travel route Rj of Tj

intersects with the grid [a, b]; otherwise Mj [a, b] = 0.

As shown in Fig. 2, we further flatten the matrix Mj as a vector, which is fed
into a linear layer for reducing the dimensionality. In our design, we set the final
geographic semantic vector of size 195 × 1. It is worthy noting that we generate
such a vector for each trajectory segment Tjs as well.

Traffic Condition. In addition to road conditions, another factor that has great
impact on driving activities is real-time traffic conditions. Considering both vehi-
cle’s instantaneous movements and surrounding traffic conditions could better
define a driver’s driving behaviors. Therefore, we use the relative speed, which is
calculated as the ratio between vehicle’s travel speed and average travel speed
of the vehicle’s locating road segment, to represent traffic condition context.

To that end, we make use of all available GPS data to estimate the real-time
traffic conditions. For each road segment, its traffic condition can be approxi-
mated as the average travel speed of all vehicles passing by within a time slot Δt.
Therefore, we classify all GPS records to road segments according to their map
matching results. For a given road segment, we calculate its average travel speed
of a specific time slot using the GPS records falling into that time slot. Due to
data sparsity, we may not derive a complete traffic conditions of the whole road
network G over all time slots. For simplicity, we directly apply temporal-spatial
interpolations to infer the traffic conditions of uncovered road segments by lever-
aging the inherent traffic correlations among roads. In fact, some advanced traf-
fic estimation methods [15] can be adopted to compute the complete real-time
traffic conditions. Once we obtain the traffic conditions of all road segments, we
calculate the relative speeds for the road segments covered by travel route Rjs of
a trajectory segment Tjs. These relative speeds then form Tjs’s traffic condition
representation.

As shown in Fig. 2, when the three representations of driving contexts are
ready, Radar concatenates them into one vector, which is then fed into a dense
layer to derive a vector of size 2240 × 1. To be compatible with the statistic
feature matrix, we reshape it into a contextual feature matrix of size 35×64×1.

4.4 Learning Model

To tackle the poor data quality issue, we employ generative adversarial networks
(GAN) [7] to construct the learning model. Essentially, GAN operates by training
two neural networks that play a min-max game: a discriminator is trained to
discriminate real samples from fake ones, while a generator tries to generate
fake training data to fool the discriminator. Therefore, GAN is able to generate
samples very similar to real trajectories for training data augmentation and as
a result improves the generalization ability of the derived model.

In particular, we adopt the emerging semi-supervised GAN (SGAN ) archi-
tecture [21] to build our learning model, which mainly consists of a generator G
and a discriminator D, as shown in Fig. 3. In SGAN, discriminator D can also
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act as a classifier C to classify each input sample into one of the predefined (k+1)
classes, where k is the number of classes and the additional class label is added
for a new “fake” class. The competition and interaction (via reward) between
generator and discriminator will improve the quality of resultant driving style
representations. Therefore, our model can not only classify drivers according to
the learned driving styles, but also for a given class c generates corresponding
fake driving style features, which are similar to training samples belonging to
class c. To achieve this goal, the model training will involve both traditional unsu-
pervised GAN task and supervised classification task simultaneously. Training
in unsupervised mode allows our model to learn useful feature extraction capa-
bilities from unlabeled samples, whereas training in supervised mode allows the
model to use the extracted features and apply classifications.

Discriminator D (and classifier C). As shown in Fig. 3, discriminator takes
either real samples, generated from GPS data and context information, or fake
samples, produced by generator G, as the input, which are further processed
by a neural network to derive driving style representations. Discriminator D is
trained in both unsupervised mode and supervised mode.

– Unsupervised mode. In this mode, discriminator D, with parameter θd, pre-
dicts whether a sample is true (sampled from real trajectory data) or fake
(generated by the generator G) by calculating the probability score D(x|θd)
that the sample x is true. We train our learning model like traditional GANs
by maximizing the score for real samples and minimizing it for fake ones. We
achieve this objective by minimizing L(D), which is defined as follows.

L(D) = −[Ex∼pr(x) log D(x|θd) + Ex∼G log (1 − D(x|θd))], (1)

where pr(x) represents the distribution of real samples from trajectory data.
– Supervised mode. In this mode, discriminator D acts as classifier C to com-

plete a multi-class classification problem. For each sample, classifier C, with
parameter θc, predicts if the sample belongs to one of the predefined (k + 1)
classes. Because the label of driving style features generated by the generator
G is known, classifier C can also utilize the labels of fake samples for training.
Thus the generalization ability of the model could be improved. In addition,
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classifier C’s classification on both real and fake samples can be used as feed-
back (via reward) to improve generator G, i.e., higher classification accuracy
will bring more returns. To train the classifier C, we aim to minimize the
classifier loss L(C), i.e., the cross entropy loss on true labeled samples that is
computed using the overall classifier score.

L(C) = −Ep(xc,c)[log C(c|xc, θc)], (2)

where x is a sample of class c, and C should correctly classify it as class c.

We implement above two modes in one unified framework, as shown in Fig. 3.
Discriminator D and classifier C share the same feature extraction layers, but
have different output layers. Specifically, we use a stack of convolution layers
with LeakyReLu to process each input sample. After a series of convolutions, we
get a feature tensor that is flatten and inputted to a dense layer to derive the
driving style representation vector. For traditional GAN task, the vector is fed
into tanh to discriminate real samples and fake ones. For classifier C, the vector
is fed into softmax to obtain classification probabilities of the (k + 1) classes.

Generator G. Given the distribution pr(x) of real samples and k class labels
from real training data, generator G aims to find the parameterized conditional
distribution G(z, c, θg) that is close to the real distribution pr(x). The generated
fake samples are conditioned on the network parameters θg, noise vector z, and
class label c, which are sampled from prior distribution pz and pc, respectively.
Label c of a fake sample y can be known when the generator G generates y, so that
the actual classification label of each generated sample is retained for training
classifier C. Following the feature matching technique proposed to addresses the
instability of GANs [23], we train G by minimizing loss L(G) expressed as:

L(G) = ||Ex∼pr(x)f(x, θf ) − Ez∼pz
f(G(z, c, θg), θf )||22, (3)

where f(·) denotes activation on an intermediate layer (e.g., the stack of convo-
lution layers) of discriminator D, θf is the parameter subset of θd corresponding
to the intermediate layer of discriminator D, and c is the class label of real sam-
ple x. The objective of generator training is thus to minimize the discrepancy
between the real and generated data distributions in feature space.

As shown in Fig. 3, generator G is implemented with four deconvolution lay-
ers, which transform noise vector z into fake driving style features. In particular,
each deconvolution layer is followed by a nonlinear activation based on batch
normalization and rectified linear unit (ReLU). z is a 128 dimensional vector
sampled from a uniform distribution pz, and it is processed by dense and reshape
layers before inputting to the deconvolution layers. Finally, generator G outputs
a 35 × 64 × 2 feature tensor as the same size of real feature tensors. The values
of tensor items are shape squashed within [−1, 1] through tanh function.
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5 Performance Evaluation

5.1 Experimental Setup

Dataset. We use a large real-wold anonymized GPS trajectory dataset for the
experiments. This dataset contains 1.3 billions GPS records that are collected
from 10000 drivers in Shanghai city, China, during a six-month period in 2015.
The GPS records are collected at a low-sampling rate as 0.1 Hz (i.e., one sample
per ten seconds). Each GPS record includes the driver identifier, a timestamp,
location with longitude and latitude, travel speed, and travel direction. Further-
more, we download the road network of the city area covered by GPS records
from OpenStreetMap (OSM)2, and model the road network as a graph G(V, E),
which has 159386 vertices and 30336 edges (i.e., road segments) in total. In addi-
tion, we obtain the attributes of each road segment from OSM as well. After map
matching, we have 430 trajectories for each driver on average.

Baseline Approaches. We compare Radar with following baseline approaches,
which can also learn driving style representations from GPS trajectories.

– ARNet is one of the state-of-the-art approaches. ARNet proposes an autoen-
coder regularized neural network for driving style representation learning,
merely from raw GPS data [2].

– T2INET is one of the state-of-the-art approaches as well. T2INET represents
a GPS trajectory as the multi-channel images that capture both geographic
and driving behavior features using a sequence of convolution layers [10].

– Radar-C serves as one variant of our approach Radar by disabling the driving
context representation module. As a result, Radar-C only takes the statis-
tic features extracted from GPS records as input for the learning model to
compute driving style representations.

Implementation. We implement Radar and all baseline approaches in Python
3.7.3 with Keras3 2.3.1 and TensorFlow4 2.2.0 for building various machine/deep
learning models. We set Radar’s parameters as follows. We set Ls = 195 and
Lf = 6 for GPS data transformation. The city area is partitioned into 80 × 80
grids for geographic semantic representation. In graph G, we have nt = 5 road
types, maximum number of lanes n� = 6, and no = 2 for indicating one-way or
not. We estimate traffic conditions with time slot Δt = 30 min. For the learning
model, we use Adadelta as the optimizer, and set learning rates for generator
G and discriminator D as 0.0001 and 0.0004, respectively. We set batch size as
128 and the epochs as 5000. Besides, we directly adopt the implementations of
ARNet [2] and T2INET [10], which are provided by the authors respectively,
and tune their parameters with our data to achieve their best performances.

We evaluate these approaches with two benchmark applications, i.e., driver
number estimation and driver identification, on a server, which is equipped with
2 OpenStreetMap: https://www.openstreetmap.org/.
3 Keras: https://keras.io/.
4 TensorFlow: https://www.tensorflow.org/.
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Intel Core i9-9900K CPU@3.60 GHz, NAVIDA GeForce RTX 2080 Ti GPU, and
32 GB memory. We repeat each experiment setting 10 times, and only the average
results are reported in this section.

5.2 Driver Number Estimation

This application aims to estimate the number of drivers from a set of anony-
mous trajectories. To solve this problem, we train the driving style representa-
tion learning models with a set of labeled trajectories (i.e., with known driver
identifiers), and exploit trained models to represent each testing trajectory as a
driving style representation vector. Then, we employ the affinity propagation [5]
clustering algorithm to classify all representation vectors into clusters. In theory,
a desired model should effectively learn drivers’ driving styles, and would clas-
sify the testing trajectories generated by a specific driver into the same cluster.
Finally, the number of clusters is regarded as the number of drivers.

Training and Testing. We randomly select 10 drivers from the driver set U and
take their labeled trajectories as the training data. In addition, we randomly
select κ drivers from the remaining drivers, who are absent in the training data,
to form a group, denoted by Group κ. We vary κ from 1 to 10. For each group, we
randomly sample 50 trajectories from the κ drivers, and use these trajectories as
the testing data. We repeat 10 runs for each κ value and report average results.

Performance Metrics. We compare different approaches on the following two
performance metrics: (1) the mean absolute error (MAE ), which is the difference
between the ground truth of driver number and the estimation; (2) the adjusted
mutual information score (AMI ) [24] that measures the clustering quality. The
AMI values fall in the range of [0, 1], and larger AMI values are preferable.

Table 1. Performance comparisons on MAE for driver number estimation.

Group κ ARNet T2INET Radar-C Radar

1 0.64 ± 0.60 0.70 ± 0.68 0.80 ± 0.64 0.78 ± 0.65

2 0.82 ± 0.80 0.88 ± 0.74 0.92 ± 1.20 0.84 ± 0.97

3 1.08 ± 1.26 1.22 ± 1.48 1.02 ± 1.24 0.98 ± 1.24

4 1.18 ± 1.40 1.04 ± 1.46 0.92 ± 1.02 1.02 ± 1.07

5 0.98 ± 1.24 0.88 ± 1.56 1.20 ± 0.90 1.02 ± 0.88

6 1.24 ± 0.98 1.24 ± 0.96 1.04 ± 1.24 1.04 ± 1.06

7 1.60 ± 1.24 1.42 ± 1.64 1.42 ± 1.44 1.24 ± 1.12

8 1.48 ± 1.46 1.46 ± 1.45 1.46 ± 1.50 1.38 ± 1.24

9 1.74 ± 1.48 1.82 ± 1.46 1.62 ± 1.42 1.56 ± 1.48

10 2.32 ± 1.50 2.10 ± 1.68 1.94 ± 1.54 1.82 ± 1.46

Average 1.308 1.276 1.234 1.168
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Experimental Results. Table 1 shows the MAE results and deviations, where the
best result of each group is marked in bold. When κ increases, the driver number
estimation problem becomes harder, and thus the MAE is larger. Among all the
experiments, we see our approach (Radar and Radar-C) wins 7 best results (i.e.,
the smallest MAE) out of ten tests. For the three lost cases, our approach falls
behind with marginal differences, e.g., 0.14 at most. As shown by the average
experiment results in the last row of Table 1, Radar-C achieves slightly better
performance than the state-of-the-art approaches, i.e., ARNet and T2INET .
It implies that our learning model is more effective on capturing driving style
features from raw GPS data. By incorporating the driving context information,
Radar further improves Radar-C by reducing average MAE from 1.234 to 1.168.
Overall, our approach Radar can improve ARNet and T2INET on the perfor-
mance metric of MAE by 10.7% and 8.5%, respectively.

Table 2 presents the AMI results and deviations, where we also mark the best
AMI of each group in bold. Similarly, we find that Radar outperforms other two
baselines in most cases, with six wins out of ten tests. The results in Table 2
are in accordance with the results in Table 1. In general, a better clustering
quality (i.e., a larger AMI) potentially leads to a better estimation of driver
number (i.e., a smaller MAE). The average AMI values of the four approaches
are 0.212, 0.234, 0.225, and 0.239, respectively. The results in both Table 1 and
Table 2 demonstrate that Radar is capable of learning more effective and accurate
driving style representations, which thus well support the application of driver
number estimation, with smaller MAE and larger AMI.

Table 2. Performance comparisons on AMI for driver number estimation.

Group κ ARNet T2INET Radar-C Radar

1 0.34 ± 0.06 0.32 ± 0.12 0.27 ± 0.06 0.25 ± 0.09

2 0.37 ± 0.08 0.36 ± 0.07 0.25 ± 0.08 0.28 ± 0.03

3 0.21 ± 0.04 0.21 ± 0.08 0.26 ± 0.08 0.27 ± 0.03

4 0.16 ± 0.08 0.24 ± 0.05 0.22 ± 0.05 0.25 ± 0.04

5 0.19 ± 0.06 0.23 ± 0.08 0.19 ± 0.08 0.18 ± 0.06

6 0.18 ± 0.05 0.22 ± 0.04 0.26 ± 0.06 0.26 ± 0.07

7 0.17 ± 0.07 0.17 ± 0.05 0.20 ± 0.08 0.23 ± 0.02

8 0.19 ± 0.06 0.19 ± 0.06 0.14 ± 0.05 0.18 ± 0.04

9 0.15 ± 0.08 0.14 ± 0.08 0.20 ± 0.04 0.22 ± 0.08

10 0.16 ± 0.07 0.26 ± 0.04 0.26 ± 0.05 0.27 ± 0.04

Average 0.212 0.234 0.225 0.239
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Fig. 4. Performance comparisons on Top-
n accuracy with the long trajectories.
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Fig. 5. Performance comparisons on Top-
n accuracy with the short trajectories.

5.3 Driver Identification

The driver identification problem aims to identify the driver of a given unlabeled
trajectory, which belongs to the supervised multi-class classification problem.

Training and Testing. In each experiment, we randomly select 10 drivers and use
their GPS trajectories for model training and testing. Specifically, 70% of the
trajectory data are used for training, 10% for validation, and the remaining 20%
for testing. The models of all approaches are trained with labeled trajectories,
and for a testing trajectory the models should predict its driver identifier.

Performance Metric. We employ the top-n accuracy (denoted by acc@n) to
evaluate the prediction performances of all approaches. In particular, acc@n is
calculated as the percentage of testing trajectories for which the ground truth
drivers are in the top n predictions. For a testing trajectory, we rank the pre-
dicted driver identifiers in the descending order of probability values.

Experimental Results. In addition to the aforementioned three baselines, we fur-
ther include two typical supervised learning models, i.e., support vector machines
(SVM) [26] and gradient boosting decision trees (GBDT) [18], for performance
comparisons. More specifically, SVM and GBDT take the statistic features pro-
duced by Radar as input for the predictions, while SVM+ and GBDT+ make
use of both statistic and contextual features generated by Radar for the predic-
tions. Furthermore, we partition drivers’ trajectories into two sets: long trajecto-
ries (with duration more than 1950 s) and short trajectories (with duration less
than 1950 s). We conduct experiments on each set of trajectories separately, and
present the results in Fig. 4 and Fig. 5, respectively.

As shown in Fig. 4, when n increases, the top-n accuracy of each approach
becomes higher. Our approach achieves the highest acc@5 accuracy as 81.3%.
These deep learning models, i.e., ARNet , T2INET , Radar-C and Radar, always
have better predictions than traditional supervised learning models, i.e., SVM
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and GBDT and their variants, with the largest performance gap as 36.6% on
acc@2. It implies that deep learning models are indeed powerful at representation
learning, and thus can support various applications better. On the other hand, by
comparing the performances of traditional models, we find that SVM+/GBDT+
outperform SVM/GBDT, e.g., with acc@1 accuracy improvement by 1.2% and
3.6%, respectively. Hence, it is necessary to include contextual features for bet-
ter modeling. Compared to state-of-the-art ARNet and T2INET , our approach
Radar has more accurate predictions, e.g., on average improving them by 2.6%,
4.2%, and 2.4% for acc@1, acc@2, and acc@5, respectively.

The prediction results on short trajectory set are plotted in Fig. 5. Since short
trajectories contain less information, and thus the prediction performances of all
approaches have been seriously deteriorated. However, we find that the perfor-
mance gap between ARNet/T2INET and our approach becomes even larger,
i.e., on average Radar improves the two advanced approaches by 7.1%, 12.0%,
and 5.2% for acc@1, acc@2, and acc@5, respectively. These comparisons reflect
that Radar is able to extract more useful and accurate features from low-quality
trajectory data, and thus can still achieve reasonably high prediction accuracy.

6 Conclusion

In this paper, we present an adversarial driving style representation learning app-
roach – Radar. Different from previous works, Radar not only extracts statistic
features from raw GPS data, but also builds contextual features by jointly con-
sidering road conditions, geographic semantics, and traffic conditions. We further
exploit an advanced semi-supervised GAN architecture to construct the learn-
ing model to compute more effective and accurate driving style representations.
Experiment results from a large GPS trajectory dataset demonstrate that Radar
outperforms state-of-the-art approaches on two benchmark applications.
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