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Abstract—PageRank has a wide applications in online social
networks and serves as an important benchmark to examine
graph processing frameworks. Many efforts have been made
to improve the computation efficiency of PageRank in shared-
memory platforms, where a single machine can be sufficiently
powerful to handle a large-scale graph. Existing methods, how-
ever, still suffer from synchronization issues and irregular mem-
ory accesses, which will deteriorate their overall performance. In
this paper, we present an accelerated parallel PageRank computa-
tion approach, named APPR. By investigating the characteristics
of parallel PageRank computation and degree distributions of
social network graphs, APPR proposes a series of optimization
techniques to improve the efficiency of PageRank computation.
Specifically, a destination-centric graph partitioning scheme is
designed to avoid the synchronization issues when concurrently
updating the common vertex data. By exploiting power-law struc-
ture of social network graphs, APPR can intelligently schedule
the computations of vertices to save computing operations. The
vertex messages are adjusted by APPR for transmission to further
improve the locality of memory accesses. Empirical evaluations
are performed based on a set of large real-world graphs.
Experimental results show that APPR significantly outperforms
the state-of-the-art methods, with on average 2.4x speedup in
execution time and 16.4x reduction in DRAM communication.
Index Terms—PageRank, parallel graph computation, graph

partitioning, shared-memory, social network graph

I. INTRODUCTION

PageRank [25] and its variants [10] have been widely used
for user ranking [31], friend recommendation [9], etc. in
online social networks. The tremendous social network data

are usually modelled as a graph, where users are presented

as the vertices and relationships among users form the edges,

and then fed into some graph processing frameworks for fast

PageRank computation. Instead of running graph analysis in
distributed frameworks, e.g., GraphLab [11], [20], a recent
trend is focused on the shared-memory platforms because of

their low communication overheads compared to the expen-

sive across-machine communications [23] and the increasing

DRAM capacity of modern systems [29]. Nowadays, a single

machine can be equipped with several powerful CPU cores

and massive memories, which have enabled shared-memory

processing of extremely large graphs.

Graph-parallel computation largely relies on the emerging

vertex-centric programming model by encoding PageRank
computations as the vertex programs, which run in parallel

and interact along the edges [22]. The vertices exchange their

* Corresponding author: Zhidan Liu.

PageRank values and update their own data based on the
received messages in an iterative manner. Specifically, a vertex

can either push its PageRank value to update its out-neighbors,
or it can pull PageRank values of its in-neighbors to update its
own value. Recent studies report that push is a better choice

than pull in most cases, since it can avoid many unnecessary

communications when most vertex data have converged [7].

Efficient graph-parallel computation, however, is challeng-

ing even on a single machine due to some inherent properties

of graph algorithms, e.g., poor locality that introduces irregular
memory access patterns [29]. Even worse, push based message

exchanges may incur race conditions, where multiple threads

update the common vertex data concurrently. As a result,

expensive synchronization primitives are required, and it will

harm the performance and scalability [7], [17].

Many remarkable efforts have been made to improve the

efficiency of parallel PageRank computation in shared-memory
platforms [7], [17], [18], [28]. For example, [7] proposes a

greedy switch mechanism between push and pull to reduce

conflicts, while it is difficult to make a wise switch decision.

[28] accelerates PageRank computation with some special
hardware. PCPM [17], [18] propose a partition-centric pro-

cessing abstraction with a data structure to store neighbors’

updates for each vertex partition. Although PCPM can avoid

synchronization issues, it needs to traverse the graph almost

twice in each iteration and thus introduces extra overheads.

In this paper, we present an Accelerated Parallel PageRank

computation approach, named APPR, which is motivated by
two important observations. By carefully investigating the

parallel PageRank computation patterns, we observe that the
synchronization issue mainly steams from the write-conflicts

when multiple vertex programs executed by different threads

are trying to update the common vertex data concurrently.

Although multiple threads process a large graph in parallel,

each thread actually loops through its assigned vertices se-

quentially. Therefore, if vertices that may incur write-conflicts

are assigned to the same partition that is further handled

by one thread, the synchronization issues can be completely

avoided. We also observe that graphs derived from real-world

social networks typically have skewed power-law in-degree

distributions, and further analysis on their graph structures

shows that updating PageRank values of low-degree vertices
is highly independent of these high-degree vertices, while

value updating of the latter ones heavily rely on the former.

Such an observation implies that high-degree vertices could
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join the PageRank computations later when most low-degree
vertices have converged. This computation scheduling would

save unnecessary computation and communication overheads.

Although above observations are attractive and useful, de-

veloping APPR out of them encounters a set of challenges.

First, conflict-free graph partitioning is challenging since the

skewed graphs may lead to partitions with substantial load im-

balances. Second, explicitly scheduling vertex computations is

difficult. In practice, the relations among vertices are extremely

complex and their computations may be mutually dependent.

Third, poor locality of PageRank computation causes ineffi-
cient memory accesses and harms the overall efficiency. Thus

we propose APPR to tackle these challenges by exploiting the
structures of social network graphs. APPR formally models

the conflict-free and load balanced graph partitioning problem

and proposes a heuristic scheme that is simple yet efficient.

Instead of fine-grained vertex computation scheduling, APPR
activates all high-degree vertices at some proper time, which is

wisely determined by analyzing the communication patterns of

a graph. In addition, APPR carefully adjusts the transmission
orders of vertex messages to reduce random memory accesses.

The contributions of this paper are summarized as follows:

• We identify the synchronization problem in push-based

parallel PageRank computation, and formally model the
conflict-free and load balanced graph partitioning prob-

lem, which is proved to be NP-complete.

• We propose APPR to improve PageRank computation ef-
ficiency by exploiting characteristics of parallel PageRank
computation and structures of social network graphs.

• We conduct extensive experiments with a set of large-

scale real-world graphs. Experimental results show that

APPR significantly outperforms state-of-the-art methods,
with 2.4x speedup in execution time and 16.4x reduction

in DRAM communication for social network graphs.

The rest of this paper is organized as follows. Section II

presents the preliminary and motivation. The design of APPR
is elaborated in Section III, and further evaluated in Section

IV. We review the related work in Section V. Section VI finally

concludes this paper.

II. PRELIMINARY AND MOTIVATION

In this section, we briefly introduce PageRank, and then an-
alyze the characteristics of PageRank computation and social
network graphs to motivate APPR design.

A. PageRank and Its Parallel Computation

PageRank was originally proposed to rank web pages [25],
and nowadays has been widely used in online social networks

for user ranking [31], friend recommendation [9], and so on.

In addition, PageRank is frequently selected as a benchmark to
examine various graph processing frameworks [11], [12], [20].

Thus, PageRank has become an important algorithm for both

social network applications and graph-parallel computation.

Social network data can be modeled as a graph G = (V,E),
where users are presented as the vertices and the relationships

among users form the edges. Then PageRank runs on the graph
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Fig. 1. A motivation example. (a) The sample graph. (b) Partitions of the
graph. (c) The bin of partition P1 to avoid synchronization issue.

G iteratively to determine PageRank value p(v) of each vertex
v ∈ V. In each iteration, vertex data p(v) is updated by the
weighted sum of v’s in-neighbors’ latest values, i.e.,

pi+1(v) =
1− f

|V| + f ×
∑

u∈Ni(v)

pi(u)

|No(u)| , (1)

where f is the damp factor, Ni(v) and No(u) represent v’s
in-neighbors and vertex u’s out-neighbors, respectively [25].
PageRank typically iterates until the vertex data converge to
within a specified tolerance ε.

The vertex-centric programming model [22] is usually used

to parallelize PageRank computation, where a large graph is
divided into partitions that are further processed by multi-

threads in the shared-memory platform. In general, vertices are

hash-partitioned [12] or range-partitioned [18] based on their

IDs, and the edges are assigned along with their sources. For

example, Figure 1(b) demonstrates the partitions of the sample

graph in Figure 1(a), where partition P1 needs to handle 4
edges and P2 will process 7 edges, with imbalanced loads.

In each iteration, a thread loops through its assigned vertices

with a user-defined vertex program, i.e., PageRank, which
instructs a vertex to exchange messages with neighbors and

update its own data using Equation (1). A vertex will become

inactive and stop exchanging messages when its data has

converged. In graph-parallel computation, vertex v can either
push p(v) to update its out-neighbors, or pull v’s in-neighbors’
data to update p(v). As graph computations processed, vertices
will converge at different rates, leading to a rapidly shrinking

active vertex set. Hence, push would be more efficient than

pull, as it can do less work. Due to the vertex convergence,

an optimization of PageRank computation is that vertices
only push value difference between two consecutive iterations,

called delta, to out-neighbors, so that the silence of converged
vertices will not influence the computation of active vertices

since their deltas can be treated as zeros [11], [29]. Algo-
rithm 1 describes the delta-based PageRank computation.
The delta-based PageRank computation, however, is still

not sufficiently efficient, because it may incur serious write-

conflicts. In graph-parallel computation, vertices push updates

to out-neighbors along edges, and the write-conflicts happen

when multiple threads attempt to update the common destina-

tions. As an example in Figure 1(b), vertex v2 and v5, which
are processed by two different threads, may concurrently up-

date v1’s value, and thus write-conflict happens. To guarantee
the correctness of concurrent access to common out-neighbors,

239

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:17:03 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: delta-based PageRank Computation
Input: Graph G = (V,E), tolerance threshold ε
Output: PageRank value p(v) for each vertex v ∈ V

1 for v ∈ V do
2 p(v) = 1

|V| ;

3 Δ(v) = p(v)
|No(v)| ;

4 sum(v) = 0;

5 curV = V;
6 nextV = ∅;
7 while curV ! = ∅ do
8 for v ∈ curV in parallel do
9 for u ∈ No(v) do
10 lock{sum(u)+ = Δ(v)};
11 for v ∈ curV in parallel do
12 temp = p(v);
13 p(v) = 1−f

|V| + f · sum(v);

14 Δ(v) = p(v)−temp
|No(v)| ;

15 if Δ(v) > ε then
16 nextV = nextV ∪ {v,No(v)};
17 swap(curV, nextV );
18 nextV = ∅;

synchronization primitives, e.g., the lock operation in line 10
of Algorithm 1, are required. However, such synchronization

operations will largely affect the performance and scalability

of parallel PageRank computation.
To avoid the synchronization issue, recent works [5], [17],

[18] propose to use contiguous memory spaces, called bin,
for each partition to store the updates of their corresponding

source vertices. Based on the bins, vertex v will first push its
delta to the bins of partitions that contain v’s out-neighbors,
and then each destination vertex will gather in-neighbors’

updates from bins to update its own data. Figure 1(c) illustrates

the data structure of Bin1 for partition P1 in Figure 1(b). Al-
though bins could break write-conflicts, they require PageRank
computation to traverse a graph almost twice in each iteration,

and thus introduce extra DRAM communication overheads,

i.e., the amount of data exchanged with main memory [18].

B. Motivation

The graphs of social networks share a similar characteristic

as the web page graphs on degree distributions, where most

vertices have relatively few neighbors while a few vertices

have many neighbors. Such a property is called the power-law
degree distribution that makes the graph-parallel computation
especially challenging [11]. Figure 2(a) reports the in-degree

distribution of a typical social network graph orkut (see more
details about the graph datasets in Section IV-A), which clearly

demonstrates the skewed power-law in-degree distribution.

Other social network graphs share similar in-degree distribu-

tions as orkut, we thus omit their results here. For graphs with
such a structure, vertices with high in-degrees will suffer from

extremely serious synchronization issues, since many vertices

may concurrently update their data.

Although the power-law degree distribution causes troubles

for efficient graph-parallel computation [11], they still provide

Fig. 2. Analysis of social network graphs. (a) The in-degree distribution of
graph orkut. (b) The communication patterns among vertices of different
types for 5 graphs, where → indicates the communication direction.

us opportunities to improve PageRank computation when we
have carefully investigated its execution patterns. Specifically,

we have the following two observations.

(1) Sequential vertex executions within a thread. In PageR-
ank computation, although the whole graph is processed by
multi-threads in parallel, vertex programs of the same partition

are executed by the thread in sequence. Thus these vertices,

which point to the common destination and meanwhile are

assigned to the same partition, have no write-conflicts at all,

since they update the common vertex orderly. For example in

Figure 1(b), although both vertex v5 and v7 point to vertex v1,
they push their deltas to update destination v1 sequentially by
the same thread. Therefore, if we can assign the in-neighbors

of a vertex v to the same partition, no more synchronization
primitives are required for correctly updating p(v).

(2) Imbalanced communication patterns between vertices
of high-degree and low-degree. In this paper, we define that a
vertex v is called as high-degree vertex (denoted as H vertex)

if its in-degree |Ni(v)| is larger than a threshold λ; Otherwise,
v is called as low-degree vertex (denoted as L vertex). If

vertex v points to vertex u, we say v will communicate

messages to u. We study the communication patterns among
vertices of different types, and show the results of 5 graphs
in Figure 2(b). In this study, we set the threshold λ as the

average in-degree of each graph. From Figure 2(b), we see

that most communications are originated by L vertices. The

percentages of communications initiated by H vertices for all

the five graphs are < 25%. In particular, the communications
belonging to H → L is as low as 2% ∼ 9%. These statistics
imply that H vertices have limited impacts on data updates of

L vertices. Instead, their data largely depend on the PageRank
values of L vertices. This observation motivates us to schedule
the activities of H vertices later to avoid unnecessary compu-

tations and communications in early iterations.

As a concrete example in Figure 1(a), the PageRank value
p(1) of H vertex v1 (with in-degree as 3, which is higher
than the average in-degree 1.4) only decides the data update
of v3. Therefore, we can schedule the computations of v1 and
v3 after the convergences of other vertices in the graph.

Challenges. Developing techniques out of above insights
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to improve PageRank computation, however, entails several
challenges. First, how to partition a social network graph to

avoid synchronization issues while retaining the load balances

among threads is difficult. The power-law degree distributions

of social network graphs could lead to substantial work imbal-

ances, where some partitions may undertake much more loads

than others. Second, the arrangement of vertex computation

orders remains challenging because of the complex topology

of social networks, where links among users are irregular and

unpredictable. Third, the poor locality of graph computations

causes inefficient memory accesses, and it becomes especially

challenging for the large-scale social network graphs.

III. THE DESIGN OF APPR

In this section, we present the overview of APPR, and then
elaborate each component in the following subsections.

A. Overview of APPR

The system architecture of APPR is illustrated in Figure 3.
At a high level, APPR takes a raw social network graph

G = (V,E) as the input for parallel PageRank computation,
and outputs PageRank values of all vertices to support various
social network applications [10]. During loading a graph G,
APPR scans G to derive the total numbers of vertices |V| and
edges |E|, average in-degree d̄, in-neighbors Ni(v) and out-
neighbors No(v) for each vertex v, and labels v as H or L
vertex according to its in-degree and the given threshold λ.
For conflict-free PageRank computation, APPR invokes the

destination-centric graph partitioning module to divide graph

G into m partitions while guaranteeing their load balances. In

particular, the in-neighbors of a vertex will be assigned to the

same partition. A partition Pj maintains a list of destination
vertices Pj .dst, a list of corresponding source vertices Pj .src,
and the associated edges. During PageRank computation, ver-
tices are scheduled according to their in-degrees. Specifically,

L vertices compute for the initial iterations, and H vertices are

activated at certain time when most L vertices have converged.
Such a schedule will save a lot of unnecessary computations

and communications for these H vertices. Benefiting from

the shared memory, APPR stores all vertices’ updates (i.e.,
delta) and PageRank values as two globally accessible vectors.
Thanks to the graph partitioning scheme, source vertices of a

partition can concurrently push their updates to the common

destinations, and meanwhile destination vertices of a partition

can calculate their latest PageRank values simultaneously.
All operations are conflict-free. As an improvement on the

locality of PageRank computation, APPR proposes a message
controller module that allows a vertex to continuously send its

update and status messages to each of its out-neighbors. This

adjustment promotes the locality of memory accesses and will

not affect the computation results.

B. Destination-Centric Graph Partitioning

For simplicity, some existing graph partitioning schemes

primarily rely on either hash-partitioning [11], [12] or range-

partitioning [5], [17], [18] based on the IDs of all vertices.

PageRank Computation
Graph Partitioning

System architecture

Degree-aware Scheduler

Iterations

Message Controller

Output p(v) 

…
Shared Memory (   , p)

Load G(V, E)

p(v)

Fig. 3. The system architecture of APPR.

Advanced graph partitioning tools, e.g., METIS [14], mainly
aim to divide a large graph into partitions of nearly equal

sizes, while minimizing the total vertex/edge-cuts [8], [19].

These schemes, however, do not consider the write-conflict

issues in shared-memory platforms, and thus may not be

suitable for efficient PageRank computation. To avoid the
synchronization issues, we should assign the in-neighbors of a

vertex to the same partition. A straightforward approach is to

equally dividing all vertices into m groups and assigning their

in-neighbors to the corresponding partitions. This approach,

however, will result in serious load imbalances, due to the

skewed in-degree distributions of graphs.

Since communication is usually more expensive than com-

putation in the graph-parallel computation [11], we thus use

the number of edges assigned to partitions as the measure of

loads. Thus, we will divide the edges of a graph into partitions

of nearly equal sizes. Formally, we define the conflict-free and

load-balanced graph partitioning problem as:

Definition 1. (Destination-centric graph partitioning prob-
lem) Given a social network graph G = (V,E), a graph
partitioning scheme should divide G into m partitions P =
{Pj , j = 1, 2, · · · , m}, which minimizes the variance of
partition sizes, i.e.,

min
1

m

m∑

j=1

(|Pj | − μ)2, (2)

where |Pj | represents the number of edges assigned to parti-
tion Pj and μ = |E|

m is the desired partition size. For conflict-
free parallel PageRank computations, a destination vertex is
assigned to one partition only, while a source vertex can be
replicated among multiple partitions.

This problem can be reduced as the well-known number
partitioning problem, which is NP-complete [15].

Theorem 1. The conflict-free and load-balanced graph parti-
tioning problem is NP-complete.

Proof. We prove this theorem by reducing from the NP-

complete number partitioning problem. A number partitioning

problem can be described as follows: Given a set S of positive
integers, the goal is to find a division of S into two subsets S1
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Algorithm 2: Destination-centric Graph Partitioning
Input: Graph G = (V,E), number of partitions m
Output: Partitions P = {Pj , j = 1, 2, · · · , m}

1 μ = |E|
m
, j = 1;

2 for v ∈ V do
3 if Pj and Ni(v) meet Equation (3) then
4 j = j + 1;

5 Pj .dst = Pj .dst ∪ {v};
6 Pj .src = Pj .src ∪Ni(v);

and S2 such that the sum of the numbers in S1 equals the sum
of the numbers in S2. For a given number partitioning problem,
we can transform it to an instance of our problem. We consider

a special case of our problem, where we divide the graph into

m = 2 partitions. For each vertex v ∈ V, we can transform it

to a positive integer that is the number of v’s in-neighbors, i.e.,
|Ni(v)|. Then all vertices are transformed to a set S of positive
integers, and the graph partitioning problem is to divide S into
two partitions P1 and P2. The total number of in-neighbors
in P1 equals the total number of in-neighbors in P2. We find
that the special case of our problem is a number partitioning

problem, which is known NP-complete [15]. Therefore, our

problem is also NP-complete. �
Although some dynamic programming methods can be used

to find a feasible solution for the number partitioning problem

[15], these methods need to traverse the graph multiple times,

and thus are associated with high computation overheads.

Therefore, our problem cannot be efficiently solved by existing

algorithms that are proposed for number partitioning problem.

In practice, we usually expect the pre-processing time for

graph partitioning is as short as possible. Since we know the

sum of numbers of each subset in advance, i.e., the average
partition size μ = |E|

m , we thus propose a heuristic approach to

partition G by scanning all vertices and edges only once. The

key idea is that partition Pj will continuously accommodate
in-neighbors Ni(v) of vertex v until that including Ni(v) into
Pj makes the partition size |Pj | deviate from μ much more

than excluding Ni(v) from Pj , i.e.,

|Pj |+ |Ni(v)| − μ > μ − |Pj |. (3)

The pseudocode of our graph partitioning scheme is presented

in Algorithm 2. It loops all vertices and heuristically adds their

in-neighbors to partitions such that the contained edges of all

partitions are as nearly equal as possible.

From Algorithm 2, each vertex v as a source may be as-
signed and replicated to multiple partitions (i.e., Pj .src), while
as a destination it will be assigned to only one partition (i.e.,
Pj .dst). The replicas of a source vertex v can simultaneously
access the global delta vector and push the same Δ(v) to v’s
destination vertices with no conflicts. As a destination, vertex

v will also receive delta values from its in-neighbors to update
its PageRank value solely, with no write-conflict. Since |E| is
pretty large while the number of partitions m is much smaller,

Algorithm 2 could return a valid solution. In extreme cases, the

in-neighbors of a vertex, which has a relatively large |Ni(v)|
(e.g., > 2μ), can be distributed among several partitions.

Destination-centric graph partitioning

p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8)

src edge dst

2 2 → 1

15 5 → 1

7 7 → 1

4 4 → 2
2

8 8 → 2

1 1 → 3 3

src edge dst

8
8 → 4 4

8 → 6 6

6
6 → 5 5

6 → 7
7

4 4 → 7

P1 P2

Shared PageRank values

Shared PageRank updates

deltas in an iteration

Read 
Write

Fig. 4. Destination-centric graph partitioning results for graph of Figure 1(a).
The numbers in the circles indicate the execution orders within a partition.

Figure 4 demonstrates the partitioning results for the sample

graph in Figure 1(a), where the graph is divided into partition

P1 and P2. Such partitions can benefit both pushing deltas
and calculating PageRank values, with no conflicts at all. For
example, we observe that source vertex v4 is assigned to both
partitions, and its replicas in P1 and P2 can concurrently read
and then push Δ(4) to its destination vertex v2 and v7. As an-
other example, vertex v1’s in-neighbors Ni(1) = {v2, v5, v7}
are all assigned to partition P1, and thus they can push their
deltas to update v1’s partial sum sum(1) orderly by the thread
that processes P1. On the other hand, vertices in both partitions
can simultaneously read their corresponding sum to calculate

new PageRank values, and derive the deltas by comparing with
previous PageRank values of last iteration. Those deltas are
used for PageRank computation in the next iteration.

C. Degree-Aware Computation Scheduler

During PageRank computation, vertices will converge with
different rates. In general, the L vertices would converge much
faster than the H vertices, whose values heavily depend on

the computation results of many L vertices. As a concrete

example, we run Algorithm 1 on social network graph orkut
and record convergence statuses of all vertices. Figure 5 plots

the vertex convergences for graph orkut, where almost all
L vertices can converge within 10 iterations while most H
vertices need to compute for 15 iterations. After five iterations,
about 80% L vertices have converged while only 20% H
vertices have converged. By further considering imbalanced

communication patterns among H and L vertices as shown in

Figure 2(b), it suggests that an intelligent vertex computation

scheduling should accelerate the convergence of PageRank
computation. More specifically, L vertices should be computed
ahead of H vertices.

It is beneficial to schedule vertex computations. On one

hand, since H vertices rarely affect PageRank computations
of L vertices, they can keep inactive in the early iterations to

avoid unnecessary computations and communications. On the

other hand, the convergences of L vertices would accelerate

the convergence rate of H vertices. For example, if vertex

v’s in-neighbors have already converged, then p(v) can be
finalized immediately.
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It is feasible to schedule vertex computations while achiev-

ing the correct PageRank computation results. This is because
for graph algorithms especially PageRank, the vertex data p(v)
can be determined only by the initial value and the update

messages, regardless of the orders of these messages [30]. An

expected schedule strategy is that the calculation is carried on

for L vertices first, and an H vertex is scheduled to compute

when its in-neighbors have all converged. Such a strategy

needs to track the statuses of in-neighbors for each H vertex,

and thus is prohibited due to tremendous tracking cost.

Instead, APPR adopts a simple yet efficient batch scheduling
strategy, which makes L vertices be active at early iterations

and schedules all H vertices to join computations when most

L vertices have converged. Considering the communication

patterns among vertices, when H vertices are inactive, some

L vertices that rely onH → L communications cannot achieve
the true convergences. Only these vertices that merely depend

on L → L communications can make successful convergences.
We conservatively estimate the number of such vertices as

N� =
|EL→L|

d̄
, where |EL→L| represents the number of edges

linking two L vertices and d̄ is the average in-degree. As an
explicit indicator, when N� vertices have converged, APPR
will activate all H vertices to join the PageRank computations.
H vertices will push their delayed update messages to these

L vertices, which rely on H → L communications. Finally,

all vertices can derive the results after a number of iterations.

D. Message Controller

The graph-parallel computation usually follows the gather-
apply-scatter (GAS) model [11], where a vertex firstly gathers
updates from its in-neighbors, applies these updates to cal-

culate a new value, and then scatters its update to the out-

neighbors. Furthermore, if this vertex has not converged, it will

send status messages to its out-neighbors by keeping them be

active for receiving updates in the next iteration [11]. Similarly,

delta-based PageRank computation shown in Algorithm 1 also
follows this model. In each iteration, vertex v pushes its delta
to out-neighbors (i.e., line 10), updates p(v) using the weighted
sum (i.e., line 13), and then pushes status messages to out-
neighbors if v is not converged (i.e., line 16). Figure 6(a)
illustrates this procedure. This model, however, will traverse

all edges two times, resulting in poor spatial and temporal

locality of memory accesses [5], [18].

To improve the memory access efficiency, we propose the

message controller that allows a vertex to push delta and
status messages at the same time. As shown in Figure 6(b),

uv v

...
...

Push delta Apply

uv

...
...

Push status

v

Apply

uv
...

...

Push delta/status

(a) (b)

sum(v) sum(v)

Fig. 6. The operations in each iteration. (a) The GAS model. (b) The message
controller in APPR.

during each iteration, vertex v will calculate new p(v) value
based on the weighted sum, and then successively push

delta and status messages to its out-neighbors. Since vertex
v continuously operates on its out-neighbors that are cached,
message controller can boost cache hit rate, leading to better

memory accesses and improved computation efficiency.

Although APPR changes the message transmission orders, it
will not affect the PageRank computation results. By exploit-
ing an example edge v → u, we compare message controller
with GAS model to analyze their execution procedures. If both
v and u have converged, there will be no difference between
GAS model and message controller. Similarly, if they both have
not converged, u can receive all the delta and status messages
in both models. We analyze the other two cases as follows:

• u converged while v not. In both models, u will be acti-
vated by v to join computation in the next iteration. In the
message controller, u will not push delta messages to its
out-neighbors once it has converged in the next iteration.

In the GAS model, however, u will push such messages
before its convergence. Since u has converged, its delta
should be sufficiently small, thus u’s out-neighbors can
omit Δ(u) and safely update their data, with no error
introduced in the delta-based PageRank.

• v converged while u not. In GAS model, v will push

delta message to u before it becomes converged. In

contrary, v will firstly update p(v) and then be converged,
without pushing delta to u when the message controller
is adopted. Similar as the above case, Δ(v) is sufficiently
small and can be safely omitted by u for computation.

E. Put It Together

Algorithm 3 presents the details of APPR that incorporate
above optimizations. Overall, APPR runs on the destination-
centric graph partitions P and outputs the PageRank values
for all vertices. At the beginning, APPR only sets L vertices

as the active vertices (line 8) and lets them push the initial

delta values (line 9-12). Then APPR iteratively updates each
vertex’s PageRank value, which is executed in parallel for
all partitions (line 13-29). Specifically, in each iteration, each

active vertex v updates p(v) based on the received delta sum
from last iteration, and then calculates the diffidence Δ(v) of
PageRank values between two consecutive iterations (line 14-
18). If the change is larger than a threshold ε, v will be active
in the next iteration, and meanwhile v will let its out-neighbors
No(v) keep active as well and push Δ(v) to them (line 20-

24); Otherwise, v has converged. At the end of each iteration,
APPR will check whether there are sufficient converged L
vertices, and it will activate the H vertices when more than N�
vertices have converged (line 25-27). This schedule is executed
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Algorithm 3: Accelerated Parallel PageRank (APPR)
Input: G = (V,E), P = {Pj , j = 1, 2, · · · , m}, ε, N�

Output: PageRank value p(v) for each vertex v ∈ V
1 VL = ∅; VH = ∅; flag = false;
2 for v ∈ V do
3 p(v) = 1

|V| ; Δ(v) = p(v)
|No(v)| ;

4 if |Ni(v)| < λ then
5 VL = VL ∪ {v};
6 else
7 VH = VH ∪ {v};
8 nextV = ∅; curV = VL; // active vertex set
9 for Pj ∈ P in parallel do
10 for v ∈ curV & v ∈ Pj .src do
11 for u ∈ No(v) do
12 cursum(u)+ = Δ(v); // initial delta

13 while curV ! = ∅ do
14 for Pj ∈ P in parallel do
15 for v ∈ curV & v ∈ Pj .dst do
16 temp = p(v);
17 p(v) = 1−f

|V| + f · cursum(v);

18 Δ(v) = p(v)−temp
|No(v)| ;

19 for Pj ∈ P in parallel do
20 for v ∈ curV & v ∈ Pj .src do
21 if Δ(v) > ε then
22 nextV = nextV ∪ {v,No(v)};
23 for u ∈ No(v) do
24 nextsum(u)+ = Δ(v);

25 if !flag & (|VL| − |nextV |) ≥ N� then
26 flag = true;
27 nextV = nextV ∪VH ; // activation

28 cursum = nextsum; nextsum ← 0;
29 swap(curV, nextV ); nextV = ∅;

only once, and is ensured by indicator flag. APPR terminates
when there are no more active vertices.

Discussion. PageRank converges when vertex data do not
change remarkably [3], [25]. For practical uses, existing im-

plementations in the popular graph-parallel processing frame-

works [11], [12], [16], [20], however, usually execute PageR-
ank for a specified number of iterations. In this paper, we
present APPR with a set of optimization techniques to improve
the efficiency of computation and memory accesses of parallel

PageRank computation. These optimizations will not harm the
convergence of PageRank. Instead, we find that APPR could
accelerate the convergence rates of PageRank on most real-
world graphs, as demonstrated from the experimental result in

Figure 9 of Section IV-C.

Furthermore, the optimizations proposed by APPR can be
generalized to a wide range of applications called as sparse
matrix-vector (SpMV) multiplication [17], [18]. In fact, many
graph algorithms, including PageRank [3], [25], can be mod-
eled as a series of SpMV operations. For example, PageRank
computation can be rewritten in the SpMV form as follows:

pTi+1 = fpTi A+ (1− f)pTi
eeT

|V| , (4)

TABLE I
REAL-WORLD GRAPH DATASETS (M: million)

Graph Description #vertices #edges d̄ Disk size

livej Social network 7.5M 112.3M 15 1.6GB
twitter Social network 21.3M 265.0M 12 5.2GB
orkut Social network 3.0M 106.3M 35 1.6GB
pld Web pages 42.9M 623.1M 15 10.9GB
sd Web pages 94.9M 1937.5M 20 34.4GB

where f is the damp factor, pi is a column vector that stores
PageRank values of all vertices in the i-th iteration, A is

the adjacency matrix of the input graph, and e is a unit

column vector [28]. SpMV is communication-bounded, and

thus the techniques of APPR to reduce communications can
be extended to optimize SpMV as well.

IV. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate

the performance of APPR on large-scale real-world graphs.

A. Experimental Setup

We conduct empirical experiments on a powerful server,

which is equipped with two 10-core Intel(R) Xeon(R) E5-

2630 v4 processors @2.20GHz and 192GB memory, running

CentOS Release 6.9. For performance evaluations, we compare

APPR with 3 baseline methods on a set of large-scale graphs.
Graph datasets. The input graphs used in our experiments

are summarized in Table I. All the graphs consist of millions of

vertices and edges. Specifically, livej, twitter, and orkut are
follower graphs from social networks; pld and sd are web page
graphs obtained by the web crawlers. The average in-degree d̄
of the five graphs are 15, 12, 35, 15, and 20, respectively. The
storage sizes of these graphs range from 1.6GB to 34.4GB.
All graphs are available from Network Repository [1][26].

Baseline methods. We compare APPR with the following
implementations of parallel PageRank computation.

• PullPR implements PageRank in the pull direction, where
each vertex v pulls delta values of its in-neighbors to
update its own PageRank value p(v). The traditional
range-partitioning scheme is adopted to divide an input

graph. Because a vertex v will pull data from its in-

neighbors no matter whether they have converged or not,

PullPR thus omits the convergence statuses of vertices.
• PushPR implements PageRank in the push direction as
shown in Algorithm 1, where each vertex v pushes its
delta and status messages to out-neighbors and updates its
own PageRank value p(v) based on the accumulated delta
from in-neighbors. For parallel PageRank computation,
vertices are range-partitioned as well and synchronization

primitives are used to resolve the write-conflicts.

• PCPM is the state-of-the-art method that optimizes the

parallel PageRank computation based on a partition-

centric processing methodology, which uses extra mem-

ory spaces called bin as the intermediate storage of source
vertices’ updates to avoid write-conflicts [17], [18].

Implementation details.We realize APPR and the baseline
methods using C++ and compile them with g++ 4.8.4 at the
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TABLE II
COMPARISONS ON EXECUTION TIME (Unit: seconds)

Graph PullPR PushPR PCPM APPR Ratio

livej 1.4 2.5 4.0 1.0 1.4 ∼ 4.0
twitter 5.6 14.6 7.5 3.7 1.5 ∼ 3.9
orkut 1.9 3.0 1.7 0.5 3.4 ∼ 6.0
pld 29.5 59.5 13.6 11.6 1.2 ∼ 5.1
sd 94.9 99.8 35.1 29.5 1.2 ∼ 3.4

highest optimization level. Specifically, we use the PullPR
implementation from UC Berkeley GAP benchmarks [4], and

implement PushPR following the Algorithm 1. In addition, we
directly adopt the open-sourced PCPM implementation [17],

[18] for comparisons, and adjust its parameters of bin settings
to fit our hardware. Since both PullPR and PCPM do not

consider the convergences of vertices, we thus make them

run the same number of iterations as PushPR. We test these
baseline methods and adopt the configurations that achieve

their best performances. To configure APPR, we empirically
set λ as the average in-degree d̄ of the input graph to label
each vertex as H or L vertex. We also calculate the activation

indicator N� for each graph accordingly. For all methods,

we set the damp factor f = 0.15, the convergence threshold
ε = 10−3, and the default number of partitions m = 20. The
average results of five executions are reported.

B. Overall Performance

Execution time.We compare the execution time of the four
methods over all graphs in Table II, where we list the ratios
between the execution time of each compared approach and the

execution time of APPR in the last column. Although PullPR
does not consider vertex convergences and thus will generate

abundant unnecessary messages, it still runs a bit faster than

PushPR, which suffers from serious synchronization issues.

It suggests that the overheads caused by the synchronization

primitives overweight the unnecessary communication costs.

Thanks to the data structure bin, PCPM can avoid synchro-

nization issues and thus runs much faster than PushPR on most
graphs except livej, which is an extremely skewed graph.
Among the four methods, APPR has the best performance,

with obvious speedup on the execution time as shown in

the last column of Table II. Overall, APPR outperforms the
baseline methods with speedup 1.2x ∼ 6.0x. We find that

APPR has greater advantages on social network graphs (i.e.,
livej, twitter, and orkut) than web page graphs (i.e., pld
and sd). The reason might be that social network graphs are
more skewed than web page graphs, and APPR benefits more
from such graph structures. According to our statistics, the

percentages of H vertices are only 4%, 9%, 7%, 15%, and
10% for the livej, twitter, orkut, pld and sd, respectively.
Compared to the state-of-the-art method, APPR improves

PCPM in the execution time over the five graphs with speedup

1.2x ∼ 4.0x, and the average speedup is as high as 2.4x. In

TABLE III
COMPARISONS ON PRE-PROCESSING TIME (Unit: seconds)

Method livej twitter orkut pld sd

PCPM 0.04 0.34 0.08 0.20 0.54
APPR 0.11 0.50 0.18 0.55 1.39
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Fig. 7. The normalized communication messages.

particular for social network graphs, APPR outperforms PCPM
with an average speedup as high as 3.2x.

Pre-processing time. Since both PushPR and PullPR al-

most have no pre-processing overheads, we thus only present

the pre-processing time of APPR and PCPM in Table III.

Specifically, PCPM needs to divide the graph and construct the

bin for each partition, and the heuristic graph partitioning of
APPR also takes time. Table III shows the pre-processing time
of both methods is proportional to the graph size, i.e., a larger
graph needs more pre-processing time. APPR spends slightly
more time to pre-process a graph than PCPM. From Table II

and Table III, the total time of APPR (including both execution
time and pre-processing time) is still much smaller than the

total time of PCPM. In fact, for most graphs pre-processing
time is negligible when compared to execution time.

Communication messages. In graph-parallel computation,
vertices need to exchange messages along edges for updating

their own data. Such messages will cause communication costs

among threads even in the shared-memory platforms. Similar

as PCPM [17], [18], the communication costs indicate the

amount of data exchanged with main memory. In Figure 7, we

compare the four methods on the normalized communication

messages, which is total messages normalized by total edges

and number of iterations. In general, we find that push-based

methods, i.e., PushPR and APPR, usually have fewer messages
than pull-based methods, i.e., PullPR. This is because con-
verged vertices in push mode will stop propagating messages.

Instead, PullPR has about 1 message per edge per iteration.
Since a vertex in PCPM needs to push its updates to bin
and gather neighbors’ updates from bin, it has the largest
normalized communication messages among the four methods,

approaching 2 on all graphs. APPR further improves PushPR
by avoiding H vertices’ early communication costs.Therefore,

APPR has the smallest normalized communication messages.
In particular, APPR averagely improves PCPM by 16.4x in

communication messages for the social network graphs.

C. Evaluation of APPR Design

In this subsection, we will conduct some micro-benchmark

experiments to examine the optimization designs of APPR.
Impact of destination-centric graph partitioning. We

study the impact of partition number m on APPR, and present
the results in Figure 8. In general, the initial increase of num-
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TABLE IV
VARIANCES OF DIFFERENT GRAPH PARTITIONING SCHEMES

Graph Vertex-centric Edge-greedy APPR

livej 1.0× 1014 7.9× 108 3.6× 108

twitter 1.3× 1015 7.1× 108 1.6× 108

orkut 2.1× 1013 2.6× 107 1.5× 107

pld 1.7× 1012 4.1× 105 3.3× 105

sd 1.6× 1014 2.6× 108 1.1× 108

ber of partitions can accelerate parallel PageRank computation,
while more partitions (e.g., > 20) may even slow down the

execution. Such a trend exists for all the five graphs. We find

that APPR can achieve the best performance for all graphs

when we set m = 20. This might be that our server has
20 CPU cores, and > 20 partitions will cause some threads
process more partitions of data, resulting in load imbalance

that harms the overall performance of APPR.
We compare our heuristic graph partitioning scheme with

two alternative graph partitioning schemes, i.e., vertex-centric
and edge-greedy. Specifically, vertex-centric equally divides
vertices into partitions and assigns the edges along with their

sources. The edge-greedy scheme works in a greedy manner.
It constantly assigns vertices and their associated edges to a

partition Pj until the size |Pj | exceeds the expected partition
size μ. We compare them and present their variances of

partition sizes in Table IV, where each scheme divides a graph

into 20 partitions. Due to the power-law in-degree distribution,
vertex-centric schemes has the largest variance, i.e., the most
serious load imbalance. Compared to the edge-greedy scheme,
APPR can heuristically decide whether putting a vertex and its
associated edges to current partition or not, so that to minimize

the variance of partition sizes. As a result, APPR improves

edge-greedy with an average reduction of variance by 140%.
In particular, APPR achieves the largest reduction by 3.5x on
graph twitter, which is a typical social network graph.

Impact of degree-aware scheduler. We compare APPR
with the version that disables degree-aware scheduler (APPR-
S), and present the comparison in Figure 10. Indeed, the

degree-aware scheduler benefits the parallel PageRank compu-
tation. APPR outperforms APPR-S on almost all graphs except
livej. The gap on livej is quite small as 0.04 second. For
the other graphs, degree-aware scheduler brings 14% ∼ 24%
improvements on execution time, and the largest improvement

24% is derived from twitter graph.

Since the scheduler will compute L vertices at the initial

iterations and activate H vertices later. We thus decompose

all iterations of APPR into two parts, i.e., initial iterations
that only involves L vertices and latter iterations that involves
both L and H vertices, and compare with the total iterations

of APPR-S in Figure 9. For graph livej, few H vertices

take a long time to be converged with APPR. Except livej,
we see clear reductions on total iterations of APPR, with
an average reduction of 3 iterations. The comparison results

demonstrate that an intelligent vertex computation scheduling

indeed accelerates the convergences of all vertices.

Impact of message controller. APPR adjusts the transmis-
sion orders of delta and status messages to improve graph
locality. We examine this optimization design by compar-

ing APPR with the version that disables message controller
(APPR-M). Figure 10 shows that APPR-M doubles the execu-

tion time for all graphs when compared to APPR. The message
controller allows each vertex v to successively push delta
and status messages to its out-neighbors No(v). Therefore,
the cached out-neighbor data by the operation of pushing

delta messages could be reused by the latter operation of
pushing status messages. The traditional implementation, how-

ever, separates the two operations, which leads to inefficient

memory accesses. On average, the message controller module

accelerates PageRank computation by 104%.

V. RELATED WORK

Initially proposed for ranking web pages [25], nowadays

PageRank and its variants [3] have been widely used for
various graph analysis of online social networks, biology,

neuroscience, physics, and etc. [10]. In particular for social
networks, PageRank can be used to find the leaders of social
network community [31] and recommend friends to users

by analyzing the corresponding follower graphs [9]. Besides,

PageRank is usually selected as the benchmark to examine
various graph-parallel processing frameworks [11], [12], [29].

There exist tremendous efforts that have been made to

improve the PageRank computation [6]. Some works target to
derive fast PageRank approximation by exploiting techniques
like random walk [24] and Monte Carlo methods [2]. A more

attractive direction is to parallelize PageRank computation
with advanced hardware, e.g., GPUs [13], ASIC [28], or FPGA
[27]. With the emergence of “think like a vertex”, PageRank
has been implemented in various graph-parallel processing

frameworks [22], which accelerate the PageRank computation
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of graphs with billions of vertices on the clustered machines.

These implementations, however, either merely derive approx-

imation results or rely on some expensive hardware or clusters.

Instead of running PageRank in the distributed frameworks,
a recent trend is to customize and optimize graph analytics

(e.g., PageRank) on shared-memory platforms because of their
low communication costs and the increasing memory capacity

[17], [18], [23]. Scott Beamer et al. propose a cache blocking
technique that restricts the range of randomly accessed vertices

to increase graph locality of PageRank computation [5]. The
extremely sparse nature of social network graphs, however,

reduces the reuse rate of cached vertex data. PCPM [17],

[18] proposes a partition-centric processing abstraction to

optimize parallel PageRank computation, while it still needs
to traverse the entire graph almost twice in each iteration,

leading to inefficient computation. Ma et al. have designed
a general graph processing platform to efficiently process

large graphs with the hybrid CPU-GPU on a single machine

[21]. Different from existing works, we have optimized both

computation and communication of PageRank by exploiting
the characteristics of its parallel-computation patterns and the

power-law structures of social network graphs.

VI. CONCLUSION

In this paper, we present APPR to accelerate parallel PageR-
ank computation in the shared-memory platforms for large-
scale graphs. By investigating the characteristics of parallel

PageRank computation and the power-law degree distributions
of social network graphs, APPR proposes a set of optimiza-
tions, including destination-centric graph partitioning to avoid

synchronization issues, degree-aware computation scheduler to

reduce unnecessary operations, and message controller to im-

prove the efficiency of memory accesses. Experimental results

from real-world graphs demonstrate that APPR significantly
outperforms state-of-the-art methods with on average 2.4x

speedup in execution time and 16.4x reduction in commu-

nication messages for social network graphs.
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