
Accelerating PageRank in Shared-Memory for
Efficient Social Network Graph Analytics

1

,Zhidan Liu∗ ,Kaishun Wu

Shenzhen University,China

2

Graph Analytics

Social Network Road Network

Web Network Biological Network

3

Graph Computing

1. J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: distributed graph parallel
computation on natural graphs. InUSENIX OSDI, 2012.

• Graph applications execute in two conceptual phases: message
exchange(ME) and local update(LU)

Figure. Graph Computing in GAS model1

ME:Gather message
ü pull/push model

ME:Track active(unconverged) vertices
ü pull/push model

Local Update

4

PageRank
• Important benchmark for evaluating graph analytic frameworks
• Fundamental node ranking algorithm
Ø Iteratively compute weighted sum of neighbor's PR[vi]

Ø where d is the damp factor, Ni(u) and No(v) represent u's in-neighbors and
vertex v's out-neighbors, respectively1




 



)(|)(|

)(
|V|

1)u(
uNv o

1i
i vN

vPRddPR

1. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: bringing order to the web. Technical
report, Stanford InfoLab,1999.

5

Efficient PageRank Computing

1. Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! but at what cost? InProceedings of the 15th
USENIX Conference on Hot Topics in Operating Systems, HOTOS’15,pages 14–14. USENIX Association, 2015.

• As the magnitude of graph data grows rapidly，how to compute
PageRank efficiently ？
p Serial computing or parallel computing

p Single-machine computing or distributed computing

6

Efficient PageRank Computing

1. Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! but at what cost? InProceedings of the 15th
USENIX Conference on Hot Topics in Operating Systems, HOTOS’15,pages 14–14. USENIX Association, 2015.

• As the magnitude of graph data grows rapidly，how to compute
PageRank efficiently ？
p Serial computing or parallel computing

p Single-machine computing or distributed computing

7

Efficient PageRank Computing

1. Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! but at what cost? InProceedings of the 15th
USENIX Conference on Hot Topics in Operating Systems, HOTOS’15,pages 14–14. USENIX Association, 2015.

• As the magnitude of graph data grows rapidly，how to compute
PageRank efficiently ？
p Serial computing or parallel computing

p Single-machine computing or distributed computing

Many distributed systems can not defeat graph
computing in single thread because of their expensive
communication cost 1

8

Efficient PageRank Computing

1. Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! but at what cost? InProceedings of the 15th
USENIX Conference on Hot Topics in Operating Systems, HOTOS’15,pages 14–14. USENIX Association, 2015.

Many distributed systems can not defeat graph
computing in single thread because of their expensive
communication cost 1

• As the magnitude of graph data grows rapidly，how to compute
PageRank efficiently ？
p Serial computing or parallel computing

p Single-machine computing or distributed computing

9

Limitation 1：Push Direction PageRank

parallel_for (int vSrc = 0; vSrc < numVertices; ++vSrc) {
 if (!frontier.contains(vSrc)) continue;
 for (int d = 0; d < vertex[vSrc].outdegree; ++d) {
 const int vDst = vertex[vSrc].outneighbor[d];
 if (converged.contains(vDst)) continue;
 atomicCAS(vertex[vDst].value,
 compute(vertex[vSrc].value, vertex[vDst].value)); } }

Algorithm. Push-based Parallelled PageRank Computing

3

2

1
4

5

6

push

7 push

Fig 1. Push Model

3

2

1 4 5

6
push

7

push
Thread 1

Thread 2

FIg 2. Multi-thread computing

3

2

1 4 5

6
push

7

push
Thread 1

Thread 2

FIg 3. CAS for conflict

10

Limitation 1：Push Direction PageRank

parallel_for (int vSrc = 0; vSrc < numVertices; ++vSrc) {
 if (!frontier.contains(vSrc)) continue;
 for (int d = 0; d < vertex[vSrc].outdegree; ++d) {
 const int vDst = vertex[vSrc].outneighbor[d];
 if (converged.contains(vDst)) continue;
 atomicCAS(vertex[vDst].value,
 compute(vertex[vSrc].value, vertex[vDst].value)); } }

Algorithm. Push-based Parallelled PageRank Computing

3

2

1
4

5

6

push

7 push

Fig 1. Push Model

3

2

1 4 5

6
push

7

push
Thread 1

Thread 2

FIg 2. Multi-thread computing

3

2

1 4 5

6
push

7

push
Thread 1

Thread 2

FIg 3. CAS for conflict

11

Limitation 2：Computing Redundancy

1st iteration:
 PR1[3] = compute{PR0[1],PR0[2]} -->unconverged
 PR1[1] = compute{PR0[4]} -->unconverged
 PR1[2] = compute{}; -->converged
 PR1[4] = compute{}; -->converged
2nd iteration:
 PR2[3] = compute{PR1[1]} -->unconverged
 PR2[1] = compute{}; -->converged
3rd iteration:
 PR3[3] = compute{} -->converged

1. initData(v): v.rank = 0.15; Δ = -0.85;
2. initMsg: Activate(u), u ∈ V
3.

Pseudocode for PageRank

3

1

4 2

FIg. example graph

12

Limitation 2：Computing Redundancy

3

1

4 2

FIg. example graph

1. initData(v): v.rank = 0.15; Δ = -0.85;
2. initMsg: Activate(u), u ∈ V
3.

Pseudocode for PageRank
1st iteration:
 PR1[3] = compute{PR0[1],PR0[2]} -->unconverged
 PR1[1] = compute{PR0[4]} -->unconverged
 PR1[2] = compute{}; -->converged
 PR1[4] = compute{}; -->converged
2nd iteration:
 PR2[3] = compute{PR1[1]} -->unconverged
 PR2[1] = compute{}; -->converged
3rd iteration:
 PR3[3] = compute{} -->converged

• A vertex will not converge until all it's
in-neighbors have become converged

• Not all vertics need to start computing
from the beginning,e.g. vertex 3

13

Limitation 3：Communicating Redundancy

Gather Apply Scatter

ith iteration(i-1)th (i+1)th

3

2

1 4

5

6

∆

• Unconverged Vertics have to
communicate with their neighbors
twice per iteration

Figure.The sample code of PageRank on
various systems.1

1. J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: distributed graph parallel
computation on natural graphs. InUSENIX OSDI, 2012.

14

Overview

• Components of APPR

ü Graph Partitioner

ü Degree-aware Scheduler

ü Message Controller

15

Opt 1：Destination-Centric Graph Partitioning

Destination-centric Graph Partitioner

• Partitioning is done by grouping edges based on destination
• It works well in most cases

16

Opt 2：Degree-Aware Computation Scheduler
• Low in-degree(L) vertices compute ahead of High in-degree(H) vertices
• This lazy strategy does not affect the correctness of computing results

Figure. The number of converged vertices for graph
orkut in each iteration.

Apply Push △
status

Push
PRinitial ...

ith iter2nd iter1st iter

△
status

3
2

1 4

5

6

∆ /∆
/∆
/∆

Figure. Message Controller of APPR
17

Opt 3：Message Controller
• How does it work ？

1. The active vertics all push their value to their neighbors
2. A vertex will push both status and new update to it's neighbors at the same

time if it's still not converged，or it will take no actions

• In one iteration, a vertex
needs to communicate with
its neighbors at most

18

Experimental Setup

Graph Description #vertics(M) #edges(M) d Disk size(G)

livej Social network 7.5 112.3 15 1.6
twitter Social network 21.3 265.0 12 5.2
orkut Social network 3.0 106.3 35 1.6
pld Web Pages 42.9 623.1 15 10.9
sd Web Pages 94.9 1937.5 20 34.4

• Baseline：
ü pullPR：PullPR implements PageRank in the pull direction1

ü pushPR：PushPR implements PageRank in the push direction
ü PCPM：PCPM is the state-of-the-art method that optimizes the parallel PageRank computation

based on a partition centric processing methodology
• Platform:

ü Intel(R) Xeon(R) E5-2630 v4 processors @2.20GHz
ü Dual-socket --- 10 cores per socket with 192 GB memory

• Dataset

1. S. Beamer, K. Asanovi´c, and D. Patterson. The GAP benchmark suite. arXiv preprint arXiv:1508.03619, 2015.

19

Experimental Results
• Overall performance

ü Up to speedup
over PCPM

ü Up to speedup

over PushPR
ü Up to speedup

over PullPR

20

Experimental Results
• Pre-processing time

• APPR spends slightly more time to pre-process a graph than PCPM
• The pre-processing time of both methods is proportional to the graph size, i.e.,

a larger graph needs more pre-processing time

Figure.Evaluation of APPR modules.

21

Experimental Results
• Evaluation of APPR Design

Ø APPR-S <-> APPR without degree-aware scheduler
Ø APPR-M <-> APPR without message controller

ü Degree-aware scheduler brings
14% ∼ 24% improvements on
execution time

ü On average, the message controller
module accelerates PageRank
computation by 104%

22

Experimental Results

See paper for more results ...

23

Conclusion
• We present APPR to accelerate parallel PageRank computation in

the shared-memory platforms for large scale graphs
Ø Destination-centric graph partitioner to avoid synchronization issues

Ø Degree-aware computation scheduler to reduce unnecessary operations

Ø Message controller to improve the efficiency of memory accesses

• APPR outperforms state-of-the-art methods with on average 2.4x speedup
in execution time and 16.4x reduction in communication messages for social
network graphs

24

2020

Thank You

