
Mobility-Aware Dynamic Taxi Ridesharing

Zhidan Liu∗†, Zengyang Gong†, Jiangzhou Li†, Kaishun Wu∗†‡
∗Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, P. R. China

†College of Computer Science and Software Engineering, Shenzhen University, P. R. China
‡PCL Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen, P. R. China

liuzhidan@szu.edu.cn, {gongzengyang2017, lijiangzhou2018}@email.szu.edu.cn, wu@szu.edu.cn

Abstract—Taxi ridesharing becomes promising and attractive
because of the wide availability of taxis in a city and tremendous
benefits of ridesharing, e.g., alleviating traffic congestion and
reducing energy consumption. Existing taxi ridesharing schemes,
however, are not efficient and practical, due to they simply match
ride requests and taxis based on partial trip information and
omit the offline passengers, who hail a taxi at roadside with
no explicit requests to the system. In this paper, we consider
the mobility-aware taxi ridesharing problem, and present mT-
Share to address these limitations. mT-Share fully exploits the
mobility information of ride requests and taxis to achieve efficient
indexing of taxis/requests and better passenger-taxi matching,
while still satisfying the constraints on passengers’ deadlines and
taxis’ capacities. Specifically, mT-Share indexes taxis and ride re-
quests with both geographical information and travel directions,
and supports the shortest path based routing and probabilistic
routing to serve both online and offline ride requests. Extensive
experiments with a large real-world taxi dataset demonstrate the
efficiency and effectiveness of mT-Share, which can response each
ride request in milliseconds and with a moderate detour cost.
Compared to state-of-the-art methods, mT-Share serves 42% and
62% more ride requests in peak and non-peak hours, respectively.

Index Terms—taxi ridesharing, mobility, clustering, route plan-
ning

I. INTRODUCTION

Ridesharing allows multiple passengers with the similar

itineraries and time schedules to share a vehicle, which can

significantly alleviate urban traffic congestion, reduce energy

consumption, and bring win-win benefits to both passengers

and drivers [21]. Due to the wide availability of taxis in a

city, taxi ridesharing becomes a promising transportation mode

[21], [22], [41], [42]. Different from private vehicles based

ridesharing, also known as carpooling [12], [29], where ride

requests are static and ridesharing routes could be planned in

advance, taxi ridesharing is more complex, because both ride

requests and taxis are highly dynamic [21], [22]. On one hand,

passengers usually submit their requests immediately once

they need a ride with no prior planning. Even worse, some

passengers will not explicitly report their requests but hail a

taxi at roadside. On the other hand, a taxi randomly delivers

passengers in the city with no fixed route. Such dynamics

cause the real-time taxi ridesharing especially challenging,

where ride requests need to be timely assigned to taxis and

meanwhile taxi schedule and route should be wisely updated

to guarantee the quality of services [14], [41].

In the literature, some remarkable efforts have been made

to design taxi ridesharing schemes [13], [21], [22], [41],

[42]. They usually select a set of candidate taxis for a ride

request according to the passenger’s current location and the

geographical distribution of all taxis, and then insert this

request into a candidate taxi’s schedule that can minimize

certain cost, e.g., minimum increase in the travel cost, while

still satisfying the service requirements of other passengers

already in the taxi. These schemes, however, are not efficient

and practical due to the following limitations. First, most

existing schemes determine candidate taxis for a ride request

based on partial trip information merely, i.e., a ride request’s

origin location and taxis’ current locations, and thus will not

achieve the best passenger-taxi matching. Second, existing

schemes mainly consider online ride requests, while some ride

requests may be offline and thus be invisible to the ridesharing

system. According to a recent taxi service research report,

the statistic on users’ preferences of getting taxi services

shows that 41.68% users prefer either online booking or offline

hailing, and 13.71% users only accept taxi-hailing in an offline

manner [3]. Therefore, the amount of offline ride requests

(i.e., 13.71% ∼ 55.39% of users) could be very large, and an

appropriate taxi ridesharing scheme is desired to well handle

such demands.

In this paper, we consider a more practical problem in taxi

ridesharing, namely mobility-aware taxi ridesharing (MTR),

which exploits the known mobility information from taxis and

requests and the hidden mobility patterns from historical data

to match passengers with suitable taxis, so that to maximize

the served ride requests while minimizing the total detour cost,

subject to the constraints of taxis’ capacities and passengers’

deadlines. It turns to be an extremely challenging problem, not

only because the high dynamics of online ride requests and

taxis, but also the difficulty on predicting the offline requests.

To improve existing works and solve the MTR problem, we

present mT-Share – a novel taxi ridesharing scheme that fully

exploits both real-time and historical mobility information of

taxis and ride requests. The key insight behind mT-Share is that

the best matches of taxis and ride requests should share the

similar travel directions and have geographically close origins

and destinations. Therefore, mT-Share proposes bipartite map

partitioning and mobility clustering to facilitate the indexing

of taxis and ride requests from these two aspects. Based on the

map partitions, two routing modes are enabled and further opti-

mized for the passenger-taxi matching, which can improve the

efficiency of taxi scheduling while simultaneously satisfying

the constraints on taxi’s capacity and passengers’ deadlines.

961

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00088

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

In particular, by considering the weekly and daily mobility

patterns of taxi demands [6], [16], a novel probabilistic routing

is proposed, which allows a taxi to opportunistically encounter

offline ride requests with high probability. The contributions

of our work thus can be summarized as follows:

• We identify the limitations of existing taxi ridesharing

schemes, and are the first, to the best of our knowledge,

to consider the MTR problem, which exploits the mobility

information to serve both online and offline ride requests.

• We propose a novel scheme named mT-Share to address

the MTR problem. By incorporating the holistic mobility

information of taxis and ride requests, mT-Share has op-

timized the indexing of taxis/requests and passenger-taxi

matching. In particular, probabilistic routing is devised to

predict offline requests by mining historical taxi data.

• We conduct extensive experiments to evaluate mT-Share
with a large real-world taxi dataset. Experimental results

show that mT-Share significantly outperforms the state-

of-the-art methods, e.g., serving 42% and 62% more ride

requests in the peak and non-peak hours, respectively.

The rest of this paper is organized as follows. We review the

related works in Section II. We present the problem statement

in Section III. The design of mT-Share is elaborated in Section

IV. We evaluate mT-Share in Section V. Finally, Section VI

concludes this paper.

II. RELATED WORK

Taxi demands and dispatching. As an important public

transportation mode in the urban city, it is crucial to understand

taxi demands and well dispatch taxis to balance the supplies

and demands [36]. A plenty of works [31], [37], [40] have been

devoted to predict taxi demands by analyzing historical taxi

transactions. Different from these works that predict taxi de-

mands for regular taxi services, we predict offline ride requests

in the taxi ridesharing scenario, which is more challenging. In

particular, a recent work [16] proposes a demand prediction

based ridesharing routing by exploiting the mobility statistics.

Our work differs from it by considering both online and offline

ride requests.

In addition to the taxi demand prediction, many works [15],

[40], [43], [44] study the taxi dispatching problem according

to the known demands. For example, Zhang et al. [40] propose

an order dispatching model to maximize the global matching

success rate of passengers and taxis. Lin et al. [15] provide

an efficient fleet management method that exploits multi-

agent deep reinforcement learning for an explicit coordination

among taxis given all taxi demands. These works dispatch a

vacant taxi for each ride request, with no consideration of taxi

ridesharing at all.

Carpooling and Dial-A-Ride. Carpooling often refers to

recurring ridesharing, which mainly deals with routine com-

mutes, e.g., from home to workplace. Since carpooling usually

involves a small size of drivers and riders, it can be optimally

solved using the linear programming [4]. Potential carpooling

opportunity can be discovered by mining GPS trajectories [12],

and coRide [39] could be used to design the schedules and

routes. Different from carpooling where all ride requests are

known in advance, taxi ridesharing is more dynamic, since

ride requests are generated on the fly and taxi routes will

continuously change.

The taxi ridesharing problem can be viewed as a variant of

the dial-a-ride problem (DARP) that designs the schedule and

route for a set of riders, who specify their pick-up and drop-

off locations in advance, between origins and destinations [9].

Existing works on DARP primarily focus on the static case

[8], where all ride requests are provided in a prior. The general

DARP problem is NP-hard, and little research has been carried

out on the dynamic DARP [22].

Ridesharing. Ridesharing has been actively studied in

recent years due to its tremendous benefits. Compared to

the static carpooling, dynamic ridesharing is more realistic

yet challenging, which can be modelled as a combinatorial

optimization problem and has been proved to be NP-hard [5].

Therefore, various heuristics have been proposed to optimize

the two stages of ridesharing, i.e., candidate taxi searching

[29], [30] and ridesharing routing [14], [34]. For example,

Tong et al. [34], [35] optimize the route planning with a smart

insertion for the shared mobility. In addition, other factors of

ridesharing systems, such as pricing models [7], [32], request

assignment [18], [33], privacy protections [11], riders’ attitude

on ridesharing [42], and riders’ satisfaction [8], have also been

explored in recent years.

Due to the wide availability of taxis in a city [6], taxi

ridesharing becomes promising and has already attracted some

research efforts [13], [21], [22], [41], [42]. Specifically, Zheng

et al. present a mobile-cloud based taxi-sharing system named

T-Share [21], [22]. Zhang et al. improve T-Share by consid-

ering the quality of service for taxi ridesharing [41]. Hou et
al. particularly study the transfer-allowed ridesharing with the

battery limited electric taxis [13]. In [42], passenger’s accep-

tance probability on taxi ridesharing is also considered. These

works, however, do not make use of mobility information for

better passenger-taxi matching, and meanwhile omit the offline

ride requests, who do not explicitly report their requests to the

ridesharing system.

Taxi trajectory mining. The availability of massive taxi

trajectory data enables various novel applications [6], [45],

e.g., traffic estimation [20], [17], traffic prediction [19], and

collective travel planning [24]. Therefore, there exist many

efforts to improve the operation efficiency of joining [25], [26]

and searching [27], [28] on the trajectory data. In this paper,

we make use of historical taxi trajectory data to mine mobility

patterns for better taxi ridesharing.

III. PROBLEM STATEMENT

In this section, we introduce the notations, motivation, and

the formal definition about mobility-aware taxi ridesharing.

A. Notations and Definitions

Definition 1: (Road Network) A road network is denoted
by a directed graph G(V,E), where each vertex v ∈ V
presents a geo-location (e.g., road intersection), and each edge

962

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

(u, v) ∈ E is a road segment, which is associated with a
weight cost(u, v), indicating the travel cost from u to v.

The travel cost can be measured as either a travel distance or

a travel time. Since they can be converted from one to another

when travel speed of a vehicle is known, we thus do not

differentiate them and use the travel cost consistently. In this

paper, we assume stable traffic conditions as previous studies

[21], [34] and thus the travel cost of an edge is constant.

For simplicity, we assume that most passengers are willing

to take a taxi ridesharing, which coincides with a recent report

[23]. Specifically, the passengers either explicitly report their

ride requests to the system through booking Apps or implicitly

join the ridesharing by hailing a shared taxi at roadside. The

system will select proper taxis to serve both online and offline

ride requests by analyzing current statuses of all taxis, and plan

routes for the chosen taxis given certain service requirements.

Definition 2: (Ride Request) A ride request is denoted by
ri =< tri , ori , dri , eri > with a trip origin ori ∈ V and a
trip destination dri ∈ V. This request is released at time tri
and should be completed before time eri by delivering the
passengers from ori to dri .

Note that two deadlines could be adopted in the real-world

applications, i.e., the deadlines for pick-up and drop-off [22].

In fact, a single deadline for delivery eri usually suffices [34],

since the pick-up deadline can be easily inferred from eri and

the travel time cost(ori , dri) between ori to dri , i.e., the pick-

up deadline could be expressed as eri − cost(ori , dri). The

information of an online ride request can be known once ri
is submitted, while offline ride requests would be known only

when they are opportunistically encountered by shared taxis.

We use r̄i to specially present an offline ride request.

Definition 3: (Taxi Status) The instantaneous status of the
j-th taxi is denoted by tj =< loctj ,Stj ,Rtj >, where loctj
presents taxi tj’s current location, and Stj and Rtj are taxi
tj’s schedule and route, respectively.
Definition 4: (Taxi Schedule) A valid schedule Stj =

{s1, s2, · · · , sm} is a sequence of events for a shared taxi,
where each event corresponds to pick-up or drop-off the
ridesharing passenger at some location, e.g., ori or dri of
a ride request ri and ori should appear ahead of dri .
Definition 5: (Taxi Route) A taxi route Rtj is generated

according to taxi schedule Stj , which indicates the travel path
for any two consecutive events in Stj .

Given ride requests that share the same taxi, a valid schedule

should be made to sequentially pick-up and deliver passengers

along a planned ridesharing route. The travel path is usually

set as the shortest path between two event locations in previous

works [7], [14], [21], [22], [34], and thus a taxi route is derived

by concatenating a sequence of these shortest paths. Both Stj

and Rtj are continuously updated when ridesharing passengers

are picked up or delivered by taxi tj.
The key notations are summarized in Table I.

B. Motivation

The taxi ridesharing problem can be modelled as a com-

binatorial optimization problem, which has been proved to

TABLE I
SUMMARY OF KEY NOTATIONS.

Notation Description
G(V,E) The directed graph of a road network
cost(·) A function to calculate the travel cost
ri The i-th ride request
r̄i The i-th offline ride request
ori The origin of ride request ri
dri The destination of ride request ri
eri Delivery deadline of ride request ri
tj Status of the j-th taxi
Stj Schedule of taxi tj
Rtj Route of taxi tj
P A set of map partitions {Pz}κz=1
�z Landmark of partition Pz

G�(V�,E�) The landmark graph
�v A mobility vector

Ca A mobility cluster
γ Searching range
Tri Candidate taxi set for ride request ri

be NP-hard [5]. As a result, the taxi ridesharing problem

cannot be optimally solved with a polynomial time complexity.

Existing works [13], [21], [22], [41], [42] thus propose various

heuristics to assign ride requests to shared taxis. In general,

these schemes index taxis with grids of the road network, and

process each ride request ri through the following two stages.

Stage 1: taxi searching. The taxis within a range γ around

ri’s origin ori are selected as the candidate taxis to serve ri.
Stage 2: ridesharing routing. The schedule of each candi-

date taxi tj is examined by inserting the pick-up and drop-off

events of ri into Stj , subject to the taxi’s capacity and delivery

deadlines. The taxi, which introduces the minimum cost (e.g.,
the minimum increase on travel cost), is normally chosen to

serve request ri.
The searching radius γ can be gradually increased [42] and

above two stages are repeated until one suitable taxi is selected

[22]. However, we observe at least two limitations of existing

works, which will affect their efficiency and practicality.

• Inefficient passenger-taxi matching. Most of the exist-

ing schemes search candidate taxis with only the origin

location of a ride request [34], [41], [42]. Even though

both origin and destination are utilized for a dual-side

search [21], [22], they are separately considered in these

works. Besides, previous works will immediately return

once a valid taxi is found [21], [22], rather than searching

for the best one. Such a partial trip information based

passenger-taxi matching can not filter out the invalid taxis

at the beginning, while it meanwhile may also miss the

best taxi that introduces the minimum cost.

• Omitting the offline ride requests. Existing solutions

mainly consider online ride requests [13], [21], [22],

[41], [42], however, in practice there are still a lot of

people who will hail a taxi at roadside with no submitted

requests [16], [38]. According to a recent taxi service

research report [3], the statistic on users’ preferences of

getting taxi services shows that 44.61% users only prefer

online booking, while 13.71% users hail a taxi at roadside

merely. In addition, 41.68% users prefer either online

963

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

r2
r1

t1

t2

t3

D2

Online�ride�request

Offline�ride�request

D Destination�of�a�request

Current�taxi�route

Next�destination�of�a�taxi

Planned�taxi�route

D1

Fig. 1. An motivation example with 3 shared taxis, 1 online ride request, and
1 offline ride request. Solid lines are the current taxi routes, and the dashed
line is a planned route. Taxi routes are differentiated by colors.

booking or offline hailing. From these statistics, we see

that the amount of potential offline ride requests is quite

large in practice, and thus such offline requests should be

considered and well served by taxi ridesharing systems.

Figure 1 further explains above arguments. In this example,

we assume 3 shared taxis (i.e., t1, t2, and t3) travel along

their routes, and meanwhile passenger r1 submits her ride

request to the server while passenger r2 prefers to hail a

taxi at roadside. When receiving the request from r1, existing

schemes determine candidate taxis with a searching radius

around the origin of r1, where t1 and t2 are returned in

this example. Then their schedules are investigated, which

involves extensive computations. In fact, we find that t2 should

never be taken into consideration as it travels inversely with

r1, which introduces unnecessary computations. Although t1
could detour to pick up r1, we find that t3 turns to be the

best taxi to serve r1, with no detour cost at all. However, t3 is

even not included into the initial searching results for r1. On

the other hand, since r2 does not explicitly report her request,

no taxi will serve r2 according to all existing schemes. If the

existence of ride request r2 is perceived, we can serve r2 as

well by slightly adjusting t2’s route.

C. Problem Definition

In this paper, we consider the mobility-aware taxi rideshar-
ing (MTR) problem, which is formally defined as follows.

Definition 6: (Mobility-aware Taxi Ridesharing problem,
MTR) Given a set of ride requests, including online requests
and offline requests to predict, and a set of taxis on a road
network G, the MTR problem aims to arrange ride requests
to proper shared taxis, such that the number of served ride
requests is maximized while the total detour cost is minimized.
The arrangements should also meet the following constraints:

• Capacity constraint: The number of passengers in a taxi
can not exceed the taxi’s capacity at any time;

• Time constraint: The passengers of any ride request
should be served within the specific deadline.

Challenges. Different from existing works, our MTR prob-

lem not only considers online ride requests, but also takes

offline ride requests into consideration to serve more passen-

gers. Ridesharing has been proved to be NP-hard [5], [8], [34],

Taxi/Request�Indexing

Mobility�Clustering�Map�Partitioning

Candidate�Taxi�Searching

Indexes

Passenger�Taxi�
Matching

Taxi�Scheduling

Basic�Routing Probabilistic�Routing

Partition�Filtering

Ride�Requests

Road�Map

�Taxi�Data

Taxi�Status

Fig. 2. The system architecture of mT-Share.

thus the MTR problem that involves both online and offline

ride requests is even more challenging. To solve this problem,

we have to address at least the following two challenges.

First, both taxis and ride requests are dynamically updated

in a city, which requires that the taxi schedule and route should

be efficiently and wisely planned so as to guarantee the quality

of service, e.g., minimizing the detour cost.

Second, it is difficult to match an offline ride request with

a proper shared taxi, as the exact information of offline ride

requests are unknown beforehand. Such an uncertainty makes

the taxi scheduling and routing to be further complicated.

IV. SYSTEM DESIGN

In this section, we will present the overview of mT-Share,
and then detail each component in the following subsections.

A. Overview

The system architecture of mT-Share is illustrated in Figure

2. At a high level, mT-Share takes the input from the road

map, historical taxi data, and real-time ride requests and taxi

statuses, and dynamically arranges shared taxis to serve both

online and offline ride requests. On the passenger side, a user

can either explicitly submit a ride request to mT-Share or hail

a shared taxi at roadside in an offline manner. On the taxi side,

a taxi will continuously upload its status (including location,

available seats, etc.) to the server and will receive the updated

schedule and route from the server.

mT-Share consists of two major modules, i.e., Taxi/Request
Indexing and Passenger-Taxi Matching. Specifically, the

Taxi/Request Indexing module makes use of mobility patterns

mined from massive taxi data to divide a road map into

partitions, and meanwhile groups ride requests and taxis by

clustering on their travel directions. Both partitions and clus-

ters are used to index and track the taxis. Built on such indexes,

the Passenger-Taxi Matching module searches candidate taxis

and determines the best taxi to serve a ride request. Both

basic routing and probabilistic routing are supported by mT-
Share, and they are accelerated by the partition filtering. The

probabilistic routing is specially devised to allow a taxi to

meet suitable offline ride requests with high probability.

Different from existing works [21], [22], [29], [30], [34]

that index taxis/requests only using spatial grids of the road

network, mT-Share makes use of both geographical locations

964

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

and travel directions of taxis and requests for better indexing.

With respect to the passenger-taxi matching, mT-Share differs

from previous works by additionally considering the offline

ride requests with a novel probabilistic routing.

B. Taxi/Request Indexing

mT-Share indexes and tracks ride requests and taxis from

two aspects of both geographical location and travel direction,

which are realized by conducting the bipartite map partitioning

and mobility clustering, respectively.

1) Bipartite map partitioning: Rather than segmenting the

road network with only geographical information [21], [22] or

popular pick-up locations [41], mT-Share groups road network

vertices into clusters according to their geographical locations

and transition patterns hidden in the historical taxi data. The

procedure of our map partitioning is as follows:

1 Geo-clustering. This step classifies the vertices of a

road network graph into κ spatial clusters according to their

geographical locations (i.e., latitude and longitude) by using

the K-mean clustering algorithm. The vertices in a spatial

cluster are geographically close. In the first time, this step

is applied to all vertices. For the later times, geo-clustering is

conducted on each transition cluster, which is derived in step

3 , proportionally. Specifically, given a transition cluster of

size n, its vertices are grouped into �nκ
N + 1

2� spatial clusters,

where N is the total number of vertices in V.

2 Transition probability calculation. Based on the κ spatial

clusters obtained in step 1 , we calculate a transition prob-

ability vector �Bi of size κ for each vertex vi. Each item

Bij (i = 1, 2, · · · , N and j = 1, 2, · · · , κ) is the transition

probability of passengers who had taken taxis at vertex vi
and traveled to any vertex within the j-th spatial cluster. The

transition probabilities are calculated with historical taxi data.

3 Transition clustering. We view vector �Bi as a mobility

feature of vertex vi, and group all vertices into kt transition

clusters according to their transition probability vectors using

the K-mean clustering algorithm, where kt < κ. The vertices

in a transition cluster share the similar transition patterns. We

empirically set kt = 20 for mT-Share.
We repeat above three steps until the κ spatial clusters

derived in step 1 do not change. We treat these clusters as

the final partitions of graph G, denoted as P = {Pz}κz=1.

The vertices in each partition are both spatially close and

highly similar in transition patterns. Such properties facilitate

the predictions of offline ride requests. Figure 3(b) shows the

result when we apply bipartite map partitioning on the road

network graph of Chengdu city shown in Figure 3(a).

For each partition, we compute a landmark, which can be

viewed as the center of a partition. Based on all partitions and

their landmarks, we build a landmark graph G�, which can be

used to accelerate the route planning later.

Definition 7: (Landmark) The landmark of a partition Pz

is the vertex �z ∈ Pz that has the minimum total distance to
all other vertices of partition Pz .
Definition 8: (Landmark Graph) A landmark graph is

denoted by G�(V�,E�), where vertices in V� are landmarks

Fig. 3. (a) The road network of Chengdu city, China. (b) The result of
bipartite map partitioning applied on (a), where we set κ = 20 just for a
clear demonstration and the spatial partitions are differentiated by colors.

of all partitions, and each edge in E� is formed between any
two landmarks if their corresponding partitions are adjacent.
2) Mobility clustering: Different from previous works that

only use locations to index ride requests and taxis [21], [22],

[29], [30], [34], [41], [42], mT-Share models both ride requests

and taxis as mobility vectors and further groups them through

mobility clustering on their travel directions.

Definition 9: (Mobility Vector) A mobility vector �v is de-
fined as a vector pointing from an origin (lato, lngo) to a des-
tination (latd, lngd), denoted by �v = (lato, lngo, latd, lngd).

For a ride request ri, we create its mobility vector �vri

with its origin ori and destination dri . For a taxi tj with m
passengers {ri}mi=1, we regard its current location loctj as the

origin location of mobility vector �vtj , and take the center of all

destinations of its passengers (i.e.,
∑m

i=1 dri

m) as the destination

of �vtj . Empty taxi are not considered for mobility clustering.

Based on the mobility vectors of all ride requests and taxis,

we group them into clusters. The first ride request will form

the initial cluster, and the subsequent ride requests will join

existing clusters or form new clusters individually. For each

cluster Ca, we maintain a general mobility vector �vCa
, whose

origin and destination are averagely calculated from the origins

and destinations of all cluster members. When a new ride

request ri arrives, its mobility vector is compared to each

general mobility vector. ri is included into cluster Ca if their

travel direction difference is sufficiently small. Specifically,

we use the cosine similarity as the distance metric to measure

their travel direction difference θ, i.e.,

cos(θ) =
�vri · �vCa

||�vri || × ||�vCa ||
. (1)

When cos(θ) ≥ λ where λ is a predefined threshold, we

consider ri travels along a similar direction with the passengers

in cluster Ca and they might share the same taxi. Otherwise,

ri will form a new mobility cluster.

The mobility clusters and their corresponding general mo-

bility vectors are dynamically updated when ride requests have

been completed or new ride requests are received.
3) Index of taxis: To facilitate the taxi searching for a given

ride request, mT-Share builds index structures based on both

map partitions and mobility clusters.

965

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

• Map partition based indexing. For each partition Pz , we

maintain a nearby taxi list Pz.Lt to record the IDs of

taxis that are now in or will arrive at partition Pz within

a time threshold (e.g., 1 hour). The taxi IDs are sorted

in an ascending order according to their estimated arrival

times. Note that Pz.Lt should be updated dynamically.

• Mobility cluster based indexing. For each mobility cluster

Ca, we maintain a taxi list Ca.Lt as well. This list

contains the IDs of taxis that are now serving passengers

and meanwhile traveling in a similar direction. Note that

Ca.Lt should be dynamically updated once Ca changes.

Memory complexity. According to above indexing struc-

tures, each taxi is indexed by multiple map partitions and

(at most) one mobility cluster. Besides, each ride request is

indexed by one mobility cluster. Therefore, the total memory

complexity of indexing is O((x+1)M +R), where M is the

number of taxis, x is the number of partitions a taxi can visit

within the time threshold, and R is the number of all requests.

C. Passenger-Taxi Matching

For each new ride request ri, mT-Share firstly determines a

set of candidate taxis by exploiting above indexes, and then

heuristically checks their schedules to select the most suitable

one, which should introduce the minimum detour cost.

1) Candidate taxi searching: Different from previous

works that gradually increase the searching range and imme-

diately return a valid (but may not be the best) taxi [21], [22],

[41], [42], mT-Share determines the best taxi to serve each

request ri in an aggressive manner. Specifically, we set the

taxi searching range γ of ri as the product of a typical driving

speed and a waiting time Δt, which is calculated as

Δt = eri − cost(ori , dri)− tri , (2)

where eri−cost(ori , dri) is the pick-up deadline and tri is the

release time of ri. Centering at ori , we get a set of partitions

Sri intersected with the searching area. For each partition

Pz ∈ Sri , we retrieve its taxi list Pz.Lt. Besides, by comparing

ri’s mobility vector to all existing mobility clusters, we may

find a cluster Ca sharing the similar travel direction with ri.
Therefore, candidate taxi set Tri for request ri is derived as

Tri = {∪Pz∈SriPz.Lt} ∩ Ca.Lt (3)

The set Tri can be further refined by: (i) including the empty

taxis {tj}, where tj ∈ Pz.Lt (Pz ∈ Sri) and Stj = ∅; (ii)

filtering out the taxis with no available seats; (iii) filtering out

the taxis that cannot arrive ri’s locating partition Pi before the

pick-up deadline by exploiting the taxi arrival time recorded

in Pi.Lt. These operations could filter out invalid taxis at the

beginning and thus save lots of computations.

2) Taxi scheduling: Given the candidate taxi set Tri , taxi

scheduling aims to select the most suitable taxi that can serve

ride request ri while introducing the minimum detour cost. In

principle, we should rearrange the events of a taxi schedule Stj

after incorporating the pick-up event ori and drop-off event dri
of ri. However, it will introduce extensive computations and

is prohibited in practice. Instead, mT-Share will insert ori and

Algorithm 1: Taxi Scheduling

1 Input: Ride request ri and candidate taxi set Tri ;

2 Output: A taxi with updated schedule/route for ri;
3 foreach taxi tj ∈ Tri do
4 foreach schedule instance S ′

tj ← {Stj , ori , dri} do
5 if flag then
6 R′

tj = ProbabilisticRouting(S ′
tj , tj);

7 else
8 R′

tj = BasicRouting(S ′
tj , tj);

9 ω = cost(R′
tj)− cost(Rtj);

10 Select the taxi schedule instance with the minimum ω;

dri into Stj , while keeping the existing schedule unchanged.

This is a typical design choice, similar as previous works [21],

[22], [34], [41]. The feasibility of inserting ri into a schedule

is mainly determined by the time constraints of ride requests,

which is finally affected by the route planning.

We present the taxi scheduling algorithm in Algorithm 1.
For each candidate taxi tj ∈ Tri , we enumerate all possible

schedules by inserting event ori and event dri into Stj , where

ori should be ahead of dri . For each schedule instance S ′
tj of

tj, we plan a route and calculate the detour cost as

detour cost = cost(R′
tj)− cost(Rtj), (4)

where R′
tj is the updated route of Rtj after picking up ri. We

run this operation for all schedule instances of all candidate

taxis, and select the taxi with the minimum detour cost as the

best one to serve ri following the updated schedule and route.

mT-Share serves both online and offline ride requests, which

is achieved by the routing algorithms. If a taxi has sufficient

empty seats while there are few online ride requests right now,

the taxi driver can enable probabilistic routing that will plan

a route to meet the suitable offline ride requests with high

probability. Specifically, if the indicator flag in Algorithm 1
is true, mT-Share invokes function ProbabilisticRouting() to

plan a probabilistic route for seeking offline ride requests. Oth-

erwise, BasicRouting() is invoked, which returns the shortest

path. Both functions are optimized with PartitionF ilter()
that prunes the searching space for the route planning.

Since route planning is usually the efficiency bottleneck of

taxi scheduling [21], [34], mT-Share thus proposes a two-phase

route planning to optimize both basic routing and probabilistic

routing. Given a schedule instance S ′
tj , mT-Share plans the

route for each consecutive event pair (sz, sz+1) ∈ S ′
tj through

two phases, i.e., partition filtering that reduces the searching

space for route planning and segment-level routing that returns

the final travel path. By concatenating the travel paths between

consecutive events (i.e., the operation 	
 in Algorithm 3 and

Algorithm 4), we can derive the final route R′
tj for schedule

S ′
tj . The two phases are detailed as follows.

– Phase 1: Partition filtering

966

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Partition Filtering

1 Function PartitionFilter(sz, sz+1):
2 Find partition Pz , Pz+1, and landmark �z , �z+1;

3 P ← ∅;
4 foreach Pi ∈ P do
5 if Pi satisfies the two rules then
6 P = P ∪ {Pi};
7 return P;

Algorithm 3: Basic Routing

1 Function BasicRouting(S , tj):
2 R ← ∅;
3 for z = 1 to (|S| − 1) do
4 P = PartitionFilter (sz, sz+1);

5 Build subgraph Gz from P;

6 Find the shortest path Rz using the Dijkstra’s
algorithm on Gz;

7 R = R 	
 Rz;

8 return R;

This phase is executed on the landmark graph G�. For

any two consecutive events (sz, sz+1) ∈ S ′
tj , we derive their

locating partitions Pz and Pz+1, and corresponding landmarks

�z and �z+1. We use the travel cost between �z and �z+1, i.e.,
cost(�z, �z+1), to approximate the length of the shortest path

between sz and sz+1. In addition, we use the two landmarks to

generate a mobility vector �vz . Then we examine each partition

Pi ∈ P with the following two rules:

• Travel direction rule. The direction difference θ between

the mobility vector pointing from �z to �i and �vz is

sufficiently small, i.e., cos(θ) ≥ λ.

• Travel cost rule. Travel cost of the path that links �z and

�z+1 via �i is not remarkably greater than the travel cost

of the shortest path between �z and �z+1, i.e.,

cost(�z, �i) + cost(�i, �z+1) ≤ (1 + ε)× cost(�z, �z+1),

where ε is a predefined parameter and is conservatively

set as 1.0 in this paper.

Partitions that meet above rules are retained into a set Pz
tj .

The pseudocode of partition filtering is listed in Algorithm 2.
Figure 4(a) demonstrates the partition filtering for event pair

(sz, sz+1), where the gray partitions are retained in Pz
tj .

– Phase 2: Segment-level routing

Rather than planning the route for a schedule instance S ′
tj on

the original graph G, mT-Share will find the feasible route on

a much smaller subgraph, which is constructed by the vertices

and edges belonging to the partitions derived from partition

filtering. The reduced searching space can significantly im-

prove the computation efficiency of route planning, and thus

both basic routing and probabilistic routing are executed on

the reduced graph. Next we introduce the two routing modes.

�zs
z+1lzl il

P1

P2

P3
Pz

Pz+1
(a)

P1

P2

P3
Pz Pz+1(b)

z+1s
zs

Landmark�

Partition

Vertex�in�G

Edge�in�G

Partition�path

Planned�route
z+1l

zl

z+1s

Fig. 4. (a) Illustration of partition filtering with the constraints on travel
direction and travel cost. The gray partitions are retained while the white

ones are filtered out. (b) Probabilistic routing on P ′
tj

, where red color of

partitions indicates the probability (the darker the higher). A valid route is

planned based on partition path H′
tj

= {Pz , P1, P2, Pz+1}.

• Basic routing. It aims to find the shortest path for any two

consecutive events in a schedule instance. The shortest path

based route planning has been frequently used by previous

works for ridesharing routing [21], [22], [34], [41]. In mT-
Share, the Dijkstra’s algorithm [10] is used to calculate the

shortest path on the subgraph. The pseudocode of basic routing

is listed in Algorithm 3.
• Probabilistic routing. It supports a taxi to opportunistically

encounter suitable offline ride requests. Here a ride request ri
is considered as suitable if ri travels with similar direction as

the given taxi. In theory, we should calculate the probabilities

of suitable requests over all graph vertices and plan a route

that accumulates the maximum probability of picking up new

suitable passengers. However, it turns to be computationally

prohibitive, which has been proved to be NP-Complete [16].

To avoid the huge computation overheads, mT-Share plans

the probabilistic route in an heuristic manner. For any two

consecutive events (sz, sz+1) in a schedule instance, mT-Share
further refines the partition set Pz

tj with transition patterns and

plans the probabilistic route on a smaller subgraph, which is

built from the refined partition set. The algorithm is presented

in Algorithm 4, and the main steps are as follows:

1 Probability calculation of suitable passengers. For each

partition Pi ∈ Pz
tj and the given candidate taxi tj, we select

the destination partitions of suitable passengers. Specifically,

for each partition Pa ∈ P, we keep Pa into set Pd only

if the travel direction difference θ between taxi tj and the

mobility vector constructed by the landmarks of Pi and Pa

is sufficiently small, i.e., cos(θ) ≥ λ. After obtaining set Pd,

we calculate the probability πi of meeting suitable passengers

within partition Pi by accumulating the transition probabilities

of each vertex vc ∈ Pi to each potential destination in set Pd.

The transition probabilities of each vertex to all partitions have

been calculated during bipartite map partitioning (see Section

IV-B1) and they can be cached for reuse to save computations.

2 Partition path planning. A landmark subgraph Gz
� is built

967

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4: Probabilistic Routing

1 Function ProbabilisticRouting(S , tj):
2 R ← ∅;
3 for z = 1 to (|S| − 1) do
4 P = PartitionFilter (sz, sz+1);

5 Calculate probability πi of meeting suitable

offline requests for partition Pi ∈ P; 	 step
1

6 Build weighted landmark subgraph Gz
� from P;

7 attempt = 0;
8 while true do
9 Select the maximum weighted path from �z

to �z+1 on Gz
� to form the partition path

H; 	 step 2
10 Build weighted subgraph Gz from H;

11 Find the shortest path Rz using the

Dijkstra’s algorithm on Gz; 	 step 3
12 attempt = attempt+ 1;
13 if Rz is valid then
14 break;

15 else if attempt > 5 then
16 return ∅;
17 R = R 	
 Rz;

18 return R;

from the landmarks and edges of all partitions in Pz
tj , where

each landmark vertex is annotated with the probability πi as

the weight. Since the weighted graph is usually small, we will

enumerate all paths that link source and destination partitions

to find the maximum weighted path. By mapping landmark

vertices of the selected path to their corresponding partitions,

we obtain a partition path Hz
tj , which travels from Pz to Pz+1

and accumulates the maximum probability at partition-level.

3 Fine-grained route planning over partition path. We

build a weighted subgraph Gz with vertices and edges from

partitions of Hz
tj , where each vertex vc is annotated with

a weight 1
ψc

(ψc > 0). We set ψc as the total transition

probability from vertex vc to the destination partition set Pd of

vc’s locating partition. We search a path using the Dijkstra’s
algorithm [10] on graph Gz , which has the minimum weights

while satisfying the constraints on deadlines of passengers

already in taxi tj. We regard this path as the final taxi route

Rz , which has the largest probability to encounter suitable

offline passengers between (sz, sz+1).

If we do not find a valid route in step 3 , the sub-optimal

partition path on Pz
tj will be returned in step 2 . The latter

two steps are repeated until we derive a valid route for event

sz and sz+1 (i.e., meeting the passengers’ deadlines) or the

predefined number of attempts (e.g., 5) is achieved. Otherwise,

the schedule instance is marked as invalid since there exists

no available route to linking the two events. Similarly, we

concatenate the paths of any two consecutive events to form

the final route. Figure 4(b) demonstrates the partition path and

final path for two consecutive events.

Since the probabilistic routing is more time consuming than

the basic routing, a taxi driver may enable it only when there is

sufficient idle capacity and online ride requests are inadequate.

When a taxi encounters an offline ride request r̄i, it can serve

this request only when a valid schedule exists. Otherwise, the

taxi driver will report this offline request to the server and mT-
Share will assign another proper taxi to serve r̄i. Although the

interaction may introduce slight delays, it potentially brings

benefits for both taxi drivers and offline passengers. Therefore,

it is acceptable for taxi drivers to take a chance for hunting

offline ride requests at the idle time.

Time complexity. To process a request ri, mT-Share needs

to examine all schedule instances of all candidate taxis in

Tri and then selects the one with the minimum detour cost,

which involves above four algorithms. If basic routing is

used, the time complexity is O(|Tri |m3κ), where |Tri | is

the size of candidate taxi set, m is the number of events in

a schedule instance, and κ is the number of map partitions

in P. If probabilistic routing is adopted, the time complexity

becomes O(
|Tri

|m3ND|P|
κ), where D is the size of historical

taxi data for request probability calculations, |P| is the number

of partitions returned by Algorithm 2, and N
κ represents the

average number of vertices in a partition. The above analysis

assumes a shortest path query takes O(1) time as with many

previous studies [8], [34], since the shortest paths between any

two vertices can be pre-calculated and cached.

V. PERFORMANCE EVALUATION

In this section, we will conduct experiments to evaluate mT-
Share with a large real-world taxi dataset.

A. Experimental Setup

Dataset. We conduct experimental evaluations using a real-

world taxi dataset, which is publicly released by Didi’s GAIA

initiative [1]. This dataset contains 7065907 taxi transactions

that are collected from Chengdu city, China, in 2016, which

has been used by previous works [15], [34]. Each transaction

consists of a transaction ID, a taxi ID, and a ride request,

which includes a pick-up latitude/longitude, a drop-off lati-

tude/longitude, and a release time. We use data of two specific

time periods to simulate two typical ridesharing scenarios:

• Peak scenario. During the peak hours, taxis usually have

to process a large volume of online ride requests, and thus

the offline ride requests are omitted. We use the data from

8:00AM-9:00AM of a workday, which contains the most

hourly ride requests, i.e., 29534, to test the performance

of mT-Share in the peak hours.

• Non-peak scenario. During the non-peak hours, there

are usually inadequate online ride requests while most

taxis have sufficient idle capacities. Therefore, taxi drivers

can utilize probabilistic routing to opportunistically seek

offline requests. In the experiments, we assume a taxi

that has more than half of the capacity in idle can enable

the probabilistic routing mode. We use the taxi data

968

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10 12 14 16 18 20 22 23

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50 55 600.0

0.2

0.4

0.6

0.8

1.0

41%P
er
ce
nt
(%
)

Hour of The Day

Workday
Weekend

56%

(30 mins, 0.9)

C
D
F

Travel Time (minutes)

(a)

(b)

(15 mins, 0.5)

Fig. 5. Statistics of the taxi dataset.

500 1000 1500 2000 2500 3000

2

4

6

8

10

12

#
of
S
er
ve
d
R
eq
ue
st
s
(x
10
00
)

of Taxis

No-Sharing
T-Share
pGreedyDP
mT-Share

Fig. 6. Results on served requests in peak scenario.

500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

R
es
po
ns
e
Ti
m
e
(m
s)

of Taxis

No-Sharing
T-Share
pGreedyDP
mT-Share

Fig. 7. The response time in peak scenario.

from 10:00AM-11:00AM of a weekend, which consists of

15480 ride requests, to evaluate mT-Share in the non-peak

hours. To simulate the offline ride requests, we randomly

select 5000 requests and make their origin, destination,

and release time to be invisible to the ridesharing system.

The remaining taxi data in the dataset are used for bipartite

map partitioning and ride request probability calculation. Fig-

ure 5 plots some statistics about the dataset. Figure 5(a) shows

the average taxi utilization in workdays and weekends, where

the utilization of a taxi is calculated as the proportion of the

time serving passengers within each hour. Specifically, the uti-

lization rates of 8:00AM-9:00AM in workdays and 10:00AM-

11:00AM in weekends are 56% and 41%, respectively. Fig-

ure 5(b) further presents the travel time distribution of all taxi

transactions, where the 50-percentile and 90-percentile travel

times are 15 minutes and 30 minutes, respectively.

We use the open-sourced OpenStreetMap [2] to export roads

of Chengdu city, China, and present the road network as

a directed graph G(V,E) that consists of 214440 vertices

and 466330 edges, covering an area of more than 70 km2.

Figure 3(a) shows the experimental road network.

Compared schemes. We will compare mT-Share with the

following schemes.

(1) No-Sharing works with no ridesharing and assigns a ride

request to the nearest vacant taxi within a searching range γ.

(2) T-Share [21], [22], one of the state-of-the-art methods,

indexes all taxis and ride requests with grids and determines

the candidate taxis using a dual-side search with an adaptive

searching range γ from both origin and destination of a ride

request. It will immediately return if a valid candidate is found.

(3) pGreedyDP [34], one of the state-of-the-art methods,

indexes all taxis and ride requests with grids like T-Share, and

selects the candidate taxis within a searching range γ around

the origin of ride request ri. It determines the insertion of ri
into an existing schedule via dynamic programming to improve

the efficiency of taxi scheduling.

(4) mT-Sharepro is the version of our scheme that enables

the probabilistic routing. Since it may introduce large com-

putation overheads, we only evaluate mT-Sharepro in the non-
peak scenario, where seeking and serving offline ride requests

are necessary for taxi drivers during these periods [6], [38].

We slightly adjust T-Share and pGreedyDP to serve offline

passengers as well. Along the route planned by T-Share or

TABLE II
THE PARAMETER SETTINGS.

Parameter Setting
Number of taxis 500, 1000, 1500, 2000, 2500, 3000
Number of partitions κ 50, 100, 150, 200, 250
Capacity of a vehicle 2, 3, 4, 5, 6
Flexible factor ρ 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0
Threshold λ 0.5 (i.e., θ = 45◦)
Taxi searching range γ 2.5km

pGreedyDP, if a taxi tj with sufficient idle capacity happens

to encounter some suitable offline passenger r̄i, whose ride

request can be validly inserted into tj’s schedule, then tj can

serve r̄i. Similarly, they will serve offline ride requests only

in the non-peak scenario.
Performance metrics. All schemes are evaluated in terms

of number of served requests, response time, and detour time.
Response time is the time to process a ride request, while

detour time is the increased travel time compared to the travel

time of no ridesharing for a ride request. Both number of

served requests and response time have been widely adopted

in previous real-time ridesharing systems [14], [21], [22], [34].

Implementation. We implement mT-Share and the alter-

native schemes in Python. For each ride request ri, its ori-

gin/destination is mapped to the closest vertex in graph G.

We simulate the delivery deadline eri with a flexible factor
ρ, which indicates the acceptable travel cost by passengers

compared to the shortest path [8]. Given the release time tri
and travel cost cost(ori , dri) of ri, delivery deadline eri is

eri = tri + cost(ori , dri)× ρ. (5)

The initial location of each taxi is randomly chosen from the

vertices of graph G. When a taxi tj is serving passengers, it

travels following the planned schedule Stj and route Rtj . For

simplicity, we assume the constant taxi speed as with previous

works [7], [16], [44], and set it as 15 km/h. In addition, we

fix the searching range γ = 2.5 km, which is equivalent to the

waiting time Δt = 10 minutes.

All experiments are conducted on a server with Intel Core

i7-6700 CPU@3.40GHz and 16GB memory. Each experimen-

tal setting is repeated 10 times and the average results are

reported. To accelerate the route planning, the shortest paths

between any two vertices in G and the travel cost between

any two landmarks in G� are pre-calculated and cached in the

memory [14], [44], which can be accessed by all schemes.

969

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

500 1000 1500 2000 2500 3000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
A
ve
ra
ge
D
et
ou
rT
im
e
(m
in
ut
es
)

of Taxis

No-Sharing T-Share
pGreedyDP mT-Share

Fig. 8. The detour time in peak scenario.

500 1000 1500 2000 2500 3000
1

2

3

4

5

6

7

8

9

#
of
S
er
ve
d
R
eq
ue
st
s
(x
10
00
)

of Taxis

No-Sharing
T-Share
pGreedyDP
mT-Share
mT-Sharepro

Fig. 9. The served requests in non-peak scenario.

500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

1600

R
es
po
ns
e
Ti
m
e
(m
s)

of Taxis

No-Sharing
T-Share
pGreedyDP
mT-Share
mT-Sharepro

Fig. 10. The response time in non-peak scenario.

Table II summarizes the major parameter settings, where the

default values are marked in bold.

B. Performance Comparison

We compare mT-Share with the alternative schemes in both

peak scenario and non-peak scenario by varying the number

of available taxis from 500 to 3000, with a step of 500.
Comparisons in peak scenario. With more available taxis,

all schemes can serve more ride requests, as shown in Figure 6.

Compared to No-Sharing, ridesharing can greatly increase the

number of served requests. From Figure 6, we see pGreedyDP
performs better than T-Share since it optimizes the ridesharing

routing and thus can return a better request-taxi match. Among

all schemes, our scheme serves the most ride requests because

mT-Share has optimized both candidate taxi searching and

ridesharing routing by fully exploiting the mobility informa-

tion. For example, with 3000 taxis, the numbers of served

requests of No-Sharing, T-Share, pGreedyDP, and mT-Share
are 6534, 8441, 8868, and 11906, respectively. Compared to

state-of-the-art methods, i.e., T-Share and pGreedyDP, mT-
Share serves 42% and 36% more ride requests, respectively.

Figure 7 shows that the response time increases with more

available taxis. Due to its simplicity, No-Sharing can always

process a request within 1 millisecond (ms). mT-Share takes

a bit longer time to response a request than T-Share, while

pGreedyDP is the slowest one. This is because the decision

phase of pGreedyDP to calculate the low bound detour for

each candidate taxi is time consuming. In general, mT-Share
responses a ride request within 35 ∼ 140ms, and outperforms

pGreedyDP by 4 ∼ 10 times on the response time.

We report the detour time in Figure 8. No-Sharing has no

detour at all and the other schemes introduce detour time about

1 ∼ 4 minutes. More taxis allows a ridesharing scheme to find

a more suitable taxi for a ride request, and thus the detour time

is reduced. Overall T-Share introduces the minimum detour

time while our scheme takes the second place and is quite close

to T-Share. In contrary, pGreedyDP almost doubles the detour

time of T-Share. Specifically, mT-Share improves pGreedyDP
by 31% to 40% on the average detour time.

Comparisons in non-peak scenario. Figure 9 presents

the number of served requests for all schemes in non-peak
scenario. Compared to the results in Figure 6, we see the

gap between ridesharing schemes and No-Sharing becomes

smaller, since there are much fewer ride requests in the non-

peak hours. Even in some settings, we see that T-Share almost

serves the similar number of requests as No-Sharing. However,

mT-Share and mT-Sharepro still perform much better than T-
Share and pGreedyDP. Thanks to the probabilistic routing,

mT-Sharepro can serve more offline passengers, where we see

an increase about 13% ∼ 24% than mT-Share. Compared to

T-Share and pGreedyDP, on average mT-Sharepro serves 62%
and 58% more ride requests, respectively.

We plot the response time in Figure 10. The results of No-
Sharing, T-Share, pGreedyDP, and mT-Share are quite similar

with their performances in peak scenario as shown in Figure

7. Due to the huge computation overhead of the probabilistic

routing that involves probability calculations for graph vertices

and then selects the route with the maximum probability, the

response time of mT-Sharepro becomes much larger than mT-
Share, i.e., 2.5 ∼ 4.5 times slower. When we increase the

number of taxis, the size of candidate taxi set becomes larger

as well, and thus mT-Sharepro requires more time to response

each request. However, mT-Sharepro can still response much

faster than pGreedyDP, with 81% ∼ 497% performance gain.

Results on detour time of No-Sharing, T-Share, pGreedyDP,

and mT-Share shown in Figure 11 are similar with their results

of peak scenario in Figure 8 as well. This is because their

routing algorithms are the same in both scenarios. Among the

five schemes, mT-Sharepro has the largest detour time. This is

because probabilistic routing may return some longer routes

for a taxi to opportunistically seek offline ride requests. Even

so, we see that the detour cost difference between mT-Sharepro
and pGreedyDP keeps within 0.5 minutes.

C. Detailed Evaluation

In this subsection, we study the impacts of some important

parameters and design choices on ridesharing performance.

Impact of partition number κ.We conduct experiments in

the peak scenario by varying partition number κ while keeping

other parameters as the default values. Figure 12 shows that

the number of served requests for the three schemes increases

initially and then decreases beyond some value, e.g., κ = 150.
This is because both too small or oversize κ will result in

a reduced candidate taxi set, and thus affect the ridesharing

performance. Taking mT-Share as an example, when we vary

κ from 50 to 150, the number of candidate taxis increases by

970

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

500 1000 1500 2000 2500 3000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
ve
ra
ge
D
et
ou
rT
im
e
(m
in
ut
es
)

of Taxis

No-Sharing T-Share pGreedyDP
mT-Share mT-Sharepro

Fig. 11. The detour time in the non-peak scenario.

50 100 150 200 2505.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

#
of
S
er
ve
d
R
eq
ue
st
s
(x
10
00
)

of Partitions

T-Share
pGreedyDP
mT-Share

Fig. 12. Impact of the number of partitions κ.

2 3 4 5 6

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

#
of
S
er
ve
d
R
eq
ue
st
s
(x
10
00
)

Taxi Capacity

T-Share
pGreedyDP
mT-Share

Fig. 13. Impact of the taxi capacity.

T-Share pGreedyDP mT-Share0

1

2

3

4

5

6

7

#
of
S
er
ve
d
R
eq
ue
st
s
(x
10
00
)

Ridesharing Scheme

Offline
Online

(a) (b)

T-Share pGreedyDP mT-Share0

1

2

3

4

5

6

7

#
of
S
er
ve
d
R
eq
ue
st
s
(x
10
00
)

Ridesharing Scheme

Offline
Online

Fig. 14. Impact of the routing schemes: (a) Basic
routing; (b) Probabilistic routing.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

A
ve
ra
ge
W
ai
tin
g
Ti
m
e
(m
in
ut
es
)

Flexible Factor ρ

T-Share
pGreedyDP
mT-Share

Fig. 15. Impact of ρ on the average waiting time
of passengers in the peak scenario.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0

2

4

6

8

10

12

A
ve
ra
ge
D
et
ou
rT
im
e
(m
in
ut
es
)

Flexible Factor ρ

Detour Time

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Served Requests

#
of
S
er
ve
d
R
eq
ue
st
s
(x
10
00
)

Fig. 16. Impact of ρ on average detour time and
number of served requests.

17% and the number of served requests increases from 8234
to 8753. With even more partitions, we find the candidate taxi

set is shrinking, and thus the total served requests are reduced.

Impact of capacity. This study is also conducted in the

peak scenario with default parameters. When we increase the

capacity of a taxi, the same number of taxis will have more

supplies and thus can serve more ride requests. Figure 13

shows the number of served requests increases with larger

taxi capacity. However, the impact of capacity on pGreedyDP
is quite limited, while mT-Share benefits a lot. For example,

compared to capacity = 2, mT-Share can serve 12% more

ride requests when capacity = 6.
Impact of routing schemes. We also study the benefit of

probabilistic routing for seeking offline ride requests. Specif-

ically, we combine basic routing or probabilistic routing with

T-Share, pGreedyDP, and mT-Share, and run these schemes in

non-peak scenario with default parameters. Figure 14 shows

the compositions of served requests for different combinations.

Although the schemes with basic routing could meet some

offline requests by chance (see Figure 14(a)), probabilistic

routing can further enlarge the probability as shown in Figure

14(b). By comparing the results in Figure 14(a) and 14(b),

we find that about 89%, 46%, and 34% more offline requests

are successfully predicted by probabilistic routing for T-Share,
pGreedyDP, and mT-Share, respectively. Overall, the three

schemes can serve 26%, 17%, and 14% more requests, respec-

tively, by exploiting the mobility patterns for route planning.

Impact of flexible factor ρ.We study the impact of flexible

factor ρ in peak scenario with default parameters. We firstly

study the impact of ρ on passengers’ waiting time, which is

calculated as the difference between the time a taxi picks up

the passengers and the time passengers release the ride request.

Figure 15 plots the average waiting time of the ridesharing

schemes when we vary ρ. A larger ρ means that passengers

are more tolerant on the delivery time, and thus longer waiting

time is observed for all schemes. In general, T-Share has the

shortest waiting time, while mT-Share has the relatively longer

waiting time. The gap between pGreedyDP and mT-Share is

quite small, i.e., 0.05 ∼ 1.25 minutes. If we further consider

the detour time as shown in Figure 8, we find that mT-Share
actually has similar service quality as pGreedyDP.

Parameter ρ indicates the tolerant detour cost by passengers,

and we find the average detour time gradually increases with

the increase of ρ, as shown in Figure 16. Larger ρ allows

a taxi to serve more ride requests, while the number of

served requests increases slightly beyond ρ = 1.3. However,

more detours bring about negligible benefit. For example, the

number of served requests and detour time are 8753 and 2.5
minutes when ρ = 1.3, while they increase to 9140 and 3.6
minutes when ρ = 1.4. It means 4% improvement on served

requests comes at the expense of 48% increases of detour cost.

VI. CONCLUSION

In this paper, we present mT-Share that fully exploits

the mobility information of ride requests and taxis for dy-

namic taxi ridesharing. To address the limitations of existing

schemes, mT-Share indexes taxis and requests with both spatial

partitions and mobility clusters, and optimizes passenger-taxi

matching that enables taxis to efficiently serve both online

and offline passengers. Experimental results from a large real-

971

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

world taxi dataset demonstrate that mT-Share can response

each ride request in milliseconds, and significantly outper-

forms the state-of-the-art methods, e.g., serving 42% and 62%
more ride requests in peak and non-peak hours, respectively.

ACKNOWLEDGMENT

This work was supported in part by China NSFC

Grant (No.61802261); NSF Grant of Shenzhen University

(No.2018061); and Tencent “Rhinoceros Birds” - Scientific

Research Foundation for Young Teachers of Shenzhen Uni-

versity. This work was partially supported by China NSFC

Grant (No.61872248, U1736207); Guangdong NSF Grant

(No.2017A030312008); Fok Ying-Tong Education Foundation

for Young Teachers in the Higher Education Institutions of

China (No.161064); and GDUPS (2015). This work was also

partially supported by Tianjin Key Laboratory of Advanced

Networking (TANK), School of Computer Science and Tech-

nology, Tianjin University, Tianjin China, 300350. Kaishun

Wu is the corresponding author.

REFERENCES

[1] Gaia initiative. https://outreach.didichuxing.com/research/opendata/.
[2] Openstreetmap. http://www.openstreetmap.org/.
[3] Taxi service research report. http://www.transformcn.com/Topics/

2018-08/02/b7944fb3-1b99-4840-89d7-eecaaec67bea.pdf.
[4] R. Baldacci, V. Maniezzo, and A. Mingozzi. An exact method for the car

pooling problem based on lagrangean column generation. Operations
Research, 52(3):422–439, 2004.

[5] X. Bei and S. Zhang. Algorithms for trip-vehicle assignment in
ridesharing. In AAAI, 2018.

[6] P. S. Castro, D. Zhang, C. Chen, S. Li, and G. Pan. From taxi GPS
traces to social and community dynamics: a survey. ACM Computing
Surveys, 46(2):17, 2013.

[7] L. Chen, Q. Zhong, X. Xiao, Y. Gao, P. Jin, and C. S. Jensen. Price-
and-time-aware dynamic ridesharing. In IEEE ICDE, 2018.

[8] P. Cheng, H. Xin, and L. Chen. Utility-aware ridesharing on road
networks. In ACM SIGMOD, 2017.

[9] J.-F. Cordeau and G. Laporte. The dial-a-ride problem (DARP): variants,
modeling issues and algorithms. Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, 1(2):89–101, 2003.

[10] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[11] P. Goel, L. Kulik, and K. Ramamohanarao. Privacy-aware dynamic ride
sharing. ACM Transactions on Spatial Algorithms and Systems, 2(1):1–
41, 2016.

[12] W. He, K. Hwang, and D. Li. Intelligent carpool routing for urban
ridesharing by mining GPS trajectories. IEEE Transactions on Intelligent
Transportation Systems, 15(5):2286–2296, 2014.

[13] Y. Hou, W. Zhong, L. Su, K. Hulme, A. W. Sadek, and C. Qiao. TASeT:
improving the efficiency of electric taxis with transfer-allowed rideshare.
IEEE Transactions on Vehicular Technology, 65(12):9518–9528, 2016.

[14] Y. Huang, F. Bastani, R. Jin, and X. S. Wang. Large scale real-time
ridesharing with service guarantee on road networks. Proceedings of
the VLDB Endowment, 7(14):2017–2028, 2014.

[15] K. Lin, R. Zhao, Z. Xu, and J. Zhou. Efficient large-scale fleet
management via multi-agent deep reinforcement learning. In ACM KDD,
2018.

[16] Q. Lin, L. Dengt, J. Sun, and M. Chen. Optimal demand-aware ride-
sharing routing. In IEEE INFOCOM, 2018.

[17] Z. Liu, Z. Li, M. Li, W. Xing, and D. Lu. Mining road network corre-
lation for traffic estimation via compressive sensing. IEEE Transactions
on Intelligent Transportation Systems, 17(7):1880–1893, 2016.

[18] Z. Liu, Z. Li, and K. Wu. UniTask: a unified task assignment design
for mobile crowdsourcing-based urban sensing. IEEE Internet of Things
Journal, 6(4):6629–6641, 2019.

[19] Z. Liu, Z. Li, K. Wu, and M. Li. Urban traffic prediction from mobility
data using deep learning. IEEE Network, 32(4):40–46, 2018.

[20] Z. Liu, P. Zhou, Z. Li, and M. Li. Think like a graph: real-time
traffic estimation at city-scale. IEEE Transactions on Mobile Computing,
18(10):2446–2459, 2019.

[21] S. Ma, Y. Zheng, and O. Wolfson. T-Share: a large-scale dynamic taxi
ridesharing service. In IEEE ICDE, 2013.

[22] S. Ma, Y. Zheng, O. Wolfson, et al. Real-time city-scale taxi ridesharing.
IEEE Transactions on Knowledge and Data Engineering, 27(7):1782–
1795, 2015.

[23] Online New York Post news. Apps see surge in riders will-
ing to get comfy with strangers. https://nypost.com/2016/08/13/
apps-see-surge-in-riders-willing-to-get-comfy-with-strangers/.

[24] S. Shang, L. Chen, Z. Wei, C. S. Jensen, J.-R. Wen, and P. Kalnis.
Collective travel planning in spatial networks. IEEE Transactions on
Knowledge and Data Engineering, 28(5):1132–1146, 2015.

[25] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis.
Trajectory similarity join in spatial networks. Proceedings of the VLDB
Endowment, 10(11):1178–1189, 2017.

[26] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis. Parallel
trajectory similarity joins in spatial networks. The VLDB Journal,
27(3):395–420, 2018.

[27] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis. User
oriented trajectory search for trip recommendation. In ACM EDBT,
2012.

[28] S. Shang, R. Ding, K. Zheng, C. S. Jensen, P. Kalnis, and X. Zhou.
Personalized trajectory matching in spatial networks. The VLDB Journal,
23(3):449–468, 2014.

[29] N. Ta, G. Li, T. Zhao, J. Feng, H. Ma, and Z. Gong. An efficient ride-
sharing framework for maximizing shared route. IEEE Transactions on
Knowledge and Data Engineering, 30(2):219–233, 2018.

[30] R. S. Thangaraj, K. Mukherjee, G. Raravi, A. Metrewar, N. Annamaneni,
and K. Chattopadhyay. Xhare-a-ride: a search optimized dynamic ride
sharing system with approximation guarantee. In IEEE ICDE, 2017.

[31] Y. Tong, Y. Chen, Z. Zhou, L. Chen, J. Wang, Q. Yang, J. Ye, and
W. Lv. The simpler the better: a unified approach to predicting original
taxi demands based on large-scale online platforms. In ACM SIGKDD,
2017.

[32] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye. Dynamic
pricing in spatial crowdsourcing: a matching-based approach. In ACM
SIGMOD, 2018.

[33] Y. Tong, L. Wang, Z. Zhou, B. Ding, L. Chen, J. Ye, and K. Xu. Flexible
online task assignment in real-time spatial data. Proceedings of the
VLDB Endowment, 10(11):1334–1345, 2017.

[34] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu. A unified
approach to route planning for shared mobility. Proceedings of the
VLDB Endowment, 11(11):1633–1646, 2018.

[35] Y. Xu, Y. Tong, Y. Shi, Q. Tao, K. Xu, and W. Li. An efficient insertion
operator in dynamic ridesharing services. In IEEE ICDE, 2019.

[36] H. Yang, S. C. Wong, and K. I. Wong. Demand–supply equilibrium
of taxi services in a network under competition and regulation. Trans-
portation Research Part B: Methodological, 36(9):799–819, 2002.

[37] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, and Z. Li.
Deep multi-view spatial-temporal network for taxi demand prediction.
In AAAI, 2018.

[38] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie. T-finder: a recommender
system for finding passengers and vacant taxis. IEEE Transactions on
Knowledge and Data Engineering, 25(10):2390–2403, 2013.

[39] D. Zhang, T. He, F. Zhang, M. Lu, Y. Liu, H. Lee, and S. H. Son.
Carpooling service for large-scale taxicab networks. ACM Transactions
on Sensor Networks, 12(3):18, 2016.

[40] L. Zhang, T. Hu, Y. Min, G. Wu, J. Zhang, P. Feng, P. Gong, and J. Ye.
A taxi order dispatch model based on combinatorial optimization. In
ACM SIGKDD, 2017.

[41] S. Zhang, Q. Ma, Y. Zhang, K. Liu, T. Zhu, and Y. Liu. QA-
share: towards efficient QoS-aware dispatching approach for urban taxi-
sharing. In IEEE SECON, 2015.

[42] W. Zhang, A. Shemshadi, Q. Z. Sheng, Y. L. Qin, X. Xu, and J. Yang. A
user-oriented taxi ridesharing system with large-scale urban GPS sensor
data. IEEE Transactions on Big Data, 1(1):1–14, 2019.

[43] H. Zheng and J. Wu. Online to offline business: urban taxi dispatching
with passenger-driver matching stability. In IEEE ICDCS, 2017.

[44] L. Zheng, L. Chen, and J. Ye. Order dispatch in price-aware ridesharing.
Proceedings of the VLDB Endowment, 11(8):853–865, 2018.

[45] Y. Zheng. Trajectory data mining: an overview. ACM Transactions on
Intelligent Systems and Technology (TIST), 6(3):29, 2015.

972

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2021 at 06:12:02 UTC from IEEE Xplore. Restrictions apply.

