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Abstract—Bus bunching, a phenomenon due to the failure of
headway or timetable adherence, often causes low level of public
transit service with poor bus on-time performance and excessive
passenger waiting time. To mitigate bus bunching, an accurate
and real-time prediction method plays an important role. In this
paper, we propose a supply-demand seq2seq model called SD-
seq2seq to predict bus bunching using smart card data. Features
from both supply and demand sides of bus service are taken into
account, like bus stop type, dwelling time, passenger demand and
type, and so on. Extensive experiments on multiple bus routes
in real world demonstrate that our method outperforms other
baseline methods. The proposed method is expected to provide
useful online information of bus operation to both bus operators
and passengers.

Index Terms—Bus Bunching, seq2seq, Deep learning, Predic-
tion, Smart card data, transportation

I. INTRODUCTION

With fast growing population and limited urban living space,
most megacities, like Tokyo, Singapore and Sydney, rely on
public transport more and more. A reliable and efficient public
transit system plays an important role in reducing traffic
congestion, emission, and car dependency in urban environ-
ment. However, due to complex traffic condition, dynamic
travel demand and heterogeneous bus driver behavior, it is
difficult for buses to adhere to the pre-designed timetable or
headway tightly under a stochastic traffic environment, which
results in that two or more buses along the same bus route
may arrive at the same bus stop simultaneously or closely.
Such phenomenon is called bus bunching (BB), which usually
increases passengers’ waiting time, reduces efficiency of bus
operation, and deteriorates the quality of public transit service.
Therefore, it is important to investigate and understand the
mechanics of bus operation and how BB happens.

It is challenging to tackle the BB problem under complex
traffic condition. A significant body of research in the literature
has investigated the BB problem from different perspectives,
including BB identification and cause analysis, BB prediction,
and corrective control strategy to prevent BB [1] [2] [3].
The majority of previous research focused on studying the
statistical correlation between BB occurrence and potential
influential factors (like bus dwelling time, bus trip headway,
weather condition, and so on) or designing various corrective

control strategies (like stop skipping, driving speed adjustment,
cooperative bus operation, and so on). Limited studies have
dedicated to the development of BB prediction models. To
mitigate BB, an efficient and accurate prediction method plays
a fundamental role in further online control strategy design. In
this paper, we aim to predict bus trip headway and further BB
occurrence along given bus routes in a real bus network. A
supply-demand seq2seq model, named SD-seq2seq, is devel-
oped for BB prediction. To answer the question of when and
where BB will happen along a specific bus route, information
from both supply and demand sides of bus service is used
to extract valuable features. On the supply side, bus stop
ID, bus stop type (interchange stop or not), number of bus
routes running through a specific bus stop, and bus dwelling
time are adopted in the SD-seq2seq model; while the number
of boarding and alighting passengers, and the corresponding
proportions of heterogeneous passenger types (adult, senior
and youth) at a specific bus stop are used on the demand
side. Moreover, heterogeneous travel patterns at different time
periods are often captured along the same bus route, hence
temporal feature is considered as well by dividing 24 hours
into four different time segments, A.M. Peak, Daytime Inter-
peak, PM. Peak, and Night Inter-peak, according to the time-
varying distribution of travel demand. Those seven features
aforementioned are encoded to the hidden state combined with
historical headway to predict bus service headway and BB
occurrence.

The main contributions of this paper are summarized as
follows:

+ A SD-seq2seq model is proposed to encode features from
both supply and demand sides, and these features are
combined with temporal feature and historical headway
for prediction of bus trip headway and BB occurrence in
advance.

o At the decoder side of the proposed SD-seq2seq model,
long short-term memory (LSTM) and convolutional neu-
ral network (CNN) are utilized and integrated. CNN is
applied to extract passenger demand features at bus stop
level, which is fed together with supply features to LSTM
to achieve more accurate BB prediction

e The threshold headway to define BB is dynamic rather



than fixed, which is determined based on the bus service
frequency. During peak hours, the bus service frequency
is usually higher with shorter headway, then we define
BB with a small value of threshold; while BB is defined
with a larger threshold at non-peak hours due to the lower
bus service frequency and longer headway. In such way,
we can identify BB more reasonably and accurately.

o The proposed SD-seq2seq model is able to predict BB
occurrence at all bus stops simultaneously along a bus
route. Multiple bus routes in a large-scale bus network
in real world are used for numerical experiments with
promising results.

The rest of this paper is organized as follows. Related
literature studies are reviewed in Section II. The problem
statement is presented in Section III. The development of SD-
seq2seq model is elaborated in Section IV. Comprehensive
numerical experiments on multiple bus routes in real world
are conducted in Section V to test the proposed SD-seq2seq
model. Finally, Section VI concludes this study and shows the
future work.

II. RELATED WORK

A. Bus bunching.

Relying on GPS data, regression prediction, time series
model, K-nearest neighbor method, nearest-neighbor trajectory
method, artificial neural network, and support vector machine
have been extensively applied to investigating bus operation
and BB problem [4] - [12]. However, most of those models
built on GPS data usually suffered from low GPS data update
frequency, which resulted in low prediction accuracy on bus
arrival time, and further dwelling time at bus stops. With the
increasing availability of various data sources, like General
Transit Feed Specification (GTFS) data feed, Automated fare
collection (AFC) data and automatic vehicle location (AVL)
data, as well as rapid development of computing technique,
data analytics and machine learning have been widely ap-
plied to BB research. Particularly, a diversity of data-driven
approaches has been adopted to tackle the BB problem using
various data sources. With aid of smart card data, [3] identified
the occurrence of BB in a large-scale bus network from
temporal-spatial-operational dimensions. Temporal and spatial
analysis reflected the patterns and trends of BB at different
time periods and locations, respectively; while in operational
dimension, comparison of BB occurrence among different bus
operators was conducted, which generated valuable informa-
tion to assess bus operators’ performance. [1] captured the
stop-level headway irregularity based on public transit smart
card data. However, the proposed model needed to be re-
calibrated at different bus stops, which was not efficient and
practical in a large-scale public transport network in reality. In
the meanwhile, only limited features were considered in the
proposed model, like number of passengers and travel time
between stops. [2] used AVL data to identify and to model
BB problem. Eleven independent variables were analyzed to
identify their effects on the occurrence of BB, and schedule

deviation was found the most influential factor. [13] proposed
a methodological framework combining bus-following models
and bus-to-bus cooperative control strategies to address the BB
problem in public transport lines.

The majority of the aforementioned approaches focused
on identification of BB on bus network and analysis of the
influential factors causing BB. Although [1] endeavoured to
predict BB occurrence with aid of smart card data, their pre-
diction model required re-calibration at each bus stop, which
caused high computational cost and difficulty of extending
its application to multiple bus routes or a city-scale large
network. To fill the gap, in this paper, we develop a high-
performance deep learning model with capability of predicting
BB occurrence at all stops along the bus route simultaneously,
and the proposed SD-seq2seq model is applicable to a large-
scale bus network in real life. To the best of our knowledge, it
is the first work to use SD-seq2seq framework to predict BB
occurrence at all bus stops simultaneously along a bus route,
with capability of application to large-scale bus network.

B. Spatial-temporal modeling.

Spatial-temporal modeling has attracted a lot of attention
during past decades, including transport research. [14] used
sensing resources, like cell tower signal and movement status
generated from passengers’ phones, to infer the surround-
ing environmental context, and then to predict the arrival
time of next bus. [15] and [16] treated buses and taxis in
road network as dynamic nodes on the graph, and their
work aimed to propagate messages effectively under different
spatial-temporal conditions. With adoption of a non-negative
matrix factorization model, [17] showed the spatial-temporal
characteristics of crowd flows at train stations in Sydney based
on smart card data. [18] aimed to solve the routing problem
for electric vehicles considering dynamic traffic flow in the
road network in both spatial and temporal dimensions.

Recent advances in deep learning techniques and GPU com-
puting created new opportunities for spatial-temporal model-
ing. [19] and [21] modified the RNN model and ResNet model,
with fusion of some external features like weather, to predict
traffic speed and crowd flow, respectively. [20] applied multi-
level attention networks to developing a spatial and temporal
attention mechanism to model the dynamic spatio-temporal
correlations. All the research work aforementioned indicated
that transport related data, like traffic speed, traffic flow and
traffic trajectory, showed obvious and recurrent patterns in
spatial and temporal dimensions.

C. Trajectory data mining.

Trajectory data mining is highly related to this research. In
the literature, several studies focused on applying data mining
approaches to extracting useful information from various tra-
jectory data in the city. [22] and [24] used the trajectory data of
cars in city-scale to extract features that could reflect drivers’
driving behavior. [23] and [25] investigated the problem of
representation learning for pedestrian trajectory. Their research
findings showed a strong relationship between the movement



trajectory of pedestrians and the location information in the
city. Different from research on trajectories generated by cars
and pedestrians, limited studies have been done on applying
data mining techniques to analyzing bus trajectories to explore
bus operation patterns with spatial and temporal features.

III. PROBLEM STATEMENT

AFC system is widely used in multimodal transportation
system worldwide. Usually, passengers are required to tap on
and tap off their smart cards when they get on and get off
public transit, like bus, metro and train. In such way, the AFC
system records bus operation information and passengers’ trip
details in both spatial and temporal dimensions, and generates
a mass of smart card data daily accordingly. With the aid
of tap-on and tap-off stamps and geographic information at
stop level, the spatial-temporal bus trip trajectory can be re-
constructed, and the corresponding headway between succes-
sive bus trips at each bus stop along the same bus route can
be calculated to predict the occurrence of BB.

In the following subsections, relevant definitions, notations,
features, re-construction of bus trip trajectory, and the descrip-
tion of BB prediction problem are introduced.

A. Definitions and Notations

Passenger  Trip: In this paper, a passenger
trip record in smart card data is represented by
r =< Tiype,Dids Tdir, tons Sonstoffs Sofs >, Where ryype
indicates passenger type (adult, senior or youth); b;q is
the bus route number; 74, indicates the bus operational
direction, and generally each bus route has two operational
directions; t,, and s,, represent the time stamp and bus stop
this passenger get on the bus, separately; and t,5 and s,p
denote the time stamp and bus stop this passenger get off the
bus, respectively. The whole dataset of all passenger trips is
denoted as R.

Bus Stop: A bus stop is defined as a node s(s;a, Stype , Snum,)
in public transport network, where s;4 is the sequence of stops
along the bus route, and usually each bus route has fixed stop
sequence in operation; su;,. indicates whether this bus stop
is an interchange stop connecting other travel modes such as
train; and s, presents the number of different bus routes
running through this bus stop. All the bus stops along a bus
route is denoted as S, and the total number of stops along
this bus route is represented by |S|. Usually, interchange bus
stops and stops with multiple bus service routes have certain
effects on BB occurrence, therefore, in this study, we take both
features into consideration.

Bus Trip: On a specific bus route, a series of bus trips
are often fulfilled by a bus fleet with multiple buses. In the
meanwhile, bus timetable is usually unchanged within a certain
period, therefore we can expect that a series of bus service trips
on a specific bus route on different days occur following the
same time series. For example, following a stable timetable
of a specific bus route, if the third trip happens at 6:05am at
a specific day, then the third trip on the other days within
a certain period should happen around 6:05am as well. In
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Fig. 1. Illustration of normal and bunched bus strips

this study, we use the trip generation time ¢ to represent the
corresponding bus service trip sequence within one day, then
a complete trip with bus arrival information at each stop is
denoted as X; = [0, 25, --- ,2;'°'7"], where z" indicates
the bus arrival time at stop s; in trip ¢, and ¢ also denotes
its corresponding trip generation time. The total number of
trips within one day is denoted as N. In Fig.1, four bus trip
trajectories are shown as illustration.

Dwelling Time: Upon arrival at a bus stop, buses usually
need to stop for a while to allow passengers to get on and off
the bus. D, = [d5°, d5*, - ,d;'®'~"] presents the time duration
a bus stops at each stop during the bus trip ¢. For illustration
purpose, in Fig.1, segment AB represents the dwelling time
at bus stop 3 in bus trip 1.

Headway: Headway can be defined as the time difference
between two buses (serving two different bus trips on the same
bus route) arriving at the same bus stop on a specific bus
route, which is denoted by H, = [h5°, h5',---  h;'*'""], and
hj" =z — 2" ,, where h;* represents the headway at stop
s; between bus service trips ¢t and ¢ — 1.

As an instance, segment CD denotes headway
at stop 4 Dbetween bus trip 1 and trip 2, as
shown in Fig.l. In this study, historical headway
is categorized into two groups, trend headway

Hireng = [Htfm*247Ht—(m—1)*247 cee 7Ht71*24] and close-
ness headway Hioseness = [Htfn; Htf(n71)7 Tty H ]
Trend headway reflects the long-term pattern of historical
headway, which consists of the headway information in trip
t in the previous m days. Closeness headway shows the
short-term dynamics of headway in the past n trips within
one day.

Bus Bunching (BB): In this study, BB is defined as an
event when two buses serving the same bus route arrive at the
same bus stop with headway less than a certain threshold. For
example, in Fig.1, BB happens at bus stop 5 between bus trip
3 and trip 4 (two bus trip trajectories in red color).

Travel Demand Matrix: Four travel demand matrices,
MY, MA M5, MP € RISIXISI are constructed to capture
the number of young passenger, adult passenger, senior pas-
senger, and the total number of all kinds of passengers,



respectively in bus trip ¢. For example, the element mf i In
matrix M indicates the total number of passengers boarding
at bus stop s; and alighting at bus stop s; in bus trip ¢.

B. Re-construction of Bus Trip Trajectory

With aid of GTFS data and geographic information from
Google map, we can easily obtain the sequence of stops along
a bus route, stop ID, number of bus routes running through
the stop, and stop type (whether the stop is an interchange
stop connecting other travel modes such as train). Although
AVL data is not available in this study, bus arrival time and
dwelling time based on passengers’ boarding and alighting
information could be estimated. By checking the first and the
last tap-on and tap-off time stamps at each bus stop, we can re-
construct bus service trips with bus arrival information and the
corresponding dwelling duration at each bus stop. Sometimes
there is no passenger boarding or alighting at some bus stops,
hence the dwelling time at these stops is 0, and the relevant
bus arrival information is missing. To overcome this obstacle,
Algorithm 1 is proposed to fill the missed information with
historical information, and then re-construct bus trip trajectory
with bus arrival, dwelling and headway information.

C. Problem Definition

In order to predict BB occurrence, multiple steps are in-
cluded from extracting useful information from raw smart
card data to final prediction of headway and BB occur-
rence. Firstly, various useful features from both supply and
demand sides need to be extracted from the smart card
data, and those features have been introduced in Section
I Paragraph 2. Next, using Algorithm 1, bus trip trajec-
tory {X;|i=1,---,t— 1} for a specific bus route is re-
constructed given a set of smart card data R. The corre-
sponding bus dwelling time D; = [d{°,d",--- ,d;'*'"'] and
historical headway {H;|i = 1,--- ,¢t — 1} can be calculated.
Finally, a SD-seq2seq model is developed to forecast the
headway {H;|j =t,--- ,t+ z} in upcoming time periods at
all bus stops, where z is the number of time intervals ahead
to be predicted. Then BB occurrence can be predicted based
on the threshold headway defined.

IV. SD-SEQ2SEQ SYSTEM ARCHITECTURE

In this section, we present the system architecture of the
proposed SD-seq2seq model and details of its each component,
as shown in Fig.2.

A. Overview

As illustrated in Fig.2, the system architecture of the pro-
posed SD-Seq2seq model consists of three major components:
Supply Learning, Demand Learning and Decoder. Supply
Learning and Demand Learning compose the Encoder part of
the SD-seq2seq model. The function of Encoder is to encode
features from both supply and demand sides, and then the
encoded hidden state is used to initialize Decoder. Along with
the historical headway and temporal feature, the initialized
Decoder is applied to predicting headway in the upcoming
time periods.

Algorithm 1 Re-construction of Bus Trip Trajectory
Input: Smart card dataset R, Bus stop sequence S
Parameter: Optional list of parameters

Output: Dwelling Time D, Headway H

1: for t <~ 1to N do

2: for i< 0tol|S|—1do

3: Create set R;* for passengers taking trip X; and
tapping on/off at stop s;, where R;* € R.

4 if R;* # () then

5: Identify the first tap-on/off passenger rt € Ry

6: Identify the last tap- 0n/0ff passenger 1, € Ry

7 d,’t = rt — tom — rt — tofr

8 Dt+ = dts7

9: h’ = 7”; = toff — T’(ltil) — togr

10: Hi+ = htsi

11: else

12: di*" =0

13: Dt+ = dtSi

14: htsi = A’Ug(h;(” S HTrend)

15: Ht+ = htsi

16: end if

17 end for

18: end for

19: return D, H

The encoder-decoder architecture model has been successful
applied in many fields such as natural language processing. In
recent years, this kind of model has been widely used in learn-
ing and predicting time series patterns in urban transportation
system, like traffic speed and traffic flow. The headway of a
specific bus route is kind of sequential data with the length
as the number of bus stops along this bus route. The encoder
part of the designed SD-seq2seq model captures the time series
patterns like historical headway and passenger travel demand;
while the outputs of the decoder part include the predicted
headway between the next bus trip and the current one at each
bus stop.

B. Demand Learning

In the component of Demand Learning, we consider the
number of passengers boarding and alighting at each bus stop
along a given bus route, and the corresponding passenger types
(adult, senior and youth) as features from the perspective of
passenger demand.

1) Convolution: The CNN has been utilized in a diversity
of research fields such as image data analysis. It has shown
satisfactory performance on capturing spatial features from
different grids of tensor. Passengers travel from stop to stop in
a city, and the dwelling time can vary from stop to stop since
the amounts of passengers boarding and alighting at different
bus stops can be significantly different. Besides the number of
passengers, the type of passengers presents certain influence
on dwelling time as well. For example, at the stops with a
large number of senior passengers boarding and alighting, the
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Fig. 2. System architecture of the SD-Seq2seq model

corresponding dwelling time is usually longer. In consequence,
the probability of BB occurrence at this stop increases. To
incorporate such passenger demand information, a convolution g 20
layer is designed at each time stamp to capture features O
of travel demand distribution and passenger type in spatial- &
temporal dimensions. §15
As defined in Section III A, for each bus trip ¢, we %
can get the corresponding set of travel demand matrices 10
[M, M}, M{*, M{]. We first concatenate them along with g
the first axis as one tensor Mt(o) € R4XISIXISI which is fol- 3
lowed by a convolution, a pooling and a flatten, respectively: 5
MO Z (W 1 1 p0) 1y e ey ey Ty Ty Sy sy
M(’?) MaxPoolmg(M( )) 2) 18
16
M = Flatten(M*)) 3 7
Q14
where * denotes the convolution process; f is an activation E 12
like ReLu; WC(Z) and b((;l) are the learnable parameters in the §
first layer. § 10
2) Fusion: The amount of passengers usually varies peri- 3 8
odically, with higher travel demand during peak hours while £ ¢
lower demand at non-peak hours. Such periodical pattern of
travel demand is more significant at stops located in city

central area. Taklng a bL.lS stop aF Bf)nd? Juncthn n Sydl.ley Monday Tuesday Wednesday Thursday Friday Saturday Sunday
as example, Fig.3(a) depicts the distribution of trip generation (b) Periodical patterns of headway

from Monday to Sunday, which shows recurrent patterns.
Fig. 3. Periodical patterns of passenger demand and headway



To extract the periodical pattern of passenger demand at
bus stop level, we fuse the convolution results generated from
travel demand matrices.

Mjen = tanh(D> " M o Wo + > MD o0 W,) (4
=1

y=1

where o is the element-wise multiplication; W, and W, are
the learnable parameters; and m and n represent Demand
Learning fused with trend travel demand feature from the
previous m days and closeness travel demand feature from
the last n trips, respectively.

C. Supply Learning

The component of Supply Learning aims to extract features
of bus stops along a given bus route, including fixed features
like bus stop ID, number of bus routes running through the
stop, and stop type (whether the stop is an interchange stop
connecting other travel modes such as train), and dwelling time
as dynamic feature in both spatial and temporal dimensions. To
encode such features from the perspective of public transit ser-
vice supplier, we adopt LSTM to extract the above-mentioned
supply features at each bus stop along a given bus route, and
the LSTM is initiated by My., from Demand Learning in
Section IV B.

fo=04g(WyH, + Ushi—1 + by) 5)

it = 0g(WiH; + Uihs—1 + b;) 6

0 = 0g(WoHy + Ushi—1 + bo) @)
ce=fioci—gs+iroog(WeH, + Ushy—y +b:)  (8)
hy = oy 0 op(cy) ©)

D. Decoder

In the Decoder component, historical headway is used
as input. Fig.3(b) shows weekly historical headway at a
bus stop at Bondi Junction, which reflects time-varying but
repeated headway pattern. In this study, LSTM is applied
to extracting features from historical headway information,
which consists of both trend headway Hy,.n,q and closeness
headway H. jpseness- In each bus trip ¢, LSTM derives the
vector representation of hidden state h; as follows:

where H, is the input headway in each bus trip ¢; f;, i; and
o; are forget gate, update gate and output gate, respectively;
W, U and b are all learnable parameters; o, is sigmod
function and o} is tanh function; h; represents the hidden
state in each trip; and in the first trip, hy is initialized by the
output h, generated from Encoder, which consists of Demand
Learning and Supply Learning components in Section IV B
and C.

V. PERFORMANCE EVALUATION

In this section, multiple numerical experiments are con-
ducted to evaluate the proposed SD-seq2seq model using
multiple bus routes in the public transit network in Sydney.

Number of passengers

A. Experiment Setup

Dataset. Two-month smart card data in Sydney is used
in this study for various experiments, which includes more
than 10,000 bus routes (including route variants). Considering
people’s travel pattern and passengers’ demand on weekend
and holiday are quite different from those during working
days, and BB happens much more during working days, we
only use the data between Monday and Friday. Moreover, data
during public holidays are removed as well in the following
experiments.

To include temporal feature, we split one day (24 hours)
into four time segments, namely A.M. Peak from 7:00 am to
9:00 am, Daytime Inter-peak from 9:00 am to 3:00 pm, PM.
Peak from 3:00 pm to 6:00 pm, and Night Inter-peak from 6:00
pm to 7:00 am the next day, based on the distribution of trip
generation, as shown in Fig.4. Fig.4 shows the distribution of
trip generation based on the average information of two-month
smart card data covering the whole bus network in Sydney.

uuuuuuuu
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PM. Peak
Fig. 4. Distribution of trip generation at different time segments

In this study, we use time-varying BB threshold rather than
fixed considering dynamic travel demand and heterogeneous
bus service frequencies at peak and non-peak hours. For
illustration purpose, two BB threshold values are used in
the following experiments for peak and non-peak periods,
respectively. During peak hours (A.M. Peak and P.M. Peak),
the threshold headway to identify BB occurrence is set as a
quarter of the headway, while half of the headway is used
during non-peak hours (Daytime Inter-peak and Night Inter-
peak).

Bus routes. A series of numerical experiments have been
done on different bus routes. For illustration purpose, two
bus routes covering different areas in Sydney are chosen to
demonstrate the results. To select the representative bus routes,
BB occurrence at all the bus stops covering the whole bus
network in Sydney has been visualized, and two bus routes
(400 and 380) with observed BB issue but covering different
areas have been chosen, as shown in Fig.5. In Fig. 5, each bar
represents a bus stop, and the bar’s color and height indicate
the average daily number of BB occurrence.
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Fig. 5. BB identification with stop-level information

Two representative bus routes, 400 and 380, covering dif-
ferent areas of Sydney, are utilized for a series of numerical
experiments in the following subsections.

o Bus Route 400. This bus route starts at a busy inter-
change bus stop Bondi Junction near the Centennial Park
in Sydney CBD, and its last stop is the Sydney Airport.
Within two months, around 79,000 passenger trips and
9,000 bus service trips have been identified along this
bus route.

« Bus Route 380. Bus route 380 starts at the Watsons Bay
in the east part of Sydney, running through the famous
Bondi Beach, and then ends at Bondi Junction. Within
two months, around 74,000 passenger trips and 6,500 bus
service trips have been observed along this bus route.

Performance metrics. Accuracy and the root mean square
error (RMSE) are used as performance metrics in the nu-
merical section. Since BB prediction is modeled as a binary
classification problem in this study, both precision and recall
are evaluated.

B. Comparison with other methods

Methods. To validate the efficiency and accuracy of the pro-
posed SD-seq2seq model, we compare the proposed method
with the other four popular methods as follows:

1) Seq2seq [26]. Similar as the proposed SD-seq2seq model,
this model also considers both supply and demand fea-
tures, but it flattens and concatenates all features as input
to the encoder of seq2seq model.

2) GRU [27] is a kind of variation of LSTM. To apply GRU
approach, closeness and trend headways are used as input,
and the output is the predicted headway.

3) DNN [28] is a basic model in deep learning. To apply
DNN, we flatten the closeness and trend headways to a
vector as an input to the model, and the output is the
predicted headway.

4) ARIMA [29] is a well-known and classic model for
forecasting in time series. To apply ARIMA, at each
bus stop, we build an ARIMA model. The input is the
historical headway at a stop, and output is the predicted
headway.

Implementation. In the following experiments, we imple-
ment the SD-seq2seq model and other baselines in Python and
TensorFlow. Our network has been trained with the following
hyper-parameters setting: mini-batch size (128), learning rate
(0.01) with adam optimizer. For each bus route, we randomly
choose 80% trips at each time segment to make up a training
set to train the model, and the remaining 20% trips are used
to test the performance of the model at corresponding time
segment. All experiments have been conducted on a server
with one Tesla K40m and Intel Xeon E5. Each experimental
setting has been repeated ten times and the average results are
reported.

To check the performance of the proposed SD-seq2seq
model, the results of comparison with other popular models
are shown in Fig.6. In general, our model outperformes other
approaches, no matter on bus route 400 or 380, peak hours
or non-peak hours. On the contrary, ARIMA shows the worst
performance according to its RMSE. In the meanwhile, the
RMSE results on bus 380 performs slightly better than that
on bus 400.

Bus 400 Bus 380
...
0.181 e UITSIE L 0.18 —e— SD-seq2seq
e, -%- seq2seq
0.16 “lo.16 - GRU

0.06 0.06
R ped¥ Oa\J"‘me o ped® ot - pea¥ Oa‘{\ﬁ‘e oM ped® ot

Fig. 6. Comparison of numerical results among different methods

As shown in Fig.5 in the previous subsection, much more
BB has been identified on bus route 400 than that on bus
route 380. It happens because bus route 400 is operating at
city central area with much higher population density, and
corresponding higher travel demand and more complex traffic
condition. On the contrary, bus route 380 is operating in a
relatively lower-density region with lower travel demand and
better traffic condition, which makes the bus operation under a
more stable condition with less BB occurrence. Consequently,
the prediction of BB occurrence on bus route 380 shows better
performance due to its relatively more stable traffic condition
and lower travel demand. In the meanwhile, no matter in which
area or with which method, we can expect much higher traffic
volume, travel demand and more uncertain traffic environment
during peak hours than non-peak hours. Therefore, better
prediction results at non-peak hours than peak hours could be
expected, which is evident from the comparison results shown
in Fig.6 that the RMSE value at peak hours is higher than that
at inter-peak hours for all methods and both bus routes.



C. Accuracy analysis

Since BB prediction is a binary classification problem,
besides RMSE, other important metrics such as accuracy,
precision and recall are also evaluated for performance mea-
surement. Due to the space limitation, in this subsection we
only compare the proposed SD-seq2seq model and the classic
seq2seq model (with the second best performance in the
previous comparison).

TABLE 1 shows the results generated from the proposed
SD-seq2seq model on two different bus routes at different time
segments. Generally speaking, the SD-seq2seq model performs
better on bus route 380 than on 400, which indicates that pre-
dicting BB at crowded areas with higher travel demand is more
difficult than at suburb areas. In the meanwhile, the prediction
accuracy fluctuates at different time segments, which is due
to the complexity of traffic condition and uncertainty of travel
demand. During peak hours, traffic condition is more complex,
hence we get lower prediction accuracy, while higher accuracy
can be expected during non-peak hours. The prediction results
on bus route 380 at Night Inter-Peak (no traffic congestion and
low travel demand) shows highest accuracy around 92.56%,
and the worst case is on bus route 400 during A.M. Peak
(severe traffic congestion and high travel demand), which is
84.31%.

TABLE I
COMPARISON AMONG DIFFERENT TIME SEGMENTS AND BUS ROUTES
USING SD-SEQ2SEQ MODEL

Bus Route  Time Segment  Accuracy Precision Recall
400 A.M. Peak 84.31% 76.86% 82.48%
Daytime Inter-Peak 87.01%  82.34% 87.62%
PM. Peak 86.83% 81.11% 85.96%
Night Inter-Peak ~ 89.74%  81.83% 89.32%
380 A.M. Peak 88.67%  T77.773% 86.42%
Daytime Inter-Peak  90.65%  83.99% 89.03%
P.M. Peak 89.35% 81.74% 87.64%
Night Inter-Peak ~ 92.56%  87.14% 91.83%

TABLE II

COMPARISON AMONG DIFFERENT TIME SEGMENTS AND BUS ROUTES
USING SEQ2SEQ MODEL

Bus Route  Time Segment  Accuracy Precision Recall
400 A.M. Peak 80.04%  71.22% 79.93%
Daytime Inter-Peak 84.80%  77.09% 85.12%

PM. Peak 8191%  7517% 83.14%

Night Inter-Peak  83.75%  76.68% 84.24%

380 A.M. Peak 85.94%  73.72% 83.38%
Daytime Inter-Peak 87.71%  78.61% 86.36%

P.M. Peak 86.53%  75.18% 84.11%

Night Inter-Peak  89.70%  80.83% 87.41%

TABLE II shows the results generated from the baseline
seq2seq model on the same bus routes with same time segment
division. By comparing the results between TABLE I and
TABLE II, we can find that the proposed SD-seq2seq model
performs better on both bus routes, and during all different
time segments.

D. Feature analysis

To figure out how different features influence the prediction
results, and to what extent, we conduct various experiments
with inclusion of different features. In Fig.7, “All Features”
represents the complete SD-seq2seq model including all fea-
tures such as historical headway, temporal feature, supply and
demand features; “Demand Only” represents a modified SD-
seq2seq model without considering supply features; “Supply
Only” denotes the one removing demand features; and “Head-
way Only” means only historical headway is used in the
model.

According to the comparison results in Fig.7, demand
features such as passenger demand and proportions of different
passenger types are more influential than supply features in BB
prediction. As for the model with historical headway only, it
is difficult to reduce RMSE. Therefore, it is more reasonable
and accurate to include features from both supply and demand
sides into the prediction model.
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Fig. 7. Comparison of results considering different features

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a SD-Seq2seq model to predict
bus trip headway and corresponding BB occurrence based on
smart card data. The SD-seq2seq2 modelling framework was
designed to take the advantages of CNN and LSTM to extract
features from supply and demand sides, respectively. Such
supply and demand features were further combined with his-
torical headway, including both trend headway and closeness
headway, to predict bus trip headway and BB occurrence in the
upcoming time periods. To define BB in a more reasonable and
accurate way, time-varying headway threshold was adopted
to detect BB occurrence. Two-month smart card data in
Sydney was used to train and test the proposed SD-seq2seq
model. Experiment results showed that the SD-seq2seq model
could achieve more than 85% prediction accuracy on different
bus routes and during various time segments in most cases.
Moreover, the proposed SD-seq2seq model outperformed other
baseline methods in various comparisons. The proposed SD-
seq2seq model is able to predict BB occurrence at all bus



stops simultaneously along a bus route, which is applicable to
a large-scale bus network in real life.

As future work, data fusion among multiple data sources
such as smart card data, GTFS data and AVL data will be
taken into account to improve the prediction accuracy. Based
on the BB prediction outputs, corresponding dynamic and
adaptive control strategies will be investigated and tested in
bus operation.
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