
Structure Preserved Graph Reordering for Fast
Graph Processing Without the Pain

Baofu Huang, Zhidan Liu∗, Kaishun Wu
College of Computer Science and Software Engineering, Shenzhen University, China

E-mails: huangbaofu2018@email.szu.edu.cn, {liuzhidan, wu}@szu.edu.cn

Abstract—By optimizing the data layout ahead-of-time, graph
reordering can effectively improve the memory access locality
in graph processing. The reordered graphs derived by sophis-
ticated graph reordering approaches can greatly speedup the
executions of most graph algorithms, while they incur huge
computation overheads. Although lightweight approaches indeed
reduce the reordering costs, they cannot achieve the best speedup
performances. This is because they merely operate vertices of
high-degrees and inadvertently destroy the community structures
hidden in the graph. In this paper, we thus propose Sorder to
balance the speedup performance and the reordering overhead.
Sorder achieves better locality by preserving structural properties
of graphs. Specifically, it mainly exploits neighborhood relations
to renumber vertices and preferentially reorders vertices of high-
degree ahead of the other vertices. We further enhance the
design with the hypernode concept, which gathers neighboring
vertices of low-degree to form a virtual vertex. Therefore, Sorder
can consecutively rearrange more neighboring vertices, such
that protecting the community structures. Extensive experiments
with 5 representative graph algorithms and 7 real-world graphs
demonstrate that Sorder can achieve comparable speedup perfor-
mance as Gorder, the state-of-the-art approach, while significantly
reducing the reordering overhead.

I. INTRODUCTION

With the rapid increase of memory capacity and core counts,

large-scale graphs, which are generated from real-world appli-

cations like social networks [13] and urban traffic [17], can fit

on one server’s memory for fast and convenient processing.

Many optimized shared-memory computing frameworks, e.g.,
Ligra [23], have thus been developed to process such graphs

in a single machine, which can avoid expensive cross-machine

communications and the need to maintain a complex dis-

tributed system [4]. Due to inherently irregular memory access

patterns of graph algorithms, however, it is still non-trivial to

achieve efficient graph processing in shared-memory systems.

Random memory accesses will cause low cache utilization,

resulting in long CPU cache latency [2], [3], [25].

As an effective technique to improve cache locality, graph
reordering aims to optimize the data layout and the computa-

tion order by altering the indexing orders of vertices yet not

changing their underlying connections. Graph reordering can

speedup graph processing for (almost) all graph algorithms

without modifying each algorithm itself, and thus has attracted

considerable research efforts [2], [3], [7], [14], [15], [24], [25].

The sophisticated graph reordering approaches [2], [14], [24]

greatly speedup graph processing, while incurring extremely

* Corresponding author.

huge computation overheads. The lengthy reordering time

severely affects end-to-end graph processing performance,

and thus limits their practicability. Thus, some lightweight

approaches [3], [7], [25], [15] have been proposed. These

techniques mainly exploit the power-law degree distribution

of graphs, and preferentially reorder the hub vertices, which

have relatively much more connections than others, with a

high priority while retaining other vertices unchanged. The

hub vertices are frequently accessed by numerous neighbors,

leading to high temporal locality. Due to the simplicity, they

indeed reduce reordering time, while they cannot achieve the

optimal orderings as Gorder [24], a state-of-the-art approach.

In addition to the property of power-law degree distribution,

real-world graphs generally reveal the community structures,

where vertices of a community have dense inner-connections

[16]. During graph processing, a vertex will frequently access

to other vertices of the same community, exhibiting the high

spatial locality. These degree-based approaches [3], [7], [25],

[15], however, omit or even severely destroy such structures,

which potentially determine access patterns among vertices.

In this paper, we thus present a structure preserved graph

reordering approach, named Sorder, which is able to balance

speedup performance and reordering overhead to achieve

more efficient graph processing. By analyzing the indexing

patterns of graphs reordered by Gorder, we observe that

the hub vertices usually have smaller IDs and meanwhile

neighboring vertices are contiguously renumbered. Such an

indexing preserves the structural properties of both power-

law degree distribution and community structures. Inspired

by these observations, Sorder heuristically reorders a graph

by exploiting neighborhood relations, so as to achieve com-

parable speedup performance as Gorder while avoiding its

huge computation overhead. Specifically, for a given seed

vertex, Sorder classifies its neighbors into groups of high-

degree and low-degree, and then assigns the consecutive IDs to

each group separately. In particular, the high-degree neighbors

are always renumbered ahead of the low-degree ones. By

selecting a neighbor as the seed of next round, Sorder repeats

the operations until all vertices are renumbered. We enhance

Sorder with the concept of hypernode that clusters low-degree

neighbors of the seed vertex as one virtual vertex. With such

an optimization, Sorder can not only preserve more complete

community structures, but also consecutively renumber more

neighboring vertices. Therefore, the temporal-spatial cache

locality of a graph is largely improved.

1 5 9 11 12 12 12 12 14 14 15 15

index
OA

CA

Data

3 5 7 9 4 5 8 9 6 10 11 4 9 6

1 2 3 4 5 6 7 8 9 10 11 12

6

10
3

5

1

7

2

9

11

4

8

(a) (b)
Fig. 1. (a) A sample directed graph G; (b) The CSR representation of vertices’
out-neighbors for graph G.

The contributions of our work are summarized as follows:

• We have comprehensively analyzed the indexing patterns

of Gorder, the state-of-the-art approach, and derived two

insights for devising effective reordering approaches.

• We present Sorder that can well preserve the structural

properties of graphs for better graph reordering efficiency.

• We conduct extensive experiments with 5 typical graph

algorithms on 7 real-world graphs. Experimental results

demonstrate that Sorder can achieve comparable speedup

performance as Gorder with maximum speedup as 2.56×,

while significantly reducing pre-processing overheads.

The rest of the paper is organized as follows. We present

the background and motivation of graph reordering in Section

II. The design of Sorder is detailed and evaluated in Section

III and Section IV, respectively. We review the related works

in Section V. Finally, Section VI concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Preliminary

Graph modeling. The real-world data can be modelled as a

directed graph G = (V, E), where V represents a set of vertices

(e.g., users in a social network) and E is a set of edges (e.g.,
indicating relationships among users). Given a vertex v ∈ V,

we denote its in-neighbors and out-neighbors as Nin(v) and

Nout(v), respectively. In addition, vertex v is associated with

an attribute dv . Most of graph algorithms process and analyze

the attributes of vertices for knowledge discovery [10].

Graph representation. In shared-memory frameworks, the

compressed sparse row (CSR) format is widely used to rep-

resent a graph in a storage-efficient manner [3], [4], [7], [24].

CSR utilizes two arrays, i.e., a coordinate array (CA) and

an offset array (OA), to encode a graph’s edges (sorted by

the edge source/destination) [4]. Specifically, CA contiguously

stores the neighbors of each vertex, and OA stores the offset

of each vertex’s first neighbor in the CA. To access vertex vi’s
neighbors, a program accesses the i-th entry of OA to find vi’s
first neighbor in the CA. In addition, the number of neighbors

for vertex vi is the difference between the entries (i+ 1) and

i in the OA. To represent a directed graph G, two CSRs can

be used to encode vertices’ out-neighbors and in-neighbors,

respectively. Figure 1(b) illustrates the CSR representation for

out-neighbors of the sample graph shown in Figure 1(a).

Graph properties. The real-world graphs commonly have

two distinguish structural properties described as follows.

• Power-law degree distribution. The majority of vertices

have relatively few neighbors while a few vertices have

many neighbors. The degree distribution is skewed and

TABLE I
STATISTICS ON THE SKEWNESS OF REAL-WORLD GRAPHS.

Graph In-neighbors Out-neighbors
Hubs Involved edges Hubs Involved edges

flickr 4.0% 84.8% 4.1% 85.1%
orkut 19.2% 74.5% 21.1% 72.0%
livej 6.1% 62.7% 6.3% 62.8%
it 4.8% 85.4% 14.2% 64.7%
pld 4.5% 79.0% 4.1% 82.6%
twitter 5.7% 89.5% 4.3% 84.3%
sd 4.8% 85.6% 5.0% 83.7%

nearly follows the power-law distribution [10]. The ver-

tices with more neighbors are usually called as hub ver-
tices, and are frequently accessed by other vertices during

the graph processing. Table I presents the percentages

of hub vertices and their involved edges of 7 real-world

graphs (See more details about these graphs in Section

IV-A). Here we consider a vertex with degree ≥ 50 as a

hub vertex. Table I shows that for all graphs, although hub

vertices only account for 4% ∼ 21% of all vertices, they

connect 62% ∼ 89% edges for both in and out direction.

• Community structure. The vertices of a real-world graph

can be easily grouped into clusters. Specifically, vertices

of the same cluster are densely connected, while vertices

of different clusters may be sparsely connected [7]. For

example in a social network, users sharing the common

interests will usually form different communities [16].

Algorithm 1: Typical Graph Processing Kernel
1 for v ∈ frontier do
2 for u ∈ Nout(v) do
3 Update(dv, du, · · ·);

Graph processing. Algorithm 1 sketches the typical graph

processing kernel. Generally, graph algorithms process an in-

put graph by iteratively visiting the vertices and their neighbors

until some convergence criterion is achieved. During each

iteration, all vertices or only a subset of them will be visited,

and these active vertices are called frontier. The attribute data

of their neighbors are accessed to update some information,

e.g., PageRank value of a target vertex. The vertices of next

iteration’s frontier are identified with the application-specific

logic. When implementing a specific graph algorithm, a vertex

can either push its attribute to update its out-neighbors, or pull
its in-neighbors’ data to update its own value. The efficiency

of push- or pull-based implementations varies by different

algorithms [6], and a wise switch in each iteration may achieve

the better performance for some graph algorithms [23].

B. Why Graph Reordering

As illustrated in Algorithm 1, graph algorithms sequentially

access to a given vertex’s edges (which are stored in the CSR

format), but randomly access its neighbors’ data, resulting in

irregular memory accesses. As an example in Figure 1(b),

when the program processes vertex v1, it needs to access

the attribute data of v1’s neighbors, i.e., {d3, d5, d7, d9},

which are randomly distributed in the data array. Since the

frontier of real-world graphs is pretty larger than cache size

3 5 7 9 4 5 8 9 6 10 11 4 9 6

3

4

3

4

5

6

7

8

5

6

7

8

9

10

4

5

9

10

4

5

8

9

6

7

8

9

6

7

10

11

4

5

10

11

6

7

9

10

CA

CB1

CB2

2 3 4 5 6 7 6 4 5 9 10 5 10 11

2

3

2

3

4

5

6

7

4

5

9

10

4

5

9

10

11

(a)

(b)

CA

CB1

CB2

4

5

9

10

4

5

9

10

4

5

8

9

6

7

10

11

2

3

2

3

4

5

6

7

4

5

6

7

4

5

6

7

4

5

6

7

4

5

9

10

4

5

9

10

4

5

9

10

4

5

Fig. 2. (a) and (b) show cache behaviors for the executions of Algorithm 1
on the original vertex ordering (as shown in Figure 1(a)) and an alternative
vertex ordering (as shown in Figure 4(d)), respectively. Red numbers represent
loaded data from memory (i.e., cache misses), and blue numbers represent the
cache hit CBs, which are further indicated by the blue triangles.

of current machines [25], irregular vertex data accesses will

cause high cache miss ratio. According to a recent study, the

representative graph algorithms may even waste 55% ∼ 90%
of their CPU time stalled on the memory accesses [24].

To improve cache locality, graph reordering is proposed to

rearrange all vertices in the optimal ordering that is aligned

with the CPU accesses of a graph, so as to reduce CPU cache

misses. Since graph reordering merely renumbers the vertices,

without changing the graph itself, implementations of graph

algorithms, or the data structures used, it has attracted many

research efforts recently [2], [3], [7], [14], [15], [24], [25]. As

one of the state-of-the-art graph reordering approach, Gorder
can achieve the best > 2 speedups in testing typical graph

algorithms over large real-world graphs [24].

To understand the benefits of graph reordering, we assume

that a program executes Algorithm 1 over the sample graph in

Figure 1(a) by visiting all vertices once. Figure 2(a) illustrates

the cache behaviors, where we assume the machine has two

cache blocks (CB), each of which can contain 2 vertex data,

and the least recently used (LRU) caching scheme is adopted

here. From Figure 2(a), we see that Algorithm 1 suffers from

high cache misses, with only 3 cache hits in one iteration. As

a comparison, we run this testing over the same graph yet in

an alternative ordering as shown in Figure 4(d), the cache hits

increase to 9 with speedup by 300%, as shown in Figure 2(b).

Therefore, it is necessary to reorder a graph before inputting

it to the graph algorithms for better computation efficiency. We

formally define graph reordering problem as follows.

Problem statement: Given a graph G = (V, E) and letting
Φ(·) be a permutation function that assigns a vertex with a
unique ID in [1, · · · , n] where n = |V|, graph reordering aims
to find the optimal permutation of vertices Φ : V → N, which
minimizes the total cache misses produced by Algorithm 1.

C. Motivation

Despite the good speedup performance, Gorder incurs ex-

tremely huge computation overhead to find the optimal vertex

ordering. For example, it reduces the execution time of PageR-
ank over graph twitter, which consists of 61.6 million vertices

and 1.5 billion edges, from 218 seconds to 144 seconds,

however, at the expense of spending about 2.8 hours to reorder

the graph. Gorder assumes that the expensive pre-processing

overhead could be amortized over multiple executions on the

reordered graph, however, in practice many graph applications

require to conduct timely analysis on the evolving graphs

(a.k.a temporal graph mining) [22], e.g., executing PageRank
on dynamically changing social networks.

Thus, we turn to design a graph reordering approach that can

not only achieve comparable speedup performance as Gorder,

but also incur slight reordering cost. To this end, we carefully

analyze the design of Gorder and its reordering patterns, in

hope of discovering some helpful insights.

Understanding Gorder. By analyzing Algorithm 1, Gorder
observes that graph processing kernel mainly involves neigh-

borhood relationship and sibling relationship among vertices,

which together determine the data access patterns. Gorder thus

defines a score function to measure the closeness of any two

vertices, e.g., u and v, in terms of locality as follows:

S(u, v) = Ss(u, v) + Sn(u, v), (1)

where Ss(u, v) indicates the number of common in-neighbors

of u and v (i.e., they are sibling), and Sn(u, v) indicates the

number of times that u and v are direct neighbors [24]. With

this score function, Gorder aims to find the optimal ordering

Φ(·) by maximizing the accumulated locality score F(·) over

a sliding window of size ω. Specifically, F(·) is defined as

F(Φ) =
∑

0<Φ(v)−Φ(u)≤ω

S(u, v). (2)

Gorder has proved that maximizing F(·) is NP-hard [24],

and proposes a greedy algorithm to iteratively search the best

solution. The time complexity of Gorder is O(ω · dmax · n2),
where dmax is the maximum in-degree of the graph.

Although Gorder has high computation overheads, its prac-

tical performance is close to the optimal in experiments [24].

Therefore, we run Gorder on two real graphs (i.e., flickr and

sd), and compare the vertex orderings of original graphs and

reordered graphs to expose possible hints for a better design.

At first, we compare each vertex’s IDs in both graphs with

respect to the in-degree. We classify all vertices into groups

according to their in-degrees, and for each group we calculate

the percentage of vertices that has smaller IDs in reordered

graph than original graph. Figure 3(a)(b) show the statistics

for graph flickr and sd, respectively. In general, a vertex

owning higher in-degree tends to be assigned with a smaller

ID (when compared to its original ID) by Gorder with a higher

probability. When the in-degree of a vertex is higher than 50,

its ID becomes smaller in the new ordering with probability

of near 100% and > 80% for flickr and sd, respectively. It

can be explained using Equation (1), Gorder prefers to reorder

vertices of high in-degree in a higher priority, since they can

derive much larger scores. As a result, the vertices of high

0 20 40 60 80 >=1000

20

40

60

80

100

0 20 40 60 80 >=100
0

20

40

60

80

100

0 2.0x105 4.0x105 6.0x105 8.0x105 1.0x106
50

60

70

80

90

100

0 1x107 2x107 3x107 4x107
50

60

70

80

90

100 (d) sd(c) flickr

(b) sd
Pe
rc
en
ta
ge
(%
)

In-degree

(a) flickr

Pe
rc
en
ta
ge
(%
)

In-degree

C
D
F
(%
)

Standard Deviation

Original
Reordered

C
D
F
(%
)

Standard Deviation

Original
Reordered

Fig. 3. With respect to in-degree, (a) and (b) present the percentage of vertices
with smaller IDs in reordered graph than original graph for graph flickr
and sd, respectively. (c) and (d) present the CDF of standard deviations of
neighboring vertices’ IDs for graph flickr and sd, respectively.

in-degree can be processed earlier and their cached attributes

will benefit data accesses of their numerous neighbors.

Next, we further study the indexing patterns among vertices

of the same community by comparing the ID variances of

each vertex’s neighbors for both original and reordered graphs.

In theory, if a vertex’s neighbors have contiguous IDs, their

ID variance should be small. As shown in Figure 3(c)(d),

the standard deviations of reordered graphs for both flickr
and sd are greatly reduced when compared to the original

graphs. The results imply that Gorder potentially aggregates

the neighboring vertices by assigning them adjacent IDs. Thus,

Gorder can preserve the community structures well.

Key insights. Based on above analysis, we derive two useful

guidelines to effectively reorder a real-world graph.

(1) Reordering hub vertices first. Since data of hub vertices

will be frequently accessed by numerous vertices, they should

be reordered earlier so that their data can be cached for reuse

by the other vertices. In essence, reordering hub vertices early

can improve the temporal locality of memory accesses.

(2) Reordering neighboring vertices together. The neighbor-

ing vertices possibly belong to the same community and thus

they may be accessed together, exhibiting high spatial locality

of memory accesses. Thus, the neighboring vertices should be

assigned with consecutive IDs, so as to make their data reside

nearby in the memory.

III. DESIGN OF Sorder

Inspired by above insights, we propose Sorder to reorder a

graph with balanced speedup performance and pre-processing

overhead. Different from previous works [3], [4], [7], [25] that

merely reorder a few hub vertices, Sorder not only guarantees

the reordering priority of hub vertices, but also preserves the

community structures among vertices.

Basic design. Sorder sequentially processes each vertex and

its out-neighbors by exploiting the CSR representation. Specif-

ically, for each vertex v ∈ V, it assigns a new ID to v, and then

assigns consecutive IDs to v’s out-neighbors. To guarantee that

the vertices of high degree can be loaded into the cache early

for facilitating later data accesses, Sorder preferentially assigns

consecutive IDs to v’s hub-vertex neighbors ahead of v’s non-

hub neighbors. Sorder identifies a vertex with in-degree higher

than the threshold λ as the hub vertex. During the reordering,

Sorder also keeps an eye on the un-renumbered neighbors of v,

and selects the last un-renumbered neighbor as the seed vertex

to trigger next round of numbering. As a result, Sorder spreads

reordering operations along with the neighborhood relations

most of the time, such that the community structures would be

reserved. Sorder repeats above operations until all vertices are

renumbered. During the reordering, both hub neighbors and

non-hub neighbors are sequentially renumbered according to

their orders in the CSR representation.
Enhancement. The basic design will make hub vertices and

non-hub vertices alternatively appear in the new ordering. Such

a permutation may only preserve partial community structures,

and thus cannot achieve the best performance. Detecting and

reserving the intact community structures of a graph, however,

is non-trivial and will incur huge computation overheads [2].

To make more neighboring vertices reside adjacent in the new

permutation and retain the most community relations among

vertices at the slight cost, we thus propose a concept named

as hypernode, which aggregates adjacent non-hub vertices as

one virtual vertex, to enhance the basic design.
A hypernode begins from a seed vertex and expands itself by

including neighboring non-hub vertices. Specifically, for seed

vertex v, we retrieve its κ-hop out-neighbors from the CSR

representation and selectively collect its non-hub neighbors to

form a hypernode Hv . Initialized as an empty set, Hv adds

elements in an iterative manner:

1) Vertex v’s out-neighbors, which are non-hub vertices and

not renumbered yet, are included into Hv;

2) For each element u ∈ Hv , we add its out-neighbors,

which also should be non-hub vertices and not renum-

bered yet, to into Hv .

We repeat step 2) until the κ-th hop neighbors of v are reached.
The enhanced design works as follows. For the generated

hypernode Hv , we implicitly classify its out-neighbors, which

are actually out-neighbors of any vertex belonging to Hv ,

into two groups as hub and non-hub vertices, and then assign

consecutive IDs to the vertices of each group in turn. Again,

the hub vertices are renumbered ahead of the non-hub ones.

Among Hv’s neighbors, the last one is chosen as the seed ver-

tex to produce another hypernode to continue the reordering.
The holistic design. Algorithm 2 sketches the pseudocode

of Sorder. At the beginning, all vertices are not assigned

with new IDs, and we use seed to store the seed vertex. For

each seed vertex v ∈ V, Sorder will generate a hypernode by

invoking the function Fusion(v, V) (line 6), and then assigns

consecutive IDs to the vertices belonging to the hypernode Hv

(line 8-9). Next, Sorder gathers the out-neighbors of hypernode

Hv into set NHv
(line 12), and assigns them with new IDs

(line 13-23). For a vertex u ∈ NHv
, if it is not assigned yet

and is a hub-vertex (i.e., its in-degree is greater than λ), it

will be renumbered (line 16-18). The vertices with small in-

degree (< λ) are stored in the array NonHubs. After all hub

vertices in NHv
have been renumbered, the non-hub vertices

6

10
3

5

1

7

2

9

11

4

8

(a)

6

7
2

4

1

3

2

5

11

4

8

(b)

6

7
2

4

1

3

8

5

11

10

9

(c)

6

7
2

4

1

3

8

5

11

10

9

(d)
Fig. 4. Illustrations of applying Sorder on the sample graph in Figure 1(a), with step by step in (a-c). The blue vertex is the seed vertex of each round,
the vertices covered by blue area form a hypernode (here we set κ = 1). Besides, red and green vertices are hub and non-hub neighbors of the hypernode,
respectively, where we set λ = 1 for the illustration. The already renumbered vertices are marked by gray. Subfigure (d) shows the final reordered graph.

Algorithm 2: Structure-Preserved Graph Reordering

Input: Graph G = (V, E), n = |V|
Output: A reordered graph G with permutation function Φ(·)

1 Assigned[·] = {false, · · · , false}, move id = 1, seed = -1;
2 for v ∈ V do
3 if !Assigned(v) then
4 seed = v;
5 while seed != -1 do
6 Hv = Fusion(v, V);
7 for i ∈ Hv & !Assigned(i) do
8 Φ(i) = move id++;
9 Assigned(i) = true;

10 seed = -1;
11 NonHubs = {};
12 Retrieve out-neighbors of Hv to form set NHv ;
13 for u ∈ NHv do
14 if !Assigned(u) then
15 seed = u;
16 if |Nin(u)| ≥ λ then
17 Φ(u) = move id++;
18 Assigned(u) = true;

19 else
20 NonHubs = NonHubs ∪{u};

21 for i ∈ NonHubs do
22 Φ(i) = move id++;
23 Assigned(i) = true;

in NonHubs are consecutively indexed (line 21-23). During

the reordering procedure, seed records the next seed vertex to

continue next round of ID assignments. If all the out-neighbors

of hypernode Hv are already renumbered, Sorder will continue

the reordering from next vertex of v in the set V.

Algorithm 3 presents the pseudocode of Fusion(·). For a

given seed vertex v, Sorder iteratively add the vertices, which

are within κ-hop of v and not renumbered yet, to set Hv .

Figure 4 illustrates the procedure of applying Sorder on the

sample graph in Figure 1(a). In Figure 4(a), Sorder starts from

vertex v1, and forms hypernode H1 = {v1, v3, v7} by includ-

ing the non-hub vertices within 1 hop of v1. The vertices in H1

are assigned with new IDs (i.e., 1, 2, 3). Then, out-neighbors

of H1 are retrieved to form the set NH1
= {v5, v9, v6, v10}. In

particular, the three hub vertices {v5, v9, v6} are renumbered

preferentially with new IDs (i.e., 4, 5, 6) before assigning 7
as the new ID to non-hub vertex v10. Meanwhile, seed is set

as v10 during above reordering. However, all out-neighbors

Algorithm 3: Form a Hypernode

1 Function Fusion(v, V):
2 Hv = {v}, list = {v}, hop = κ;
3 while hop > 0 do
4 temp = {};
5 for i ∈ list do
6 for j ∈ Nout(i) do
7 if !Assigned(j) & |Nin(j)| < λ then
8 temp = temp ∪{j};

9 Hv = Hv ∪ temp;
10 list.swap(temp);
11 hop = hop− 1;

12 return Hv;

of v10 have been already renumbered. Thus, Sorder takes the

formal v2 as the seed vertex for next round, as shown in Figure

4(b). Similarly, Sorder forms hypernode H2 = {v2, v8} and

assigns them with new ID {8, 9} in turn. Then, Sorder derives

NH2
= {4} from H2, and assigns the un-renumbered neighbor

with new ID as 10. During this round, the formal vertex v4
is selected as the seed to enable the last round, as shown in

Figure 4(c). The last vertex v11 is assigned with 11 as the new

ID. Figure 4(d) presents the final reordered graph by Sorder.

IV. PERFORMANCE EVALUATION

A. Experimental Setup
For performance evaluation, we compare Sorder with other

four graph reordering approaches on seven large-scale real-

world graphs using five representative graph algorithms. We

conduct all experiments with a powerful machine, which is

equipped with a dual-socket Intel(R) Xeon(R) E5-2630 v4 10-

core processors @2.20GHz and 192GB memory, running the

Ubuntu 20.04. In addition, the L1, L2, and L3 cache size of

the machine are 640KB, 5MB, and 50MB, respectively.
Graph algorithms. We select five typical graph algorithms

to test various graph reordering approaches. Specifically, we

adopt their implementations from Ligra [23] benchmark suites.

All implementations are complied using g++ -9.3 with the

highest optimization -O3 option. We briefly introduce these

graph algorithms as follows.

• Radii Estimation (Radii) approximates the diameter of a

graph by performing parallel breadth-first-search (BFS)

traversals from a set of randomly selected sources [19].

• Betweenness Centrality (BC) searches the most central

vertices in a graph by exploiting a BFS kernel to count

TABLE II
SUMMARY OF THE USED REAL-WORLD GRAPHS (M: million)

Graph Description #vertices #edges d̄ Disk size

flickr Social network 2.3M 33.1M 14 0.4GB
livej Social network 4.8M 68.5M 14 1.1GB
orkut Social network 3.0M 106.3M 35 1.5GB
pld Hyperlinks 42.9M 623.1M 15 10.9GB
it Hyperlinks 41.3M 1135.7M 28 19.0GB
twitter Social network 61.6M 1468.4M 24 25.0GB
sd Hyperlinks 94.9M 1937.5M 20 34.4GB

the number of shortest paths passing through each vertex

from a given source vertex [9].

• Single Source Shortest Path (SSSP) calculates the shortest

paths for all vertices in a weighted graph from the given

source using the Bellman Ford algorithm [23].

• PageRank (PR) computes the ranks of vertices based on

both quantity and quality of their incoming edges in an

iterative manner [21].

• PageRank-delta (PR-delta), proposed as a faster variant

of PageRank, only lets a subset of vertices, whose ranks

are sufficiently changed, to be active in an iteration [18].

For each graph algorithm, we adopt the default settings in

Ligra’s implementation for experiments.
Input graphs. We present the key statistics of input graphs

in Table II. These graph data are collected from real-world

applications, including social networks and hyperlinks among

web pages. All graphs contain millions of vertices and edges.

In particular, flickr is the smallest graph and sd is the largest

one. In addition, we have three billion-edge graphs, i.e., it,
twitter, and sd. The average degrees (i.e., the column of d̄)

range from 14 to 35, and their disk sizes are in the range from

0.4GB to 34.4GB. We utilize the original vertex ordering of

each graph for the baseline executions of all graph algorithms.
Compared approaches. We compare Sorder with the fol-

lowing four graph reordering approaches.
1) Sort derives the permutation by simply sorting all vertices

in descending order of in-degrees.
2) DBG is a coarse-grain reordering approach that partitions

vertices into a number of groups based on their degrees while

retaining the relative order of vertices within each group [7].
3) Norder is a recent proposal that has also exploited the

neighborhood relations [15]. It firstly arranges all vertices in

descending order of their in-degrees, and then performs a BFS

search that also assign a vertex ID in the traversed order.
4) Gorder [24] renumbers vertices according to their scores,

which are calculated using Equation (1). As the sophisticated

approach, it can achieve the best speedup performance, while

it introduces significant pre-processing overheads.
Evaluation methodology. For fair comparisons, we directly

adopted the open-sourced codes of the compared approaches,

all of which are written in C++. We implemented our approach

Sorder in C++ as well. All the codes are complied using

g++ -9.3 with the highest optimization option. For compared

approaches, we test them and set their parameters to achieve

the best performances. For Sorder, we set λ = 50 and κ = 2
by default. The efficiency of each graph reordering approach

is measured by three metrics, i.e., reordering time, cache miss

flickr livej orkut pld it twitter sd GMean0

1

2

Sp
ee
du
p

(a) Radii
Sort DBG Norder Gorder Sorder

flickr livej orkut pld it twitter sd GMean0

1

2

Sp
ee
du
p

(b) BC

flickr livej orkut pld it twitter sd GMean0

1

2
>2

>2

Sp
ee
du
p

(c) SSSP>2

flickr livej orkut pld it twitter sd GMean0

1

2

Sp
ee
du
p

(d) PR

flickr livej orkut pld it twitter sd GMean0

1

2

Sp
ee
du
p

(e) PR-delta

Fig. 5. The speedup comparisons of different graph reordering approaches
on various graph algorithms and input graphs. For each graph algorithm, the
GMean results of all reordering approaches are provided in the last column.

ratio, and execution speedup of graph algorithms. In particular,

given a graph algorithm the speedup is calculated as the ratio

between execution time over the original graph and execution

time over the graph reordered by a graph reordering approach.

We evaluate each approach on every combination of graph

algorithms and input graphs 6 times, and report the average

of the results from the last 5 times. Similar as previous works

[3], [7], [8], we let the first execution to warm up the cache.

B. Results

Comparison on execution time speedup. Figure 5 presents

the speedup comparisons of all approaches on 35 combi-

nations of graph algorithms and input graphs. For a clear

comparison, for each graph algorithm we calculate geometric

mean speedups of the five approaches (i.e., GMean in the last

column of each subfigure in Figure 5). Since Gorder reorders

vertices by comprehensively analyzing their connections to

effectively improve cache locality, it can achieve the best

speedup performances. Specifically, Gorder has the highest

speedups over 21 out of 35 combinations, and our approach

Sorder takes the second place with 9 wins of the best speedup.

We observe that Sorder have quite close speedups as Gorder
in the majority cases in Figure 5. In addition, we find that Sort,
DBG, and Norder can only perform well on few scenarios, as

they win the best with 2, 2, and 1 times, respectively.

Regarding on comprehensive speedup performances, we see

that Sorder slightly outperforms Gorder on graph algorithms

of Radii, BC, and SSSP by achieving higher GMean results.

Instead, Gorder performs the best on the graph algorithms of

PR and PR-delta. Figure 5 demonstrates that reordered graphs

can generally yield better graph processing performances (i.e.,
with speedup > 1), while most of the reordering approaches

relatively perform not good on the PR-delta algorithm. This is

possibly because the subset of active vertices are continuously

TABLE III
CACHE STATISTICS BY ALGORITHM PR OVER GRAPH flickr.

Approach L1-ref L1-mr L3-ref L3-r Cache-mr

Original 2.74E+10 34.38% 6.37E+09 23.23% 1.83%
Sort 2.75E+10 34.64% 6.57E+09 23.92% 1.87%
DBG 2.74E+10 30.95% 5.53E+09 20.13% 1.61%
Norder 2.75E+10 29.70% 5.23E+09 19.06% 1.41%
Gorder 2.75E+10 24.99% 3.77E+09 13.72% 1.11%
Sorder 2.74E+10 27.91% 4.89E+09 17.85% 1.27%

TABLE IV
CACHE STATISTICS BY ALGORITHM PR OVER GRAPH sd.

Approach L1-ref L1-mr L3-ref L3-r Cache-mr

Original 1.29E+12 55.27% 6.03E+11 46.94% 17.52%
Sort 1.28E+12 51.32% 5.62E+11 43.84% 16.99%
DBG 1.28E+12 50.84% 5.53E+11 43.10% 15.84%
Norder 1.28E+12 34.00% 3.11E+11 24.29% 7.92%
Gorder 1.28E+12 28.30% 2.30E+11 17.97% 6.20%
Sorder 1.28E+12 30.09% 2.59E+11 20.24% 6.56%

changing when PR-delta proceeds, and at the last iterations

only the hub vertices have not been converged.

Different combinations of algorithms and graphs will result

in diverse memory access patterns, and the speedups of Sorder
thus vary from case to case. In general, Sorder works well for

most of algorithms and graphs, where 30 out of 35 reordered

graphs have obtained positive speedups (i.e., > 1). Among the

five failures, three cases come from the executions of PR-delta,

where the vertices of frontier dynamically change in different

iterations. It is difficult to predict the subset of vertices that

will keep active in each iteration. From Figure 5, we find that

Sorder can achieve the maximum speedup as 2.56×, and its

GMean speedups of the five algorithms are 1.32×, 1.31×,

1.54×, 1.25×, and 1.07×, respectively.

Lastly, we calculate the GMean over all the 35 combinations

for the five approaches. Specifically, the GMean speedups of

Sort, DBG, Norder, Gorder, and Sorder are 104.2%, 112.8%,

119.5%, 129.4%, and 129.0%, respectively. We see that Sorder
can achieve comparable speedup performance as Gorder.

Comparison on cache miss ratio. We utilize perf tool [1]

to collect CPU cache statistics of running graph algorithm PR
on the smallest graph flickr and the largest graph sd, and

summarize the results in Table III and Table IV, respectively.

Here Original means we run PR on the original vertex ordering

of each graph. L1-ref denotes the number of L1 cache refer-

ences. Since all cache accesses must firstly check L1 cache,

thus L1-ref indicates the total number of cache references. All

approaches have similar L1-refs, because running the same

graph algorithm on the same graph (regardless of the vertex

ordering) will involves similar number of cache accesses. L1-

mr denotes the L1 cache miss ratio that is calculated as the

ratio between L1 cache misses and L1-ref. Similarly, L3-ref

denotes the number of L3 cache references. L3-r is the ratio of

cache references checked in L3 cache, i.e., = L3-ref
L1-ref

. A small

L3-r implies that most cache references are hit by the L1 and

L2 cache [24]. The cache-mr denotes the percentage of cache

reference misses in all three levels over L1-ref.

Table III shows that all approaches have small cache miss

ratios, e.g., < 2%. This is because flickr is relatively small,

TABLE V
COMPARISONS ON THE REORDERING TIME (UNIT: SECONDS).

Graph Sort DBG Norder Gorder Sorder Speedup

flickr 0.08 0.47 0.38 40.07 0.39 103×
livej 0.20 0.73 0.89 59.37 0.82 72×
orkut 0.13 0.64 0.40 83.78 0.38 223×
pld 2.07 6.89 18.34 4882.27 11.22 435×
it 1.60 2.50 7.41 178.08 4.67 38×
twitter 2.76 5.78 64.12 10134.90 24.07 421×
sd 4.44 12.06 35.30 10630.40 39.72 268×

1 2 3 4 5
0

10

20

30

40

50

60

R
eo
rd
er
in
g
Ti
m
e
(s
ec
on
ds
)

�

pld it
twitter sd

0.80

0.85

0.90

0.95

1.00

1.05

1.10

R
el
at
iv
e
Sp
ee
du
p

Speedup

Fig. 6. The impacts of k on the reordering time and speedup performances.

while the caches of our machine are sufficiently large. The

reordering approaches except Sort can still reduce cache miss

ratios through better data layout. For graph sd, the cache miss

ratios of all approaches become much greater, as shown in

Table IV. As an example, the original ordering has L3-r as

46.94% and cache miss ratio as 17.52%. Sort and DBG slightly

reduce the miss ratio, while Gorder and Sorder produce much

better vertex orderings that reduce the miss ratio by about 10%.

Gorder achieves the smallest cache miss ratios in both graphs,

and Sorder has quite close cache miss ratios as Gorder in both

tables, with a small gap as 0.16% and 0.36%, respectively.

Comparison on reordering cost. Since a reordered graph

may be used for multiple computations, thus we separately

compare the reordering time of all approaches in Table V.

When the graph size becomes larger, the reordering time of

all approaches increases. We also observe that Gorder spends

the most time than other four approaches to reorder a graph,

with much more overheads about two orders of magnitude.

This is because Gorder needs to calculate locality scores for

all vertices using Equation (1), resulting in high computation

complexity. The two lightweight approaches, i.e., Sort and

DBG, indeed have relatively smaller pre-processing overheads.

Since sorting all vertices in descending order of in-degrees

takes extra time, Norder introduces more reordering costs than

Sorder in most cases. Among the five approaches, Sorder
has the moderate reordering costs. We calculate the speedup

rations of Sorder over Gorder on the reordering time, and list

the results in the last column of Table V. With the comparable

speedup performance as Gorder, Sorder greatly reduces the

reordering overhead by 38 ∼ 435 times.

Impact of parameter κ. We study the impact of parameter

κ on Sorder using graph pld, it, twitter, and sd, and present

the results in Figure 6. A larger κ will aggregate more neigh-

bors to form a hypernode, and thus incurs more computations.

When κ becomes larger, reordering time of pld, twitter, and

sd also increases, while it is less influenced by κ. We also find

that the reordering time of sd is quite stable when κ ≤ 3. The

impact of κ on reordering time may be mainly determined by

the graph structures. We also test the impact on speedup by

varying κ. Specifically, we take the execution time of κ = 1
for each combination of algorithms and graphs as the baseline,

and calculate a relative speedup for each setting of κ. Figure 6

shows that κ = 2 can achieve the best speedup performance.

V. RELATED WORK

Reordering vertices of a graph ahead-of-time can improve

cache locality of most graph algorithms, and thus attracts many

research efforts in recent years. As introduced in Section II-B,

Gorder can achieve the best speedup performance, while in-

curring extremely huge computation overheads. ReCALL [14]

operates on the graph reordered by Gorder to rearrange blocks

of consecutive vertices to further improve the spatial locality,

while at the cost of incurring more computations. Rabbit Order

[2] primarily exploits the community structures to reorder a

graph, while its reordering cost is still unacceptable. To avoid

such a huge pre-processing cost, some lightweight approaches

that heavily rely on the skewed degree distribution of graphs

have been proposed [3], [4], [7], [15], [25]. They renumber the

hub vertices with a high priority, while keeping other vertices

almost unchanged. As a result, they may badly destroy the

community structures among vertices, resulting in the sub-

optimal orderings. Different from these works, our approach

Sorder can well preserve structural properties of real-world

graphs, and can achieve the comparable speedup performance

as Gorder, while introducing the moderate reordering cost.

In addition to graph reordering, there exist other alternative

techniques to improve the cache locality, e.g., cache blocking

[5], graph partitioning [11], [12], vertex scheduling [20].

Different from Sorder, cache blocking and graph partition-

ing require to modify graph algorithms or data structures.

Furthermore, graph reordering is complementary with vertex

scheduling, and thus Sorder can be employed to further

improve the performances of vertex scheduling techniques.

VI. CONCLUSION

This paper presents Sorder to well preserve the structural

properties of real-world graphs for more effective graph re-

ordering. Sorder consecutively renumbers vertices mainly by

exploiting the neighborhood relations among vertices, and is

further enhanced by the hypernode design. The vertex ordering

derived by Sorder thus largely improves the temporal-spatial

locality. Extensive experiments with typical graph algorithms

and graphs demonstrate that Sorder achieves similar speedup

performances as the sophisticated approach, while significantly

reducing the pre-processing overheads.

ACKNOWLEDGMENT

This work was supported in part by China NSFC

Grant (No.61802261) and the grant of Guangdong

Basic and Applied Basic Research Foundation

(No.2020A1515011502). This research was also partially

supported by China NSFC Grant (No.61872248), Guangdong

NSF No.2017A030312008, Shenzhen Science and Technology

Foundation (No.ZDSYS20190902092853047), Guangdong

Science and Technology Foundation (No.2019B111103001

and No.2019B020209001), GDUPS (2015).

REFERENCES

[1] perf tool. https://perf.wiki.kernel.org/index.php. [Online; accessed 28-
August-2020].

[2] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura.
Rabbit Order: just-in-time parallel reordering for fast graph analysis.
In IEEE IPDPS, 2016.

[3] V. Balaji and B. Lucia. When is graph reordering an optimization?
studying the effect of lightweight graph reordering across applications
and input graphs. In IEEE IISWC, 2018.

[4] V. Balaji and B. Lucia. Combining data duplication and graph reordering
to accelerate parallel graph processing. In ACM HPDC, 2019.

[5] S. Beamer, K. Asanović, and D. Patterson. Reducing pagerank commu-
nication via propagation blocking. In IEEE IPDPS, 2017.

[6] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler.
To push or to pull: on reducing communication and synchronization in
graph computations. In ACM HDPC, 2017.

[7] P. Faldu, J. Diamond, and B. Grot. A closer look at lightweight graph
reordering. In IEEE IISWC, 2019.

[8] P. Faldu, J. Diamond, and B. Grot. Domain-specialized cache manage-
ment for graph analytics. In IEEE HPCA, 2020.

[9] R. Geisberger, P. Sanders, and D. Schultes. Better approximation of
betweenness centrality. In ALENEX, 2008.

[10] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Pow-
erGraph: distributed graph-parallel computation on natural graphs. In
USENIX OSDI, 2012.

[11] B. Huang, Z. Liu, and K. Wu. Accelerating PageRank in shared-memory
for efficient social network graph analytics. In IEEE ICPADS, 2020.

[12] G. Karypis and V. Kumar. Multilevelk-way partitioning scheme for ir-
regular graphs. Journal of Parallel and Distributed computing, 48(1):96–
129, 1998.

[13] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social
network or a news media? In ACM WWW, 2010.

[14] K. Lakhotia, S. Singapura, R. Kannan, and V. Prasanna. ReCALL:
reordered cache aware locality based graph processing. In IEEE HiPC,
2017.

[15] E. Lee, J. Kim, K. Lim, S. H. Noh, and J. Seo. Pre-select static caching
and neighborhood ordering for BFS-like algorithms on disk-based graph
engines. In USENIX ATC, 2019.

[16] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical
properties of community structure in large social and information
networks. In ACM WWW, 2008.

[17] Z. Liu, P. Zhou, Z. Li, and M. Li. Think like a graph: real-time
traffic estimation at city-scale. IEEE Transactions on Mobile Computing,
18(10):2446–2459, 2018.

[18] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Distributed GraphLab: a framework for machine learning
and data mining in the cloud. Proceedings of the VLDB Endowment,
5(8), 2012.

[19] C. Magnien, M. Latapy, and M. Habib. Fast computation of empirically
tight bounds for the diameter of massive graphs. Journal of Experimental
Algorithmics (JEA), 13:1–10, 2009.

[20] A. Mukkara, N. Beckmann, and D. Sanchez. Cache-guided scheduling:
exploiting caches to maximize locality in graph processing. In 1st
International Workshop on Architecture for Graph Processing, 2017.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
algorithm: bringing order to the web. In WWW, 1998.

[22] P. Rozenshtein and A. Gionis. Mining temporal networks. In ACM
SIGKDD, 2019.

[23] J. Shun and G. E. Blelloch. Ligra: a lightweight graph processing
framework for shared memory. In ACM PPoPP, 2013.

[24] H. Wei, J. X. Yu, C. Lu, and X. Lin. Speedup graph processing by
graph ordering. In ACM SIGMOD, 2016.

[25] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia.
Making caches work for graph analytics. In IEEE BigData, 2017.

