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ABSTRACT
In this poster, we present our recent work, a wearable system for
achieving real-time 3D arm skeleton. We have coped with the ma-
jor challenge that the skeleton of each arm is determined from the
locations of the elbow and wrist, whereas a wearable device only
senses a single point from the wrist. Result shows that the potential
solution space is huge. This underconstrained nature fundamentally
challenges the achievement of accurate and real-time arm skeleton
tracking. In this study, we propose Hidden Markov Model (HMM)
state reorganization and hierarchical search two methods to im-
prove the heavyweight computation of the state-of-art arm tracking
model and achieve real-time tracking even on mobile phone.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting.
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1 INTRODUCTION
We propose a wearable system for comprehensively understanding
and analyzing the detailed arm motions of people. This system
can track the 3D skeleton (posture) of the entire arm of a user in
real time on mobile phone, e.g., the locations of the elbow and
wrist with respect to (w.r.t.) the body [2]. In addition, it uses mo-
tion sensors from a wearable device only on the user’s wrist (i.e.,
accelerometer and gyroscope from a smart watch or wristband)
instead of attaching multiple sensors on the user’s entire arm.

To develop the aforementioned system, we take advantage of
kinematic studies [1], wherein ArmTrak [2] recently makes a re-
markable contribution to recover user’s arm motions from a single
watch, to achieve the aforementioned skeleton tracking design;
however, the shortcoming is long recovery latency, e.g., a t-time
activity requires approximately 10 × t times to recover even on a
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desktop PC [2]1, which is due to the inherent hardness problem,
and limits the proposed solution to off-line analysis.

Skeleton recovery is essentially a search problem (for unknown
elbow and wrist locations within a huge space). We observe that
the search space can be carefully diminished (without impairing
tracking accuracy), and “unlikely” candidates can be intelligently
excluded as early as possible to considerably accelerate the search.
In particular, we propose HMM state reorganization and hierarchi-
cal search two methods to improve the heavyweight computation
of the state-of-art arm tracking model [2]. By these design, skeleton
tracking occurs in real time on a mobile phone, and can promisingly
achieve a higher accuracy than ArmTrak [2]. In addition, recovery
errors are not accumulated over time.

2 SKELETON TRACKING DESIGN
2.1 Design Principle

Arm skeleton model. An arm skeleton refers to an arm’s 3D
geometric relation, which is uniquely determined by: elbow and
wrist locations, wrist orientation in the torso coordinate system [2].

Design principle of ArmTrak [2]. Via the arm skeleton model,
determining an arm’s skeleton essentially confirms two parameters:
1) locelb : the relative position of the elbow, and 2) oriwrs : the orien-
tation of the wrist in the torso coordinate system. Once locelb and
oriwrs are determined, the wrist location also becomes available
because the arm is a rigid object [1]. In particular, the oriwrs can be
indirectly measured from the watch’s gyroscope data oriwatch [2].
Thus, the remaining task is determining locelb through two phases:

1) Off-line phase: From the kinematic model, ArmTrak observes
that all possible elbow locations, locelb , are within a limited range
given one measured wrist orientation oriwrs , denoted as point
cloud. In the off-line phase, for each wrist orientation oriwrs (of
several degree granularity), ArmTrak builds a library to store its
corresponding point cloud for the user, which is a one-time effort.

2) Recovery phase: When a user’s arm is moving, the acceleration
of the elbow accelb (t) can be converted from the reported acceler-
ation accwatch (t) from the smart watch. After T time stamps, we
haveT point clouds (based on oriwrs (t)). We can generate a feasible
moving trace of the elbow by selecting one location from each point
cloud and infer the corresponding acceleration trace, {accelb (t)}Tt=1.
Then, we find the elbow location trace generating {accelb (t)}

T
t=1

which best matches the indirectly measured {accelb (t)}
T
t=1.

Complexity. The problem can be formulated using the HMMwith
Viterbi algorithmwithinO(S2T ) [2], wherein the search space size is
S , and the total time step isT . To fulfill the HMM formulation, each
circle in Figure 1(a) represents a point cloud at time t of size O(N ).
Each HMM state of ArmTrak is defined as a pair of elbow locations
among two consecutive time stamps. The search space of each

1A fast version of a simple weighted average design is proposed in [2]; however, it is
inaccurate and insensitive to arm motions.
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Figure 1: HMM state constructions of size (a) O(N 2), and (b)
O(N ) for all the states except the first one [3].

HMM state isO(N 2), and the solution complexity isO(N 4T ), which
can be reduced to O(N 3T ) by leveraging the location continuity
constraint [2]. To further accelerate the search, T is downsampled
to 5 Hz from default 50 Hz.

2.2 Accelerating Skeleton Recovery
2.2.1 HMM State Reorganization. The transition from s1 to s2 in
Figure 1(a) can be approximated as:

s ′1 = < locelb (0), locelb (1) > → s ′2 = < locelb (2) >,

which also preserves all possible acceleration values cross the first
three point clouds (Figure 1(b)). The advantage of this update is
that starting from the fourth point cloud (after t3 in Figure 1(b)),
all the remaining states can be defined as st =< locelb (t) >, which
essentially reduce the possible paths from the states in Figure 1(a).
Only the first state has size O(N 2), whereas the sizes of all the
remaining states are O(N ), e.g., the overall search space S is nearly
O(N ). Therefore, search complexity is decreased to O(N 2T ).

2.2.2 Hierarchical Search. In the original Viterbi search, we need
to explore within a large search space for each time step, but only
one location is the correct solution, which implies that most compu-
tations are consumed (“wasted”) to calculate the likelihoods for all
“incorrect” locations so that they can be eventually excluded. Our
core idea is thus to exclude incorrect locations as early as possible
to minimize computational waste for acceleration.

To this end, we propose to conduct the search in a hierarchical
manner. In particular, we first conduct downsampling for point
clouds with a ratio of 1

n1
, i.e.,we group every n1 nearby locations in

each cloud into O( Nn1
) regions and use the centroid of each region

to form a coarse-level search space. After performing the first round
of search on this coarse-level search space, the most likely region
can be determined for each time step, as shown in Figure 2. The
complexity for completing this round of search is O( Nn1

)2T .
We can immediately launch the next round of search after se-

lecting four regions from the first round (nearly in parallel) while
focusing on these selected regions, i.e., the outputs from the first
round. In this round, the effective point clouds are merely “shrunk”
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Figure 2: Illustration of the hierarchical search [3].

to these selected regions of sizeO(n1), as shown in Figure 2. In prin-
ciple, we can further divide each selected region into sub-regions
again. In our implementation, we adopt a two-layer search, thus
the time complexity of the second round search is O(n1)2T .

Thus, complexity decreases fromO(N 2T ) toO(( Nn1
)2T + (n1)2T ),

where n1 ≪ N . This result also indicates that complexity reduction
mostly results from the first round of downsampling.

2.3 System Performance
We develop our system using LG watches (with Invensense MPU-
6515 six-axismotion sensors) and SAMSUNGGalaxy S7. The ground
truth is collected from Kinect 2.0. In our implementation, an activ-
ity with duration t requires t × 0.47 times to be recovered by our
system on the mobile phone. Moreover, we evaluate our system to
traceback at the current time stamp in the HMM search to report
the instant locations every second since our system can run in real
time on mobile phone. Overall, the median errors of elbow and
wrist from our system are 10.53 and 12.94 cm, respectively.

3 CONCLUSION
In this poster, we propose novel techniques to enable real-time 3D
arm skeleton on mobile phone through HMM state reorganization
and hierarchical search two methods to improve the heavyweight
computation of the state-of-art arm tracking model.
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