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Abstract—Accurate traffic prediction can benefit many smart
city applications. Existing works mainly consider traffic pre-
diction on each individual road segment, and heavily rely on
some statistical or machine learning models, which suffer from
either poor prediction accuracy or high computation overheads
for predictions of the whole road network. In this paper, we
instead consider the region-level traffic prediction that is still
useful for many applications. To describe the regional traffic
conditions and capture their spatio-temporal dependencies, we
present a deep learning based model - DeepRTP. Specifically, we
use a novel metric called Traffic State Index (TSI) to measure
regional traffic conditions, and carefully classify traffic data into
three categories that are used to capture hourly, daily, and weekly
traffic patterns. Furthermore, we employ the convolutional and
residual neural networks to model both spatial and temporal
dependencies. Experimental results from real-world traffic data
demonstrate that DeepRTP outperforms five baseline methods
and can achieve higher prediction accuracy.

Index Terms—traffic prediction; deep residual network; spatio-
temporal dependency

I. INTRODUCTION

Comprehensive traffic information benefit urban citizens’

daily life and improve the efficiency of urban transportation.

Accurate predictions of such traffic information are of great

importance for many smart city applications, e.g., transport

network planning, route guidance, and congestion avoidance

[22]. In recent years, the popularity of ubiquitous sensing and

intelligent transport systems has enabled continuous and large-

scale urban traffic monitoring, and thus massive mobility data

could be collected for data-driven traffic prediction [18].

In the literature, there are many research efforts made

to achieve accurate traffic prediction. These works primarily

apply various models to analyze historical and real-time traffic

data to predict traffic conditions in the near future. In general,

some statistical models, e.g., k-nearest neighbors (KNN) [21]

and autoregressive integrated moving average (ARIMA) [17],

and machine learning models, e.g., support vector regression

(SVR) [20] and artificial neural network (ANN) [13], are

leveraged to model the urban traffic [12]. Due to the shallow

architectures of these models, however, prior methods cannot

well capture the complicated spatio-temporal correlation of

urban traffic and thus have low prediction accuracy.

Recently, the emerging deep learning has drawn much

attention due to its multi-layer architecture that could dis-

cover intricate structures and complex patterns [8]. Various

advanced deep learning models, e.g., stacked autoencoder

(SAE) [14], convolutional neural networks (CNN) [15], [19],

long short-term memory neural network (LSTM) [10], [16],

have been used for different kinds of traffic prediction tasks

[12]. Although these methods can derive better results than

the traditional methods, existing attempts still mainly focus on

the traffic prediction of a road segment or a small-scale road

network [15]. Specifically, one deep learning model is built

for predicting the traffic on a road segment, and thus a large

number of such models are needed for the whole road network.

As a result, existing works suffer from poor scalability due to

the enormous computation overheads involved in the training

of many deep learning models [13].

In this paper, instead of predicting traffic condition for each

road segment, we would like to predict the coarse traffic

information at the region level. Specifically, we divide a road

network into a set of regions, where each region may cover

a number of road segments, and predict the traffic conditions

of all regions simultaneously based on some powerful traffic

model. Region-level traffic prediction will greatly reduce the

computation complexity, while still sufficiently supports many

applications, e.g., attribute-aware similar region search that

regards regional traffic condition as one important character-

istic of a region [2] and adaptive fastest path computation

that needs to firstly pre-compute an area-level path given the

traffic conditions of all regions [3]. In addition, regional traffic

prediction would benefit prior works by deciding whether to

launch fine-grained traffic prediction or not. For example, it

is unnecessary to execute the complex deep learning model

based traffic predictions for the road segments, whose locating

regions have been predicted with good traffic condition, since

such road segments should be in good traffic condition as well.

However, it is challenging to achieve efficient and accurate

regional traffic prediction for at least two reasons. First, prior

works mainly use traffic speed or traffic volume to measure

the traffic condition of a road segment, there exists no effective

metric to well describe the traffic condition of a region. Sec-

ond, the traffics in a road network are extremely complex due

to the spatial and temporal dependencies, and how to encode

such spatio-temporal dependencies into the traffic model for

accurate regional traffic prediction is important yet difficult.

To tackle above challenges, in this paper we present Deep-
RTP – a Deep spatio-temporal residual network model for



Regional Traffic Prediction. The contributions of our work can

be summarized as follows:

• We consider and formally define the problem of regional

traffic prediction, and adopt a novel metric named Traffic

State Index (TSI) to measure the traffic congestion of a

region. To the best of our knowledge, this is the first work

to predict traffic condition at region-level.

• DeepRTP models the spatio-temporal traffic dependencies

with deep convolutional and residual neural networks [4].

Specifically, it encodes the traffic conditions of all regions

into a traffic matrix, and adopts convolutional layers to

automatically extract the spatial dependencies among re-

gions. In addition, we summarize temporal dependencies

of regional traffics into three categories, corresponding

to hourly, daily, and weekly traffic patterns. DeepRTP
employs three residual networks to model these properties

respectively, and wisely fuses their outputs to derive the

final traffic prediction of the whole road network.

• We conduct experiments with a real-world traffic dataset

to evaluate DeepRTP. Experimental results demonstrate

that DeepRTP can achieve accurate traffic prediction and

significantly outperforms the five baseline methods.

The rest of this paper is organized as follows. We review

the related works in Section II, and present the problem

statement in Section III. The design of DeepRTP is detailed in

Section IV. In Section V, we conduct experiments to evaluate

DeepRTP. Section VI concludes this paper.

II. RELATED WORK

Traffic prediction usually applies traffic models to analyze

both historical and real-time traffic data for predicting traffic

conditions in the future [12], which would benefit drivers

and pedestrians [6]. Typically, traffic speed and traffic volume

are used as the indicators to measure the traffic conditions,

and some statistical or advanced machine learning models

are widely adopted to mine traffic data for the prediction

[18]. Pan et al. propose a hybrid traffic prediction approach

that automatically selects ARIMA model or historical average

model to predict traffic speeds on road segments by statistically

analyzing the traffic data [17]. Yu et al. adopt the k-nearest

neighbor algorithm for short-term traffic condition prediction

[21]. In addition to the statistical models, traditional machine

learning models are frequently used for traffic prediction as

well. For example, Liu et al. propose the dynamic artificial

neural network (ANN) modeling to predict traffic speeds of

road segments by exploiting the road network correlation [13].

Wu et al. apply support vector machine (SVM) for travel

time prediction on a highway network [20]. In the past years,

many other models, e.g., Kalman filtering and Bayesian model,

have been utilized for traffic prediction [18]. These methods,

however, may not well model the complex traffics and thus

can not achieve high prediction accuracy.

Recently, unprecedented data availability [9] and the ability

to rapidly process these data together make possible the

immense development of deep learning theory [8]. Various

deep learning models have also been successfully used for

Fig. 1. The testing road network, which is partitioned into 4× 8 regions for
regional traffic prediction.

different kinds of traffic prediction tasks [12]. Lv et al. use

the stacked autoencoder (SAE) model to learn generic traffic

flow features, which are further fed into a logistic regression

layer for traffic flow prediction [14]. Ma et al. convert traffic

dynamics into images and adopt the convolutional neural net-

work (CNN) model for traffic speed prediction [15]. Similarly,

Wang et al. rely on CNN models for traffic speed prediction

and attempt to explore the congestion sources [19]. Taking

auxiliary information like POIs and online crowd queries into

consideration, Liao et al. exploit the long short-term memory

(LSTM) neural network [16] for more accurate traffic predic-

tion [10]. Furthermore, Zheng et al. firstly apply the residual

learning technique for the prediction of citywide crowd flows

[23]. Although these works could achieve better results, they

mainly focus on the traffic prediction of a road segment or

a small-scale road network [15]. They usually build a deep

learning model for each individual road segment, and many

such models are needed for the entire road network, which will

introduce unacceptable computation overheads [13]. Different

from previous works, we propose a novel metric to measure

the traffic condition at region-level and use only one deep

learning model to predict city-scale traffic conditions instantly.

III. PROBLEM STATEMENT

We model the underlying road network for traffic prediction

as a graph G(V, E), where road segments are represented as

the vertices and edges are formed between any two physically

connected road segments. For regional traffic prediction, we

partition graph G into regions R = {R1, · · · , RM}. Figure 1

shows the regions of our testing road network.

Definition 1: (Region) A road network is partitioned into an

m× n grid map based on the longitude and latitude, where a

grid represents a region and covers a number of road segments.

We adopt a novel metric named Traffic State Index (TSI) to

measure the traffic condition of a region. For region Ri, the

calculation of its TSIRi
will jointly consider several aspects

of each road segment rj in region Ri, i.e.,

TSIRi =

∑
rj∈Ri

lj×kj×[vf
j −vj ]

+

vf
j∑

rj∈Ri
lj × kj

× 100, (1)



where lj , kj , vfj , and vj are the length of road segment rj ,

the number of lanes in road segment rj , speed limit of road

segment rj , and current traffic speed of road segment rj ,

respectively. The function [x]+ in Equation (1) is defined as

[x]+ = max(0, x), (2)

which always returns a non-negative value. In principle, a

larger TSIRi
means more congested traffics in region Ri, and

the road segments in this area are more likely to be in poor

traffic condition as well.

For traffic prediction, we divide the time into slots with size

of Δ. In the t-th time slot, we make use of the traffic data to

calculate TSI values for all regions, which can be denoted

by an m × n matrix Xt
1. Therefore, we formally define the

regional traffic prediction problem as follows.

Definition 2: (Regional Traffic Prediction Problem) Given

the historical and current TSI matrices X1, · · · ,Xt, the re-

gional traffic prediction problem aims to predict Xt+1.

IV. THE DESIGN OF DeepRTP

In this section, we present the system overview of DeepRTP
and then elaborate each module in the following subsections.

A. System Overview

The system architecture of DeepRTP is illustrated in Figure

2. At the high level, DeepRTP takes historical and real-time

traffic data as the input, and predicts the regional traffic

conditions of the next time slot. Specifically, the Data Pro-
cessing module calculates the TSI values for all regions with

traffic data using Equation (1). In particular, the traffic data of

each time slot are converted to a 2-channel image-like traffic

matrix. All traffic matrices are then categorized into three

groups according to their temporal properties, which are used

to capture the temporal dependencies of traffics from three

aspects of weekly, daily, and hourly. These traffic matrices

are then fed into three components of the Prediction Model
module to separately capture the temporal dependencies. The

three components share the same network structure, which

is built with convolutional layers and residual units. Such

a network structure can well capture spatial dependency of

traffics and residual units could support deeper networks. The

outputs of the three components are fused together based on

some learned weight matrices. Finally, the aggregated result is

inputted into the tanh function to derive the final prediction.

B. Data Processing

We divide the entire time duration covered by all traffic data

into a series of time slots with a given slot size Δ. For the

t-th time slot, we compute TSI value for each region based on

the average traffic speeds of all road segments in the region

using Equation (1). The TSI values of all regions form a traffic

matrix Xt, which describes the general traffic conditions of

the whole road network. Existing studies have demonstrated

that there exist traffic patterns across time of the day and day

1The entries for regions with no road segments are filled with zeros.
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Fig. 2. The system architecture of DeepRTP.

of the week [11], [23]. Therefore, we categorize all traffic

matrices into three groups, namely hourly data, daily data,

and weekly data, which implicitly capture traffic patterns from

different temporal aspects to predict Xt+1. Specifically, the

traffic matrices are classified into different groups as follows.

• Hourly data. The traffic conditions in the (t+1)-th time

slot are strongly influenced by the traffics in the past

time slots. Thus, DeepRTP takes the recent h traffic

matrices, i.e., Xt,Xt−1, · · ·Xt−h+1, to learn such a

temporal closeness dependency for traffic prediction.

• Daily data. To capture the daily traffic pattern, DeepRTP
groups the traffic matrices of the same time slot of the

past few days, which implicitly reveals the traffic trends.

Specifically, assume that there are totally Td time slots in

a day, and thus such traffic matrices in recent d days, i.e.,
Xt+1−Td

,Xt+1−2×Td
, · · · ,Xt+1−d×Td

, will be grouped

into this category.

• Weekly data. Similarly, DeepRTP also builds a group to

capture weekly traffic pattern. The traffic matrices of the

same time slot of a day and the same day of a week are

used to learn such a periodical pattern. Specifically, this

category includes traffic matrices in recent w weeks, i.e.,
Xt+1−7×Td

,Xt+1−2×7×Td
, · · · ,Xt+1−w×7×Td

.

C. The Prediction Model

As shown in Figure 2, DeepRTP adopts the same deep

learning network structure to model temporal dependencies

of traffics in hourly, daily, and weekly three aspects. The deep

learning model is composed of two components: convolutional

layer and residual unit. The outputs of the three networks are

then fused for the final prediction through the tanh function.

In addition, a loss function is designed to train this prediction

model. Next, we will introduce each component of the model

in detail as follows.



Convolutional layer. Convolutional neural network (CNN)

is widely used to hierarchically capture spatial structural infor-

mation and has already been successfully applied to computer

vision domain for image processing [8], [15]. Thus we adopt

several convolutional layers to capture the spatial dependency

of traffics with kernel size of convolution as 3 × 3, i.e., the

traffic of one region is spatially correlated with the traffics of

its neighboring regions. One convolutional layer captures near

spatial dependency for a region, and thus many convolutional

layers could capture distant spatial dependency [23].
For each category of traffic matrices, each traffic matrix X

is firstly processed by the Batch Normalization [5] with its

output denoted by X0, and then fed into the convolutional

layer with the following transformation:

X1 = f(W 1 ∗X0 + b1), (3)

where ∗ denotes the convolutional operation; f is the rectifier

function as the activation function, i.e., f(x) = max(0, x);
and W 1 and b1 are the learnable parameters in the first

convolutional layer [7].
Residual unit. To avoid the problem of vanishing gradients

in most deep learning models [8], we make use of the residual

learning technique [4] to support a very deep network to well

capture traffic dependencies. Deep residual learning allows the

CNN model to have a super deep structures of over 100-layers,

and has been successfully applied in some challenging tasks,

e.g., image classification and object detection. Specifically,

DeepRTP stacks L residual units after the first convolutional

layer as shown in Figure 2. Each residual unit transforms the

input data X� as follows:

X�+1 = X� + F(X�, θ�), � = 1, · · · , L, (4)

where F is the residual function; and θ� is the parameter to be

learned in the �-th residual unit. We adopt the similar residual

unit structure as [23], which uses two combinations of one

ReLU function and one convolutional layer.
Fusion and Loss function. The outputs of the three deep

learning components for weekly data, daily data, and hourly

data are denoted by XL+2
w , XL+2

d , and XL+2
h , respectively.

DeepRTP fuses these outputs using the following equation:

Xall = Ww ◦XL+2
w +Wd ◦XL+2

d +Wh ◦XL+2
h , (5)

where ◦ represents the function of element-wise multiplica-

tion; Ww, Wd, and Wh are the learnable parameters, which

adjust the influence weights of weekly pattern, daily pattern,

and hourly pattern on the future traffics.
DeepRTP predicts the (t + 1)-th TSI values of all regions,

denoted by X̂t+1, with the hyperbolic tangent function, i.e.,
tanh. The model is trained with historical traffic data using

the mean squared error to design the loss function as

L(λ) = ||Xt+1 − X̂t+1||22, (6)

where λ are all learnable parameters in the prediction model.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate

DeepRTP with the real-world traffic data.

A. Experimental Setup
Dataset. We use an open traffic speed dataset of our testing

city to evaluate DeepRTP. We export the road network of the

testing city with the open-sourced OpenStreetMap [1], and

focus on the downtown area for the regional traffic prediction.

Figure 1 shows the testing road network, which in total has

17017 road segments. For each road segment, we have a series

of average traffic speeds for 15-minute time slots, with a

duration of two months. We partition the testing road network

into regions and calculate their TSI values using Equation (1).

The TSI values are scaled into the range [−1.0, 1.0] with the

Min-Max normalization method. We thus derive a series of

traffic matrices. For the performance evaluations, we choose

traffic matrices from the last week as the testing data and treat

all the remaining traffic matrices as the training data.
By default, we set the size of time slots as Δ = 15minutes,

and partition the experimental road network into 4×8 regions.

We set L = 2 as the number of residual units. In addition, we

set h = 3, d = 3, and w = 1 to classify traffic matrices into

hourly, daily, and weekly data groups. To train the prediction

model, we set batch size and learning rate as 4 and 0.0002,

respectively.
Baselines. We compare DeepRTP with the following five

alternative methods.

• HisAve predicts the TSI value of a region as the average

value of all TSI values of this region in the same time

slot of each historical day [17].

• HisAve-w works similarly as HisAve while it takes the

weekly pattern into consideration. This method predicts

the TSI value of a region as the average value of all TSI
values of this region in the same time slot of a day and

the same day of a week in history [23].

• ARIMA is a well-known time series analysis model for

forecasting future values [17].

• SARIMA represents the seasonal ARIMA, which takes the

weekly pattern into consideration as well [23].

• VAR is the advanced vector autoregressive model that cap-

tures pairwise-relationships among traffics of all regions.

It will introduce heavy computation overheads due to the

huge number of parameters [20].

We implement and run all methods on a server with an

Intel Core i7 6700@3.4GHz and 8GB memory. For each

baseline method, we optimize its parameters to achieve the

best performance.
Performance metric. We use the rooted mean squared error

(RMSE) as the metric to evaluate all methods, i.e.,

RMSE =

√
1

N

∑
i

(xi − x̂i)2, (7)

where xi and x̂i are the ground truth and prediction, respec-

tively; N is the total number of predictions. Note that x̂i is the

normal value by re-scaling the output of the prediction model.

B. Experimental Results
Visualization of traffic predictions. We have implemented

a simple traffic visualization platform to demonstrate the traffic



(a) Predicted TSIs

(b) Real TSIs

Fig. 3. Visualizations of traffic prediction results and the ground truth. The
three regions at the bottom-right have no road segments and thus their TSI
values are filled with zeros.

prediction results. Figure 3 presents an instance of the traffic

prediction results for a time slot in the peak hours of a typical

workday. By comparing the predicted TSIs in Figure 3(a) and

the ground truth TSIs in Figure 3(b), we find that DeepRTP
can accurately predict the regional traffic conditions.

Comparison results. We compare DeepRTP with the base-

line methods and present their results in Table I. By com-

paring HisAve and HisAve-w, we see that the weekly pattern

information can indeed improve the prediction accuracy, by

reducing RMSE from 2.40 to 2.25. ARIMA-like methods per-

form slightly better than the historical average based methods,

while VAR has the best RMSE result among the five baselines.

From Table I, we find that our method DeepRTP significantly

outperforms these baselines, with at least 87% reduction on

the RMSE value.

Furthermore, we conduct extra experiments to examine three

variants of DeepRTP by disabling one of the three components,

i.e., the three networks to model hourly pattern, daily pattern,

and weekly pattern. Table I shows that each component indeed

contributes to the overall prediction accuracy, while the hourly

pattern has the largest influence on the prediction performance

of DeepRTP, since disabling the component of hourly pattern

leads to the maximum increase on the RMSE value. Obviously,

the traffic conditions of the next time interval are more related

with the recent traffic conditions.

Impact of model settings. We also study the performances

of DeepRTP by varying the time slot size Δ and the number

of residual units, and plot the results in Figure 4. Specif-

ically, we derive the traffic speeds for each road segment

TABLE I
THE PERFORMANCE COMPARISONS AMONG DIFFERENT METHODS.

Method RMSE
HisAve 2.40
HisAve-w 2.25
ARIMA 2.05
SARIMA 2.10
VAR 1.91

DeepRTP 1.02
DeepRTP without hourly component 1.12
DeepRTP without daily component 1.04
DeepRTP without weekly component 1.05
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Fig. 4. Performance impacts of model settings with different time slot sizes
and different numbers of residual units.

by averaging every 2 and 4 original traffic speeds when we

set Δ = 30minutes and Δ = 60minutes, respectively. In

general, we find the RMSE values become smaller when we

enlarge Δ from 15minutes to 60minutes, which means that

larger time slot size leads to higher prediction accuracy. This

is because traffic condition of a region becomes more stable

within a long period, and thus it will be more predicable.

Figure 4 also shows the performances of DeepRTP with

different number of residual units, i.e., the setting of L. We

see that the RMSE value decreases as the number of residual

units increases. With no residual unit, the RMSE value of

DeepRTP is pretty large and these results demonstrate that

residual learning indeed can help CNN models to avoid the

gradient vanishing problem and achieve better performances.

For the traffic matrix of size 4 × 8, we find L = 2 can well

capture city-scale traffic dependencies and thus achieve the

best performances for all Δ settings. A larger L, however,

will impair the performance, as reported in Figure 4.

Impact of road network partitioning. Figure 5 shows the

performances of DeepRTP when we partition the road network

into different numbers of regions. The traffic prediction results

become worse as the number of regions increases. With finer

partitioning, traffic dependencies among regions become more

complicated and much deeper network may be needed.
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VI. CONCLUSION

This paper presents DeepRTP for regional traffic predic-

tions. DeepRTP adopts a novel TSI metric to measure the

traffic condition of a region, and proposes a deep spatio-

temporal residual network model for accurately predicting the

TSI values of all regions. Experimental results from real-world

traffic data demonstrate that DeepRTP significantly outper-

forms five baseline methods and can achieve high prediction

accuracy.
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