Walkway Discovery from Large Scale Crowdsensing

Chu Cao ${ }^{\text {1 }}$, Zhidan Liu ${ }^{2}$, Mo Li ${ }^{1}$, Wenqiang Wang 3, Zheng Qin 3

Nanyang Technological University¹, Singapore Shenzhen University², Shenzhen, China Institute of High Performance Computing33, Singapore

1 National Science Experiment

\& An island-wide outdoor science experiment carried by Singapore students.
\& Organised by National Research Foundation and Ministry of Education in Singapore.

* Crowdsensing platform.

Students with SENSg

Portal for students

1 National Science Experiment

\& Coverage of NSE project

| 450,000
 students
 122 schools
 in 2015 |
| :--- | :--- | :--- | :--- |
| 85 schools |
| in 2016 |

1 National Science Experiment

\& Coverage of NSE project
450,000
students
122 schools
in 2015

1 National Science Experiment

\& Coverage of NSE project

2 Motivation

＊Walkways are important for pedestrians

Recommended route of Google Maps from NTU to BLK 941

2 Motivation

* Samples of uncharted walkways

3 Related Work

* Map completion: automatic map updating

- Frequently used uncharted route will be added to existing map.

3 Related Work

* Map completion: automatic map updating

- Both of them focus on motorways using GPS data
- Potential assumption: structured motorways

Wang Y, Liu X, Wei H, et al. CrowdAtlas: Self-updating maps for cloud and personal use Shan Z, Wu H, Sun W, et al. COBWEB: a robust map update system using GPS trajectories

3 Related Work

* Map completion: automatic map updating

Walkways Unstructured

Wang Y, Liu X, Wei H, et al. CrowdAtlas: Self-updating maps for cloud and personal use Shan Z, Wu H, Sun W, et al. COBWEB: a robust map update system using GPS trajectories

4 Problem Definition

* A road network is a directional graph $\mathrm{C}(\mathrm{V}, \mathrm{E})$
- Previous work

Given structured location data, discover road segments.
A road segment is a directed edge in graph G, associated with a deterministic travelling direction and two terminal points.

- Ours

Given unstructured location data, discover walkable areas.
A walkable area is an area bounded by nearby road segments or points of interest. Unconstrained movements of people are allowed within the area.

5 System Design

* System architecture

5 System Design

* System architecture

5 System Design

\& Data classification

HDBSCAN
Map Matching

5 System Design

* Walkable area estimation

Unmatched locations

5 System Design

* Walkable area estimation

Unmatched locations

- Position: focal pints determined by consecutive locations
- Shape: length sum = step_count x stride_length

5 System Design

* Walkable area estimation

Unmatched locations

5 System Design

* Walkable area estimation

Unmatched locations

5 System Design

* Walkable area estimation

Unmatched locations

5 System Design

* Walkable area estimation

Unmatched locations

5 System Design

* Representative walkway
- Insufficient sampling data
- Better compatible with current map

A representative walkway represents the connectivity a walkway area serves between two known road segments. If we specify the intersection points between the road segments and the walkable area, the representative walkway can be denoted as a polyline connecting the two intersection points and integrated into the road graph G as an edge. There may be multiple representative walkways connecting different road segments adjacent to the same walkable area.

5 System Design

＊Walkway identification

Probability：integral of $f(X)$

5 System Design

* Walkway identification

6 Evaluation

* Walkway discovery

- 736 walkways discovered with data from about 13,000 students in 1 week

6 Evaluation

* Walkway discovery

- Region D contains most data more than 10G

6 Evaluation

* Walkway discovery

- The lengths of 90% of the walkways are shorter than 598 m .

6 Evaluation

* Site-inspection

- 224 walkways are manually checked.
- The accuracy of 200-400 group is 89%.

6 Evaluation

* Example of new found walkways

6 Evaluation

* Utility study
- Initiate 100 trips in this study.

- Leveraging our new map can save travel distance.

One More Thing

* Google Street View

$\dot{~}$
 \section*{Google Street View}

One More Thing

* Google Street View - easy to access
- Help verify the ending points of new-found walkways

The image requirement is a HTTP URL formatted as below:

https://maps.googleapis.com/maps/api/streetview?parameters

- location
either a text string (such as Chagrin Falls, OH) or a lat/Ing value (40.457375,-80.009353)
- size
specified as \{width\}x\{height\} - for example, size=600x400 (unit: pixel)
- heading
compass heading of camera.from 0 to 360 (both values indicating North, with 90 indicating East, and 180 South)
- FOV
horizontal field of view of the image.
- key
a key of Google Service monitoring API usage

One More Thing

\& Google Street View - easy to access
An example
https://maps.googleapis.com/maps/api/streetview?

$$
\text { size }=640 \times 320 \&
$$

location $=1.3633164,103.8502798 \&$
heading $=30$ \&

$$
f o v=120 \&
$$

key=AlzaSyDCdDvb_rHXOhM-O4rG-fNfxrgR-YrU6GU

One More Thing

\& Auto-Verification

Walkway

Google Street View

Features

One More Thing

* Auto-Verification

Walkway

Google Street View

Features

One More Thing

* Effect of Auto-Verification on accuracy

- support of <SC-1, SC-2> is 3
\Rightarrow support of \langle SC-1, SC-3> is 1

Two-phase clustering

SUPPORT	2	4	6	8
w/ GSV	93.2%	94.8%	95.7%	96.0%
w/o GSV	80.9%	88.6%	93.5%	95.8%

Conclusion

* This is the first paper targeting at walkway discovery.
*Our work is a great application of the crowdsensing NSE project.
* Our proposed method is general enough to be fed with all kinds of geolocation data.

Q \& A

Thank you very much.

Source code: https://github.com/caochuntu/IPSN2018_guizu

