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AbstrAct
Traffic information is of great importance for 

urban cities, and accurate prediction of urban traf-
fics has been pursued for many years. Urban traf-
fic prediction aims to exploit sophisticated models 
to capture hidden traffic characteristics from sub-
stantial historical mobility data and then makes 
use of trained models to predict traffic conditions 
in the future. Due to the powerful capabilities of 
representation learning and feature extraction, 
emerging deep learning becomes a potent alter-
native for such traffic modeling. In this article, we 
envision the potential and broard usage of deep 
learning in predictions of various traffic indicators, 
for example, traffic speed, traffic flow, and acci-
dent risk. In addition, we summarize and analyze 
some early attempts that have achieved notable 
performance. By discussing these existing advanc-
es, we propose two future research directions to 
improve the accuracy and efficiency of urban traf-
fic prediction on a large scale.

IntroductIon
Comprehensive urban traffic information bene-
fits urban citizens’ daily life and improves urban 
transportation efficiency. Accurate predictions of 
such traffic information are of great importance 
for route planing, navigation, and other mobility 
services. Urban traffic prediction generally applies 
traffic models to analyze various historical and 
real-time traffic data to predict traffic conditions in 
the future. Traffic speed, traffic flow, and accident 
risk are representative indicators of traffic condi-
tions, and tremendous efforts have been made 
to accurately predict such indicators as the traffic 
prediction targets in the past decades by leverag-
ing types of mobility data and traffic models [1].

Traditionally, people are used to deploy vari-
ous infrastructures, including loop detectors, traf-
fic cameras, and radars, at some important road 
intersections to collect mobility data [2]. Howev-
er, due to the high deployment and maintenance 
costs, it is prohibitive to widely adopt them on 
a city scale, which thus largely limits the cover-
age of traffic monitoring. Thanks to the popularity 
of ubiquitous sensing and Intelligent Transporta-
tion Systems (ITS) in recent years, we can gath-
er unprecedented mobility data by exploiting a 
variety of mobile devices (e.g., smartphones and 
on-board GPS devices) and automatic fare col-
lection (AFC) devices widely deployed by urban 
transit systems (e.g., subways, buses, and taxis). 

Such emerging big data substantially augment the 
data availability (coverage and fidelity) and also 
enriches data diversity, so that large-scale and reli-
able traffic predictions become viable.

To leverage such benefits, conventional meth-
ods utilize statistical models or machine learn-
ing models to predict traffic flows. They rely on 
human-crafted features to unveil and capture 
underlying traffic characteristics and further take 
instant traffic condition measurements as input, 
together with models built on the obtained fea-
tures, to predict future traffic conditions. How-
ever, traffic flows can be influenced by various 
factors in practice, for example, transport regula-
tions, weather conditions, and so on. These man-
ually selected features have been shown to be 
inadequate to comprehensively describe traffic 
characteristics and thus cannot achieve accurate 
predictions [2].

Recently, unprecedented data availability and 
the ability to rapidly process these data together 
make possible the immense development of deep 
learning theory [3]. Deep learning has drawn 
much attention due to its remarkable capability to 
automatically extract features from large-scale raw 
data, and has already been successfully applied 
in various domains, for example, computer vision 
and speech recognition.

Compared to classic machine learning models, 
for example, SVM and ANN, which only have a 
shallow architecture to capture features, deep 
learning models inversely use multi-layer (i.e., 
“deep”) architecture to discover intricate struc-
tures and complex patterns, where different layers 
capture features from different perspectives and 
finally together form a multi-level abstraction.

In view of the powerful capabilities of deep 
learning, we envision the potential and broad 
usage and impact of its integration with rich 
mobility data in future urban traffic prediction. 
In this article, we introduce the basic compo-
nents involved in the procedure of urban traffic 
prediction, including the types of input mobility 
data, traffic modeling, and various target traffic 
indicators, for example, traffic speed, traffic flow, 
and accident risk. We investigate the possible 
approaches of applying deep learning to various 
kinds of traffic predictions, and meanwhile discuss 
those early attempts that have already exploit-
ed deep learning for accurate predictions of var-
ious traffic indicators. Based on discussing these 
existing advances, we analyze the inherent match 
between deep learning and data-driven traffic pre-
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diction. Moreover, we also point out two poten-
tial research directions, i.e., joint optimization of 
multi-source data and traffic modeling, and paral-
lel computing promoted deep learning to accel-
erate traffic predictions, for future explorations. 
To the best of our knowledge, this is the first arti-
cle that examines and summarizes deep learning 
based urban traffic predictions, and we believe 
this work could inspire a variety of follow-up work 
in this area.

The rest of this article is organized as follows. 
First we introduce the concepts involved in urban 
traffic prediction. Then we discuss the potential 
of deep learning in traffic prediction and analyze 
existing attempts. Next we discuss possible direc-
tions to improve the accuracy and efficiency of 
large-scale traffic prediction. Finally, we conclude 
this article.

concepts of urbAn trAffIc predIctIon
Urban traffic prediction concerns the prediction 
of traffic conditions made from a few seconds to 
a few hours into the future based on current and 
historical traffic information [1]. Many research 
efforts have been made to accurately model traf-
fic indicators such as traffic speed, traffic flow, 
and accident risk, and produce anticipated traffic 
conditions. Figure 1 demonstrates the high-level 
procedure of urban traffic prediction, including 
mobility data collection, advanced traffic model-
ing, and targets of traffic predictions.

MobIlIty dAtA collectIon
The mobility data involved in traffic predictions 
can be classified into the following categories.

Traffic Data from Infrastructures: Many infra-
structure devices, e.g., loop detectors and traffic 
cameras, have been deployed in cities to con-
tinuously collect traffic data. The loop detectors 
are buried under traffic lanes of some important 
roads, and can detect vehicles passing by. Such 
measurements are used to calculate the traveling 
speed of each individual vehicle and also count 
the total number of vehicles passing by (i.e., 
traffic flow) within a period. Similarly, cameras 
are placed above road intersections and used to 
capture images of vehicles passing by. Based on 
computer vision techniques, traveling speeds of 
vehicles and traffic flows can also be derived.

Trajectory Data from Vehicles: In urban cit-
ies, a large number of public vehicles (e.g., taxis 
and buses) have been equipped with GPS devic-
es, and thus can periodically report their status, 
including current location, traveling speed, direc-
tion, and so on Those reports indicate the tra-
jectories of vehicles that contain traffic condition 
measurements of the roads.

AFC Records from Transit Systems: Modern 
public transportation networks rely heavily on 
AFC devices to automatically collect transit fees 
from bus and subway passengers, who need to 
tap their smartcards to AFC readers when they get 
on and off buses or subways. Thus, AFC systems 
record the boarding/alighting (bus or subway) sta-
tions/time of passengers, and all such records can 
be used to construct a trip origin-destination (OD) 
matrix that reveals mobility flows.

Other Data Sources: There are other data 
sources useful for traffic predictions. For example, 
accident reports, which contain location, sever-

ity, and event of each accident, provide helpful 
information to assess potential accident risk of 
each location within a city. Social networking ser-
vices can treat humans as sensors to probe the 
dynamics of a city, and thus social media data 
can help infer traffic anomalies (e.g., accidents) as 
well. Cellphone data indicate users’ movements 
within a city at cell-tower levels, and provide hints 
for inferences of traffic conditions. In addition, 
sensing data from crowdsourcing systems also 
serve as an important data source for traffic pre-
diction. All such data measure urban traffic from a 
complimentary perspective.

AdvAnced trAffIc ModelIng
Urban traffic is complicated and usually non-lin-
ear, and thus some advanced traffic models 
are preferred, for example, statistical models or 
machine learning models, to capture the hidden 
traffic characteristics from mobility data and then  
facilitate the predictions based on input of real-
time data.

As shown in Fig. 1, advanced traffic model-
ing is an iterative process that consists of several 
phases. To construct a traffic model, we first need 
to extract some desired values (i.e., features) from 
the raw mobility data. Such a set of features are 
correlated with the target traffic conditions. Tak-
ing the traffic condition ci of a road segment si 
as an example, ci is not only influenced by traffic 
conditions of si’s neighboring road segments in 
the spatial dimension, but also impacted by time 
of the day (e.g., peak hours and non-peak hours) 
and day of the week (e.g., workday and weekend) 
in the temporal dimension. Those spatial-temporal 
factors together determine the evolution of ci and 
play an important role in accurately predicting its 
future status. After the feature extraction phase, 
a small set of the most relevant features are fur-
ther selected based on some criteria, for example, 
information entropy, to simplify the modeling and 
enhance the generalization capability of a model. 
After constructing the traffic model only using the 
most informative and non-redundant features, we 
can tune the parameters through massive training 
data and evaluate the derived model with testing 
data. The whole process of traffic modeling can 
be repeated until target prediction performances 
(e.g., accuracy) are achieved. The persisted traffic 
model is the one that encodes the traffic char-

FIGURE 1. The basic components of urban traffic prediction.
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acteristics and can be used for traffic prediction 
given the real-time input mobility data.

Existing works mainly rely on models like 
ARIMA, ANN, and SVM to capture the complex 
traffic [1]. When building such traffic models, 
feature extraction and selection are significant-
ly important as they will determine the final per-
formance of a traffic model. These procedures, 
however, are heavily dependent on man-crafted 
feature engineering, which calls for rich experi-
ences and expert knowledge.

tArgets of trAffIc predIctIon
According to the prediction targets of interest, 
urban traffic predictions can be further subdivided 
into traffic speed prediction, traffic flow prediction, 
and traffic accident risk prediction. Table 1 sum-
marizes these types of traffic predictions, as well 
as their involved data sources and desired output.

Traffic Speed Prediction: Traffic speed is a 
widely adopted indicator to measure the traffic 
condition of one road segment, which is gener-
ally calculated as the average traveling speed of 
all sampling vehicles on a given road segment. 
Existing works derive such vehicular speed mea-
surements either indirectly from data collected by 
loop detectors and cameras [2] or directly from 
GPS-equipped vehicles [4]. They construct a traf-
fic speed model from historical data by adopt-
ing classic machine learning models, and take 
real-time sampling speeds as the input to predict 
future traffic speeds. The predicted traffic speeds 
can be translated to certain congestion levels 
(e.g., slow, normal, and fast) according to some 
mapping rules.

Traffic Flow Prediction: In general, traffic flow 
is defined as the total number of target objects 

(i.e., vehicles or humans) that pass through an 
area during a period. The area can be a road 
segment or a region in the city. Different from 
traditional works that hold many assumptions on 
human mobility, more recent approaches model 
and predict the traffic flow based on the realistic 
human mobility data collected from infrastruc-
tures and AFC systems. Traffic flows reveal the 
movements of crowds and potentially determine 
the traffic distributions [5].

Traffic Accident Risk Prediction: Traffic acci-
dents, although rare, have serious impacts on 
urban traffic. Therefore, it is necessary to assess 
traffic accident risks for each specific road and 
region, which can be measured as likelihoods, 
meaning how likely is it that traffic accidents might 
occur on a road/region. Recent practices mainly 
associate accident risks with current traffic condi-
tions and human mobility, and thus they develop 
models to mine relations between mobility data 
and historical accident reports for traffic accident 
risk prediction [6].

deep leArnIng bAsed trAffIc predIctIon
A prIMer on deep leArnIng

Although there exist various forms of deep learn-
ing models, they share a common architecture 
as shown in Fig. 2, which contains an input layer, 
an output layer, and from several to more than 
a thousand hidden layers in between. Raw data 
initialize the values of the input layer while the 
output layer emits the desired inferences. All hid-
den layers are responsible for transforming states 
of the input layer into the expected inferences 
of the output layer by capturing the high-level 
abstractions. Each layer in the network contains a 
number of units, and the sizes could vary among 
different layers. Links exist between units of any 
two neighboring layers and each link is associ-
ated with a weight. Every unit has an activation 
function that determines how to calculate its own 
state based on units from the immediately previ-
ous layer and in turn exposes its state to the next 
layer. One of the most popular activation func-
tions recently is the rectified linear unit (ReLU), 
which is a half-wave rectifier f(x) = max(x, 0).

Next we will introduce several popular models 
that have already been well exploited [3].

Convolutional Neural Network (CNN): The 
CNN model is primarily designed to process 
2-dimensional data, for example, images. As 
shown in Fig. 3a, a CNN model is composed of 
an input layer and an output layer, as well as mul-
tiple hidden layers, which could be the convo-
lutional, pooling, or fully connected layers. The 
convolutional layers adopt convolutional filters, 
which apply certain transformations on the input 
data to capture their properties. Next follow pool-
ing layers that combine the output of unit clusters 
at a previous layer into a single unit in the next 
layer by employing the max or min filter. A pool-
ing layer learns more abstract representations of 
the data, and meanwhile acts as a form of dimen-
sionality reduction to simplify the whole model. 
A fully connected layer is used to complete the 
inference.

Recurrent Neural Network (RNN): The RNN 
model is mainly used for tasks that are involved 
with sequential inputs, for example, speech and 

TABLE 1. A summary of different urban traffic predictions.

Category Involved data sources Desired output

Traffic speed prediction Infrastructures, GPS-equipped vehicles
Average traffic speed (or 
congestion level)

Traffic flow prediction Infrastructures, AFC systems
Total number of objects pass-
ing through a road/region

Traffic accident risk 
prediction 

Infrastructures, AFC systems, social 
media data, historical accident reports

Accident risk probability for 
each road/region

FIGURE 2. A deep neural network with fully-connected layers. It contains an input 
layer, an output layer, and many hidden layers. Each hidden layer contains a 
number of units that use an activation function (i.e., ReLU) to calculate the 
state based on units from the immediately previous layer.
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language, due to its “memory” design in the form 
of a loop as shown in Fig. 3b. A loop allows infor-
mation to be passed from one step to the next 
(Fig. 3b left). RNNs process an input sequence 
one element at a time, maintaining output results 
in the hidden units that implicitly persist informa-
tion about the history of all past elements. When 
unfolding the loop, an RNN can be viewed as 
a stack of separate neural networks with some 
parameters of each network fed from the previ-
ous one (Fig. 3b middle). Such parameters act as 
the memory of RNN models. Inside the repeating 
neural networks of an RNN (Fig. 3b right), the 
input element xt at time step t is concatenated 
with the output yt–1 of previous time step and 
then are together fed into an activation function 
(e.g., tanh) to derive output yt of the current 
time step. Such an architecture allows RNNs to 
capture temporal dynamics, but practices show 
that RNNs cannot support long-term dependency 
[3]. Thus, an improved RNN called a Long Short 
Term Memory network (LSTM) is proposed, which 
uses special hidden units (i.e., memory cells) to 
remember inputs for a long time. LSTM models 
are able to learn long sequences and automatical-
ly determine the optimal time lags for prediction.

Stacked Autoencoder (SAE): An autoencoder 
is a three-layer neural network with an input layer, 
an output layer, and a hidden layer, as shown in 
the left part of Fig. 3c. The target output is inten-
tionally set as the input of the model, and thus 
the hidden layer aims to learn the representa-
tions of the input data, which can be viewed as 
a dimensionality reduction or encoding of input 
data. Due to this function, the hidden layer of an 
autoencoder is also called the feature layer. The 
SAE model links such feature layers in a stacked 
fashion to create higher-level abstractions of input 
data, which forms a deep architecture, as shown 
in the right part of Fig. 3c. One of the most pop-
ular variant autoencoders is a denoising autoen-
coder, which takes deliberately corrupted samples 
as the inputs while is forced to recover the orig-
inal uncorrupted data. When stacking multiple 
denoising autoencoders, we thus derive a variant 
of SAE called a stacked denoising autoencoder 
(SdAE). Compared to the SAE model, SdAE is 
able to discover relatively stable  features, which 
makes it robust against noisy inputs and thus per-
form much better.

There are other deep learning models, such as 
the Restricted Boltzmann Machine (RBM) and Deep 
Belief Network (DBN). Table 2 presents a summary 
of the above models and their early adoptions in 
traffic predictions to be discussed later.

trAffIc speed predIctIon
The traffic speed of one road segment is influ-
enced by many factors in both the temporal and 
spatial dimensions, for example, time of day and 
traffic conditions of neighboring road segments.

We have two ways to apply deep learning to 
extract such temporal-spatial features at either 
the individual road segment level or the whole 
road network level. On one hand, we can mine 
detailed traffic features for each individual road 
segment and then make use of the derived fea-
tures to construct classic machine learning mod-
els for traffic speed prediction. An early attempt 
follows this idea and has proposed DeepSense 

[14], which exploits the RBM model to extract 
high-level features for building an SVM model 
to predict traffic speed. Specifically, for each tar-
get road segment s, a number of correlated seg-
ments are selected and their traffic speeds, certain 
states, time intervals, and geographical distances 
between them and s are fed into an RBM model 
to automatically discover helpful features for con-
structing the SVM model. Substantial taxi traces 
are used to train DeepSense, and the experiment 
results show that DeepSense achieves higher pre-
diction accuracy than its competitors.

The following works have explored the possi-
ble applications of other deep learning models in 
this direction, e.g, the DBN model [13], the hybrid 
model of RBM and RNN [9], and the LSTM model 
[10]. Those works, however, primarily apply deep 
learning on temporal speed sequences of individ-
ual road segments for traffic prediction at a small 
network region.

On the other hand, we can consider traf-
fic speed prediction at the road network scale 
and long time range so that we have essentially 
transformed the temporal-spatial traffic speeds 
into one 2-dimensional data matrix, which is the 
favorable input of CNN models. CNN is good at 

FIGURE 3. The architectures of various deep learning models: a) typical architec-
ture of CNN model; b) typical architecture of RNN model; c) typical archi-
tecture of autoencoder and SAE model.
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TABLE 2. Summary of different deep learning models.

Model Application scenarios Referred works

CNN
2-dimensional data  
(e.g., images, videos)

Speed prediction [7, 8]; flow prediction [5]

RNN
Sequential data (e.g., speech, 
language)

Speed prediction [8, 9]

LSTM 
Long sequential data  
(e.g., speech, language)

Speed prediction [10]; flow prediction [11]

SAE (SdAE) Representation learning Flow prediction [2]; accident risk prediction [12]

RBM DBN Representation learning Speed prediction [9, 13, 14]
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capturing spatial features of 2-dimensional data 
and has been widely applied in image recogni-
tion tasks with prominent performances achieved. 
Inspired by such successes, Ma et al. [7] propose 
a CNN based method to learn urban traffic as 
images. They convert road network traffic dynam-
ics into an image that represents the temporal 
and spatial relations of traffic as a matrix. Each 
row of the matrix describes the evolution of one 
road segment along the time, while each column 
describes traffic conditions of the whole road net-
work at a specific time step. They apply CNN to 
such images to extract network-scale features and 
use those features to build a fully connected neu-
ral network for network-wide traffic speed pre-
diction. Experiments show that the CNN based 
method indeed has remarkable capability to 
process 2-dimensional data and outperforms the 
compared methods building on either conven-
tional models (e.g., ANN) or other deep learning 
models (e.g., RNN and LSTM). By considering 
prediction errors, Wang et al. [8] further improve 
conventional CNN models with an additional 
error-feedback recurrent layer, which takes the 
output of CNN as the input and compensates the 
prediction errors using predicting results of previ-
ous periods.

trAffIc flow predIctIon
Similar with traffic speed, traffic flow in a specif-
ic area is also affected by temporal and spatial 
factors. Different from traffic speed, traffic flow 
should be considered on a large scale since 
human mobility usually covers a large area. There-
fore, we divide the road network or the whole 
city into grids and place traffic flows into such a 
2-dimensional gridded space to form instant traffic 
flow snapshots. Some deep learning, especially 
CNN, models could be used to discover latent 
traffic flow features from such snapshots to build 
the flow predictor. A notable attempt is made by 
Zhang et al. [5], where they consider predictions 
of traffic inflow/outflow in each region of a city 
by exploiting historical mobility data, weather 
conditions and holiday events. In this work, traffic 
inflow/outflow can be measured as the number 
of pedestrians, the number of vehicles driving by 
near roads, and any other measurements relat-
ed to human mobility. To capture the complex 
temporal-spatial dependencies, the authors trans-
form historical and current inflow/outflow data 
into image-like matrices, and separate them into 
three groups, denoting recent time, near history, 
and distant history. Each group is applied with a 
CNN model retaining only convolution layers to 
hierarchically capture spatial structure informa-
tion. A residual unit sequence is used to allow a 
CNN model to be appended with many layers. 
In addition, external factors like weather condi-
tions and holiday events are considered through 
a fully connected neural network. The four com-
ponents individually predict traffic inflow/out-
flow, and these predictions are then aggregatively 

fused to derive the final result. In addition to the 
high-level flow statistics, Song et al. has proposed 
DeepTransport [11], which exploits LSTM mod-
els to predict and simulate an individual’s future 
movements and transportation modes. Lv et al. 
[2] exploit SAE models to predict traffic flows on 
specific road segments. Such detailed information 
will better facilitate the management and planning 
of urban traffic.

trAffIc AccIdent rIsk predIctIon
There are many factors related to traffic accidents, 
for example, traffic congestion, driver behavior, 
and road and weather conditions, and thus acci-
dent risk prediction is much more challenging. In 
general, traffic accident risks are highly correlated 
with human mobility, land usage, and historical 
traffic accidents. Thus, we can divide a city into 
grids and assign traffic flow and historical traffic 
accident data into these grids to form a mobility 
matrix and an accident matrix. Taking these matri-
ces as inputs, certain deep learning models could 
be used to extract complex features for building 
a traffic accident risk predictor using a traditional 
machine learning model. 

The only attempt we found is made by Chen 
et al. [12]. Their proposed method divides a city 
into regions and the time of day into intervals. 
For each time interval t and each region r, it cal-
culates risk level gr,t from historical accident data, 
and average human mobility density dr,t from his-
torical GPS records. The derived data form two 
kinds of matrices and are fed into SdAE to extract 
robust and stable features to construct a logistic 
regression model. Given real-time human mobil-
ity data, the method outputs a risk assessment 
map that can be used to provide early warning for 
people of possible traffic accidents. This method, 
however, only considers human mobility but does 
not take other factors into account, e.g., weather 
and land usage, for a comprehensive accident risk 
prediction.

dIscussIon And future dIrectIons
why deep leArnIng fIts trAffIc predIctIon

Urban traffic can be influenced by many factors, 
such as transport regulations, road conditions, 
whether conditions, stochastic events, land usage, 
and so on, which together make traffic patterns 
extremely complex. The hand-crafted features 
from prior statistical or machine learning models 
are essentially a series of hypotheses proposed 
to approximate the unknown relation about how 
such factors impact traffic status. Due to the inher-
ent complexity and hardness of such relations, 
however, the manually selected features have 
been shown to be inadequate to comprehensive-
ly describe traffic characteristics and thus cannot 
achieve accurate prediction results.

Thanks to the deep architecture of multiple 
processing layers, deep learning is capable of 
automatically discovering the most representative 
features from a massive amount of mobility data, 
which is impossible for prior methods with shal-
low architectures. By inspecting pioneering stud-
ies, we highlight the general workflow to apply 
deep learning for traffic predictions as shown in 
Fig. 4. Instead of directly inputting mobility data 
into classic machine learning models, the raw data 

It is highly expected that a deep learning job can be partitioned into a series of tasks running at differ-
ent machines in parallel. However, how to achieve the best modeling performances while maintaining 

minimum costs on both communications and computations is quite difficult.
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are first fed into deep learning models to learn 
abstractions by many hidden layers. In general, 
low-level abstractions are first extracted from the 
input data and in turn fed to following layers to 
form higher-level abstractions. Finally, such a hier-
archy of abstractions automatically selects some 
high-level features that are simultaneously sensi-
tive to subtle details, e.g., different times of day, 
and insensitive to irrelevant variations, e.g., the 
types of passed vehicles on roads. Building on 
such features, the derived traffic models will be 
more informative, stable, and robust, and thus 
they can achieve much better prediction perfor-
mance. In essence, deep learning can be viewed 
as an excellent feature extractor, which avoids 
burdensome feature engineering while automat-
ically learning good features using a general-pur-
pose learning procedure.

future reseArch dIrectIons
In this article, we propose two potential and cru-
cial research directions for this research topic.

Joint Optimization of Multi-Source Data and 
Traffic Modeling: As introduced earlier, various 
types of mobility data can serve as deep learn-
ing’s input, and multiple traffic condition indica-
tors need to be predicted as well. Of course, each 
indicator may not be reliably inferred from any 
individual single-source mobility data, while how 
to select the most appropriate mobility data sourc-
es to satisfy each indicator’s prediction require-
ment is so far unknown yet. In addition, even if 
such a selection could be eventually figured out, 
how to further determine suitable deep learning 
model details, e.g., the number of models, model 
types, layers, and so on, to fuse these mobility 
data sources and meanwhile link the input and 
output is non-trivial. Thus, applying deep learning 
in traffic prediction encounters a joint optimiza-
tion of data modality, model structure, and fusion 
methodology.

One possible solution we propose is to exploit 
all available mobility data sources for prediction 
based on a multi-model strategy. For each data 
source, we apply deep learning to capture respec-
tive features and then produce one prediction. 
All predictions from multiple traffic models can 
be carefully fused to obtain the comprehensive 
result.

Such a multi-model based traffic prediction 
is feasible and attractive, where we can exploit 
the ensemble learning theory to integrate those 
models and their predictions for a better result. 
In practice, we may apply different deep learn-
ing models for different mobility data sources 
to obtain diverse traffic models, and adopt the 
weighted average strategy to compute the final 
prediction. The weights of different models are 
determined through a training procedure. We 
thus omit the data selection issue and design the 
deep learning model for each data source inde-
pendently.

Parallel Computing Promoted Deep Learning 
to Accelerate Traffic Predictions: To fully extract  
abstractions from mobility data, deep learning 
models are usually designed to contain hundreds 
to thousands of layers, and thus numerous param-
eters need to be tuned. Conventional computing 
systems are thus inadequate to such computation-
ally intensive tasks. It becomes even more seri-

ous when multi-source mobility data are involved, 
where the storage and computation overheads 
will significantly increase. Therefore, scalable and 
efficient parallel computing systems (e.g., comput-
er clusters) are preferable to store such big data 
and accelerate data processing, traffic modeling 
and the prediction. 

It is attractive yet challenging to handle deep 
learning based traffic predictions in a distributed 
manner. It is highly expected that a deep learn-
ing job can be partitioned into a series of tasks 
running at different machines in parallel. How-
ever, how to achieve the best modeling perfor-
mances while maintaining minimum costs on both 
communications and computations is quite diffi-
cult. First, how to parallelize this modeling job is 
unclear, and even if possible, how to merge piec-
es of parameters learned at different machines 
into the complete final model for quick prediction 
remains to be explored. In addition, since mobility 
data are used as training data for traffic model-
ing, the wise placements of those data among 
machines are of great importance to reduce 
unnecessary data exchanges (i.e., training data 
and intermediate parameters) between machines. 
To address these challenges, we can build our 
deep learning models by exploiting the parameter 
server (PS) architecture [15] to manage and syn-
chronize the model parameters among machines. 
In the PS architecture, server nodes maintain the 
latest model parameters and make them avail-
able to worker nodes, while worker nodes update 
the model parameters using the assigned training 
data. Also, since regions nearby are correlated 
in traffic flows, we can place the mobility data 
among machines according to their geographical 
information to significantly reduce data transfer 
among machines when training the deep learning 
models. In practice, we can embed more domain 
knowledge of transportation into our model and 
system design to further improve the accuracy 
and efficiency of large scale traffic predictions.

conclusIons
In this article, we envision the potential of rich 
mobility data and deep learning on urban traffic 
prediction, and discuss some pioneering attempts. 
Deep learning will advance traffic predictions 
through powerful representation learning and has 
shown initial successes. By discussing the existing 
advances, we proposed two research directions 
to further improve the accuracy and efficiency of 
traffic prediction on a large scale.

FIGURE 4. Deep learning models hierarchically learn representations of mobility 
data and output high-level features to support classical machine learning 
models for better traffic predictions.
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