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Enabling Effective OOD Detection via
Plug-and-Play Network for Mobile Visual
Applications

Zixiao Wang, Qi Dong, Tianzhang Xing, Zhidan Liu, Zhenjiang Li, Xiaojiang Chen

Abstract—Mobile devices have increasingly integrated with numerous deep learning-based visual applications, such as object
classification and recognition models. While these models perform well in controlled environments, their effectiveness declines in
real-world environment due to out-of-distribution (OOD) data not seen during training. Existing methods for detecting OOD data often
compromise normal data recognition and require extensive training on unattainable OOD data. To address these issues, we propose
POD, a framework designed to enhance mobile visual applications by providing high-precision OOD detection without affecting original
model performance. In the offline phase, POD generates OOD detectors from any classification model by analyzing model’s neuron
responses to various data types. In the online phase, it continuously adjusts decision boundaries by integrating results from both the
original model and the detector. Evaluated on two public datasets and one self-collected dataset across various popular classification
models, POD significantly improves OOD detection performance while maintaining the accuracy of original models.

Index Terms—Mobile visual applications, OOD detection, decision boundary

1 INTRODUCTION

With the rapid advancement of deep learning technology,
deep learning models have become increasingly prevalent
in a variety of well-defined mobile visual applications, such
as facial recognition for payments and access control [1]-
[3]. Among these applications, classification and recognition
models are particularly popular and show promise for use
in more diverse and challenging environments, such as
autonomous driving [4] and drug detection [5]. Despite
this potential, deep learning models currently play a sup-
porting role in assisting human decision-making in these
applications. In comparison to controlled environments, the
reliability of deep learning model results in real-world envi-
ronment is compromised, necessitating additional human
verification or intervention [6]. This is primarily because
classification and recognition models may encounter ob-
jects that belong to unfamiliar categories, known as out-of-
distribution (OOD) data, leading them to misclassify these
unseen objects as the most similar category encountered
during training, known as in-distribution (ID) data.
Therefore, a critical technical challenge in enabling the
widespread application of classification models in real-
world scenarios is the identification and filtering of OOD
data. This process is essential for transforming the classi-
fication task into a familiar and deterministic environment
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for the model. Various research efforts have been dedicated
to addressing this challenge. Methods based on maximum
softmax probability and its variants [7], [8] are simple to
implement but often suffer from overconfidence and a lack
of deep feature representation. Generative model-based ap-
proaches [9], [10] tend to encounter issues such as training
instability, model fitting bias, and confusion between the
likelihoods of OOD and ID samples, especially in high-
dimensional data scenarios. Distance-based methods [11],
[12] rely heavily on high-quality feature extraction and ac-
curate statistical estimation, making them sensitive to input
noise and lacking robustness. A popular decision-boundary-
based OOD detection strategy [13], [14] synthesizes virtual
OOD samples near the classifier’s decision boundaries to
optimize the model’s performance in regions of uncertainty,
and has demonstrated promising detection performance.
Although such a strategy partially addresses the limitations
mentioned above, its effectiveness is still constrained by
the limited quality of the synthesized samples, making it
difficult to robustly handle the complex and diverse OOD
scenarios encountered in real-world environments.

Drawing inspiration from the concept of plug-and-play
design, which enhances model performance by introducing
separate and lightweight modules [15], [16], we propose
the integration of an OOD detector module. This module is
designed to assist a classification model in identifying OOD
data without compromising its accuracy on ID data. The
OOD detector first assesses the input data to determine if
it can be accurately classified by the model. If the data is
identified as ID data, the classification model proceeds with
generating a reliable result; otherwise, the data is labeled
as OOD and skipped by the classification model. However,
developing an effective OOD detector poses significant chal-
lenges, primarily due to the following two reasons.

Firstly, numerous classification models have been devel-
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oped, offering a range of options to select the most suitable
model tailored to the requirements of a specific classification
task for optimal performance. However, due to the diverse
designs of these models, there is a lack of comprehensive
studies on designing effective OOD detectors that can seam-
lessly integrate with different classification models.

Secondly, acquiring a sufficient amount of data to train
an OOD detector remains a challenge, even after identi-
fying the optimal architectural design. Additionally, once
deployed in real-world environment, ongoing adjustments
to the OOD detector are essential to address any disparities
between the training dataset and real-world data.

To tackle these challenges, we introduce P0OD, a plug-and-
play network-based OOD detection approach. This inno-
vative method automatically generates OOD detectors for
any classification model, enabling them to complement the
original classifier. The derived OOD detector identifies OOD
data and performs predefined actions, such as filtering or
alerting the user. Our key insight lies in leveraging a well-
trained classifier’s proficiency in processing ID data. By
inputting an initial OOD dataset into the classifier, we can
identify the crucial model components for OOD detection
by analyzing and contrasting the internal neural responses
to both ID and OOD data. These OOD-sensitive components
then form an OOD detector specific to the classifier. This
approach allows us to derive an OOD detector directly from
the original classification model, which we found to be
versatile and applicable to various mainstream models. In
scenarios where memory-constrained edge devices require
OOD detectors, POD offers efficient model compression to
meet memory constraints with minimal performance im-
pact. Furthermore, POD provides an auxiliary detector for
situations where the original classifier is a black box without
accessible components.

Moreover, during the offline training phase, POD in-
tegrates an OOD data augmentation technique to gen-
erate OOD data by transforming existing ID data. This
approach allows the OOD detector to be trained using
augmented data, eliminating the need to collect additional
OOD datasets. In real-world applications, POD can improve
the detector’s performance by leveraging output from both
the original classifier and the OOD detector to dynamically
update the detector model.

The innovative design of POD not only enables service
providers to seamlessly integrate OOD detection function-
ality into their classification models but also functions as a
third-party plugin to equip models or devices with OOD
detection capabilities. We have developed a prototype of
POD and utilized various specialized and general models to
create their respective OOD detectors. Performance evalu-
ations have been conducted using two real-world datasets
on different platforms, including an NVIDIA GeForce RTX
4070, Raspberry Pi 4B, and Xiaomi smartphone. Extensive
experiments demonstrate that POD surpasses state-of-the-art
methods, achieving an average FPR95 reduction of 31.24%
and an AUROC improvement of 11.50%. Additionally, when
utilizing the lightweight general auxiliary detector, POD in-
troduces a maximum latency of only 137 ms during online
inference. Furthermore, we observe a continuous enhance-
ment in POD’s performance with an increase in available
samples during the online phase.

The key contributions of this study are as follows:

e We introduce POD to tackle the challenge of OOD
detection for popular models on mobile devices in
real-world environment, facilitating the identifica-
tion of OOD data without compromising the models’
classification performance.

e We develop a lightweight OOD detector generation
method by constructing a compact detector based
on the backbone network of the original model.
Furthermore, we define two distinct types of OOD
data to better align with the proposed framework
and enhance detection performance.

e We introduce an adaptive decision boundary update
technique that dynamically adjusts decision criteria
during the inference phase, continuously optimizing
OOD detection capabilities to accommodate diverse
unknown samples.

e We implemented a prototype of POD and conducted
extensive experiments that showcase significant per-
formance improvements compared to state-of-the-art
OOD detection methods.

The rest of the paper is organized as follows: Section
2 provides background on OOD detection. Section 3 intro-
duces the overall architecture of the proposed POD frame-
work. Sections 4 and 5 present the design details of POD.
Section 6 describes the experimental setup. In Section 7,
we implement POD and evaluate its performance. Section
8 reviews related work, and Section 9 concludes the paper.

2 BACKGROUND
2.1 Classification Models in the Wild

In the realm of machine learning and deep learning mod-
els, particularly in object classification tasks, it is typically
assumed that training data is drawn from a specific dis-
tribution. However, in real-world scenarios, these models
may confront data from distributions that deviate from the
training data distribution, a phenomenon known as out-of-
distribution (OOD) data. Classifying OOD data based on
the categories learned during training can result in severe
misclassification outcomes, a significant issue commonly
referred to as the OOD problem [17].

A prevalent yet somewhat limited strategy to tackle the
OOD problem involves categorizing data not belonging to
any known classes in the training set as the “others” class.
The idea is that when faced with OOD data, the model
would assign it to the “others” category. During training,
samples from different distributions than the training data,
such as random noise or data from alternate sources, are
gathered and labeled as “others” to enable the model to
grasp the features of this class. During inference, if an OOD
sample shares characteristics with those in the “others”
class, the model is likely to classify it accordingly. As de-
picted in Fig. 1, an experiment was conducted using CIFAR-
10 as the ID dataset and SVHN as the “others” class for OOD
data. However, while an “others” class may be defined,
the real-world environment distribution of OOD data is
virtually infinite, rendering it unfeasible to encompass all
scenarios with limited training data. This limitation implies
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Fig. 1. Performance on different OOD datasets Fig. 2. Assuming a three-class scenario, the left image
illustrates a standard classification model, while the right
image depicts the feature representations after fine-
tuning with OOD samples.

after training with CIFAR-10 as the ID data and
SVHN as the “others” class. Lower FPR95 and
higher AUROC are better.

that in practical applications, the model may encounter un-
seen OOD samples that significantly differ from the “others”
class, potentially leading to misclassification.

2.2 Motivation: OOD Detection and Beyond

To effectively address the OOD problem, the identification
of OOD data is crucial to prevent the application of classifi-
cation models to such data. Generally, OOD detection can be
framed as a binary classification task, determining whether
the input object belongs to the ID or OOD category. Given
a test input 2* ~ Py and the predicted bounding box b*
by the object detector, the objective is to predict pg(g|z’d*),
where g = 1 denotes that the detected objectis ID and g = 0
indicates that it is OOD.

Numerous research efforts have focused on the prob-
lem of out-of-distribution (OOD) detection. For example,
Softmax-based methods [7], [8] are simple and efficient
but often suffer from overly confident decision boundaries
formed during neural network training. As shown in Fig.
2 (left), OOD samples far from the decision boundary can
still be misclassified into known categories due to high-
confidence Softmax outputs, leading to detection failures.
Generative model-based methods [9], [10], [18] aim to de-
tect OOD samples by modeling the true data distribution.
However, training generative models on high-dimensional
data is often unstable, and the quality of generated samples
is limited by the model’s capacity. Additionally, generative
models may assign high likelihood scores to OOD data
(e.g., likelihood estimation anomalies in flow-based mod-
els), resulting in misclassifications. In addition, Distance-
based methods [11], [12] utilize intermediate neural network
features for OOD detection by calculating distances (e.g.,
Mahalanobis distance) between samples and the known
category distribution. These methods rely heavily on the
network’s feature representation. If the extracted features
do not accurately capture class structures or are influenced
by noise, detection performance can significantly decline.
Furthermore, covariance estimation in feature space can be
unstable, especially in small-sample or high-dimensional
settings, leading to distorted distance metrics.

Decision boundary-based methods [13], [14], [19] im-
prove OOD detection by generating virtual OOD sam-
ples near the classifier’s decision boundary to optimize
performance. As depicted in Fig. 2 (right), training with
OOD samples close to the decision boundary results in
a more compact and precise boundary. These methods
effectively address issues of overconfidence in Softmax-

Fig. 3. Classification models may some-
times make erroneous predictions in
typical road scenarios, such as misclas-
sifying a pothole as a bird.

based approaches, likelihood confusion in generative mod-
els, and feature quality dependence in distance-based meth-
ods. However, they face challenges in obtaining OOD data.
Although synthetic OOD samples can augment the dataset,
they may not fully represent the diversity of real-world
OOD data, which can include features or variations not
present in the training set. Consequently, even with virtual
OOD samples, the decision boundary may have limitations
in generalizing to novel OOD data. Additionally, as time
progresses and environments change, new OOD samples
may continuously emerge, complicating the adaptability of
methods reliant solely on pre-trained decision boundaries.

In addition to algorithmic challenges, Many existing
OOD detection methods face substantial limitations in prac-
tical deployment, especially on resource-constrained mobile
edge devices. These methods are usually developed and
evaluated under resource-rich, server-grade conditions [14],
with limited consideration of the resource constraints such
as memory availability and energy efficiency [20]. In partic-
ular, state-of-the-art methods often depend on large back-
bone networks and complex multi-stage post-processing
modules [21], leading to significant memory consump-
tion and high-power demands. For instance, softmax- and
distance-based models typically consume more than 1GB of
GPU memory at inference time and impose considerable en-
ergy overhead during inference [22]. Generative approaches
(e.g., VAEs or normalizing flows) further exacerbate this
issue due to their high-dimensional representations and in-
tricate architectures [23]. Without overcoming these resource
bottlenecks, these existing OOD methods are difficult to
be applied in practice, especially in latency- and energy-
sensitive scenarios, such as autonomous driving, mobile
vision, and industrial IoT.

To address these challenges, our POD framework dynam-
ically adjusts decision boundaries during inference based
on newly observed OOD samples. This adaptive mechanism
enhances detection accuracy and system robustness in open-
world environments. To further ensure efficient deploy-
ment, instead of relying on deep and computationally ex-
pensive architectures, POD applies a targeted pruning strat-
egy based on gradient similarity analysis to effectively elim-
inate redundant parameters and non-contributory layers. It
preserves only the most important components required for
reliable OOD detection, thereby enabling efficient inference
without compromising detection accuracy, suitable for de-
ployment on mobile edge devices.
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Fig. 4. Framework of POD.

2.3 POD in Real-World Applications

Due to its superior performance, POD can support a wide
range of real-world applications as below.

¢ Autonomous driving systems operate in complex
and dynamic environments, where onboard sensors
may capture scenes unseen during training, such as
extreme weather, rare traffic signs, or unexpected ob-
stacles. Detecting OOD samples enables the system
to adopt conservative control strategies or alert the
driver, enhancing safety. For example, Fig. 3 shows
a pothole misclassified as a bird, illustrating the
potential risks of OOD-induced errors.

In medical imaging, variations in equipment, patient
demographics, or emerging pathologies can cause
substantial distribution shifts. POD can flag OOD
samples from new hospitals or devices, prompting
manual review and improving diagnostic reliability
and patient safety.

In industrial manufacturing, vision-based inspection
systems may encounter defects caused by envi-
ronmental changes or material variability. POD can
promptly detect novel anomalies, allowing early in-
tervention to maintain production quality and pre-
vent defective products from reaching the market.

3 OVERVIEW

In this paper, we present an lightweight OOD detection
framework — POD that is tailored for mobile visual appli-
cations. Fig. 4 illustrates the framework of POD, offering a
comprehensive view of the workflow. POD consists of three
modules, which are briefly introduced as follows.

Mobile visual application: POD can work with any mo-
bile visual application. For simplicity, we exemplify POD
with a standard two-stage object detection model [24].
Specifically, the backbone network of the mobile visual
application processes test data to extract feature maps from

© 2025 IEEE. All rights reserved, including rights for text and data mini

Adaptation of OOD Detector

the input image. The region proposal network (RPN) proposes
candidate regions by sliding a smaller window across the
feature map generated by the backbone, and then non-
maximum suppression (NMS) is applied to reduce overlap-
ping boxes, retaining the regions with the highest scores.
The region of interest (ROI) pooling converts these varying-
sized regions into fixed-size outputs. Regression refines the
bounding boxes for a better fit around the objects, and
finally classification determines the object’s category within
each bounding box.

Generation of OOD Detector: POD constructs a
lightweight OOD detector through a one-time offline train-
ing phase. During this phase, in-distribution (ID) data is first
used to generate corresponding OOD samples via a data
synthesis strategy (i.e., Data Synthesis 2). Each ID/OOD
data pair is then fed into two baseline models with identical
architectures, where the baseline model corresponds to the
backbone network used by the mobile visual application.
If the mobile system operates as a black-box, we provide a
reference backbone for this process.

Since the backbone network of the mobile visual applica-
tion has been trained on ID data, it exhibits pronounced un-
certainty when processing OOD inputs, resulting in stronger
gradient responses during backpropagation. In contrast, a
model that has not been trained on ID data is not optimized
for any specific distribution, and thus exhibits relatively
small gradient differences between ID and OOD samples.
By inheriting the weights from the ID-trained backbone,
this design effectively amplifies the gradient differences,
enabling us to identify network layers that contribute mini-
mally to OOD detection.

During forward propagation, we analyze the gradient
similarity across layers in both baseline models and prune
the components that contribute least to OOD discrimination.
The retained structure forms an initial lightweight detector,
though it does not yet possess OOD detection capabilities.
We then fine-tune this detector using OOD samples gen-
erated from both Data Synthesis 1 and Data Synthesis 2,
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employing an energy-based training strategy to endow the
network with OOD discrimination ability. The final detector
enhances the distinction between ID and OOD samples by
learning the differences in energy distribution, allowing it to
effectively separate the two based on energy scores. Further
technical details will be elaborated in Section 4.

Adaptation of OOD Detector: During the online infer-
ence phase, we first extract regions of interest (Rols) from
the region proposal network and crop them to serve as input
for the OOD detector. As discrepancies may arise between
the predictions of the OOD detector and the mobile visual
application, we introduce a Real Label Discriminator (RLD)
to reconcile the outputs of both components. Specifically,
the predictions from the OOD detector and the mobile
application are jointly fed into the RLD. If the predicted
label is deemed correct, the system adopts it as the final
output; otherwise, the incorrect label is used to dynamically
update the OOD detector.

In real deployment, the OOD detector can dynamically
adjust its decision boundaries based on the characteristics of
newly encountered OOD samples. As the system is exposed
to an increasing variety of OOD instances, the decision
boundary is continuously optimized, gradually enhancing
the detector’s ability to handle diverse OOD data. Further
technical details will be elaborated in Section 5.

4 PLUG-AND-PLAY OOD DETECTOR

In Section 4.1, we firstly acquire the baseline model and
utilize a portion of synthesized OOD data to identify the
most suitable weight parameters for OOD detection. Based
on these parameters, an OOD detector is generated from
the baseline model. In Section 4.2, we use another portion
of the synthesized OOD data to train the OOD detector,
thereby endowing the detector with basic OOD recognition
capability. Finally, Section 4.3 provides technique details
about our OOD data synthesis used in Sections 4.1 and 4.2.

4.1

We begin by extracting the backbone network of the original
mobile visual application as a baseline. If the original model
is closed-source, we use the MobileNetV3 model as an
alternative baseline. The weights and architecture of the
baseline model are typically optimized solely for ID data
to achieve the best performance. To effectively determine
the most important weight parameters for OOD detection,
it is essential to establish a relationship between ID and
OOD data. To this end, we pair each ID sample with a
corresponding OOD sample, referred to as near-OOD data(as
described in Section 4.3), which is as close as possible to the
model’s decision boundary.

Theoretically, near-OOD data corresponding to ID data
may exhibit some degree of similarity. If we input both ID
data and near-OOD data into two identical baseline mod-
els, and observe that a particular layer responds similarly
to both types of data, we can infer that this layer has
a relatively weak ability to distinguish between ID and
OOD data. In such cases, pruning this layer would not
significantly affect the OOD detection performance of the
baseline model. This insight provides guidance for building

Generation of Initial OOD Detector

5

an OOD detector: by pruning network layers that respond
similarly to both ID and OOD data, we can optimize the
computational efficiency of the model while retaining key
discriminative capabilities. Although pruning may lead to a
slight decline in the model’s accuracy on ID data, this impact
is manageable because, in our framework, the primary task
of the OOD detector is to identify OOD data, while the
classification of ID data is handled by the mobile visual
application itself.

4.1.1 Identify candidate layers for the detector

We use the backbone network of the original model or
the MobileNetV3 model as the baseline. First, we select
two baseline models, fp, and fg,, both having identical
design and parameters, i.e.,, #; = 63, ensuring that any
differences observed in subsequent comparisons are due to
the variations in input data. Let z;p represent the ID data
input, and xpop represent the corresponding virtual OOD
data input.

For each layer [, during the forward propagation pro-
cess, we compute the gradient values for the inputs x;p

and zpop through the model fy, denoted as g:(zip,d) =

7‘%(];993“")) and g:(xoop,0) = 7‘9‘:“9(;00")). Here, L repre-

sents the loss function, and 6, denotes the parameters of
layer . To identify the layers most suitable for OOD detec-
tion, we update a counter based on the cosine similarity
between the gradients. Finally, we select the top 50% of
layers with the highest counter values as the candidates.
The detailed steps and formulae are as follows:

g1z, 0) - gi(xoop, 0)
cos(gu(p, 8), g1(woon. 6)) = o, Dl roon. O

Here, - denotes the dot product operation, and ||-|| represents
the norm of a vector. The cosine similarity of the gradients
reveals how the model responds to ID data compared to the
corresponding OOD data.

if cos(g:(zp,0), 9t(zo0D,0)) =6, Ci=Ci+1 (2
We define a counter () to record the similarity occurrences
for each layer [. Initially, all counters C; are set to 0, i.e.,
C, =0 VI € {1,2,...,L}, where L denote the total
number of layers. When the cosine similarity exceeds a
certain similarity threshold §, the counter C; for layer [
is incremented by 1 (we discuss the setting of § in the
experimental section). We select the top 50% of layers [
with the highest counter values C; as the candidates. Let
L’ represent the set of pruning candidate layers: L' = {I |
[ € top 50% of {C1, Cs, ...,Cp}}. The final set of candidate
layers can be represented as:

k
L = ' = [0.5L
{l|l€argl€{m1’.a§L}(§C),k [0.5 W} (3)

where [0.5L] denotes the ceiling function, which rounds
up to ensure that we select the top 50% of the layers. This
method allows us to effectively identify the layers most
suitable for OOD detection based on gradient similarity.
Finally, based on the parameters and layers identified, we
generate the initial OOD detector from the baseline model.
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4.1.2 Model compression

During the process of generating OOD detector from the
baseline model, we can also apply various levels of model
compression depending on the storage capacity of mobile
device hosting the baseline model. When deriving the de-
tector from the baseline model, we employ L1 norm-based
pruning, defined as: [|[W[|; = 377, 37 [W),5|, where W,
represents the weight matrix of the (-th layer, and W ;;
denotes the element in the i-th row and j-th column of the
weight matrix.

For each layer [, we generate an L1 pruning mask M;.
This mask is created by setting a threshold 7;, pruning the
elements of the weight matrix whose absolute values are
smaller than this threshold. This can be expressed as:

if (Wil >m

1
M5 = ) 4)
’ 0 if ‘Wl,ij| <T

where M ;; is the pruning mask for the element W ;;.
Finally, we update the weights using the pruning mask M;:
W/, = W, o M;, where o denotes the element-wise multi-
plication operation. This process retains only the significant
weights in the [-th layer by zeroing out those weights whose
values are below the specified threshold 7;, as determined
by the L1 norm pruning. Elements in the weight matrix W}
with absolute values below the threshold 7; are effectively
pruned. For devices with varying storage capacities, we can
select different values of 7;.

4.2 Enabling OOD Detection

After generating the initial OOD detector from the baseline
model, we then enable its OOD detection capabilities by
using a combination of synthesized near-OOD data and far-
OOD data as training input, as illustrated in Fig. 4. Typically,
OOD detection relies on a scoring function to distinguish
between ID and OOD data. To this end, we employ an
energy-based scoring method for fine-tuning the model.
Energy-based models are inherently connected to discrim-
inative models. The softmax discriminant function derives
the classification distribution as follows:
p(z,y) elv(@f)

p(y|:r) = p(‘T) = ZZKZI efi(x;0) (5)

where f,(z;0) denotes the y-th element of logit output cor-
responding to the label y. Taking the negative loI%arithm of
p(x) in Equation (5) yields: —logp(z) = —log >, efi(w0)
The resulting function is referred to as the energy function
E(z;6), and it has been proven to be an effective uncertainty
measurement for OOD detection [25].

K
E(z;0) = — logZefi(zw (6)
i=1

where z represents the input image. f;(x; 0) is the logit score
for the 44, category of the target, K is the total number of
categories, and # represents the model’s parameters. The
model trained with the energy function will reduce the
energy of ID data points [26]. When OOD samples are fed
into the model, since they differ from the ID training data,
the model might struggle to assign them a clear category,

6

leading to an increase in energy values. During OOD detec-
tion, it is expected that the model assigns a lower energy
value for ID data and a higher energy value for OOD data.
Therefore, the model distinguishes ID and OOD data by
their energy values, forming a basic OOD detector.

4.3 Virtual OOD Data Synthesis

The decision boundary is the boundary in the feature space
that separates different classes in a classification model.
By incorporating OOD data during training, the model’s
decision boundary can be adjusted to effectively distinguish
between ID data and OOD data. However, if OOD data
are selected directly from a dataset that is different from
the training distribution, it may be difficult to capture
the diversity near the decision boundary, thereby affecting
the model’s generalization capability. Existing methods for
generating OOD data typically rely on natural perturba-
tions (e.g., blurring, noise, or geometric transformations)
or adversarial perturbations to generate samples close to
the decision boundary of the classification model. How-
ever, these approaches often perform poorly on real-world
environment OOD datasets, as the synthetic images tend
to visually resemble ID samples. When confronted with
natural OOD images that are farther away from the ID
samples, the behavior of the model remains uncertain.

Therefore, it is essential to train the model using OOD
samples that cover as much of the feature space as possi-
ble. PixMix [27] takes advantage of the natural structural
complexity of images, such as fractals, to design a data
augmentation method that generates complex and diverse
OOD samples. This approach improves the performance
of OOD detection without compromising the accuracy of
the classification, outperforming most baseline methods.
Furthermore, research [28] suggests that in the absence of
knowledge of the OOD distribution, the optimal strategy is
to uniformly select OOD samples from the feature space.
Inspired by this theory, we define two types of OOD data:
near-OOD data and far-OOD data. Near-OOD data refer to
samples close to the model’s decision boundary, belong-
ing to the OOD distribution but lying in regions of high
uncertainty; far-OOD data, on the other hand, are samples
that are significantly distant from the decision boundary
and deviate substantially from the training distribution.
By combining both near-OOD data and far-OOD data for
training, we can enhance both decision boundary accuracy
and generalization.

In our framework, these two types of data are seamlessly
integrated: near-OOD data is used as input during the prun-
ing stage. After pruning, it is combined with far-OOD data
for further training, thereby constructing an efficient OOD
detector. This combination helps the model learn a more
optimal decision boundary. Some existing data augmenta-
tion techniques can adequately fulfill our requirements for
generating near-OOD data and far-OOD data. To generate
near-OOD data, we apply various image corruption tech-
niques [29], including Gaussian noise, elastic transforma-
tions, Gaussian blur, spatter, glass blur, and defocus blur.
Since these modifications maintain a distribution relatively
close to the original ID data in feature space, they are
well-suited for near-OOD data representation. On the other
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hand, CutMix [30] is employed to generate far-OOD data by
cutting and replacing key regions between two images while
blending their labels proportionally. The samples generated
by CutMix exhibit significant divergence from the original
ID data in feature space, making them highly suitable for
representing far-OOD data samples. These techniques enable
the construction of a detector with basic OOD recognition
capabilities, which can be further optimized during testing.

The near-far OOD categorization not only enriches the
diversity of OOD data used during training but also plays a
crucial role in the POD framework. In our lightweight opti-
mization technique, each training step requires an ID-OOD
data pair, where the OOD sample is chosen from near-OOD
data (i.e., samples generated through image corruption). The
key reason for this choice is that we analyze the gradient
similarity between ID and near-OOD data across different
layers of the model. Since near-OOD data are closer to ID
data in feature space, the layers showing significant gradient
differences between ID and near-OOD data samples are the
ones most critical for distinguishing OOD data.

5 ADAPTATION OF OOD DETECTOR

Due to the limited diversity of the synthesized OOD data,
the resulting OOD detector may not be fully optimized.
To address this issue, POD dynamically adjusts the OOD
detector’s decision boundaries during online use. Given
the potential conflicts between the outputs of the OOD
detector and the mobile visual application, we introduce
a Real Label Discriminator (RLD) component into POD.
The RLD is designed to discriminate labels and guide the
dynamic adjustment of decision boundaries. In Section 5.1,
we provide a detailed explanation of the decision boundary.
Section 5.2 elaborates the dynamic adjustment of the deci-
sion boundary. Finally, Section 5.3 details the RLD design.

5.1 Decision Boundaries of OOD Detector

We define two types of decision boundaries for an OOD
detector: the internal decision boundary B;, and the external
decision boundary B,y:. The internal decision boundary is
defined based on the entire ID training dataset, as explained
in Section 5.2. All outputs within this boundary are consid-
ered as ID data. The external decision boundary is derived
from training with synthesized OOD data, representing
the decision boundary established by the OOD detector
during training. Any output from the OOD detector that
falls outside this boundary is classified as OOD data.

Because the fixed decision boundary obtained from
training (i.e., the external decision boundary B,,:) may not
always be accurate, there can be classification uncertainty
if a data point = lies between the internal and external
decision boundaries (B;, < * < Byy:). This intermediate
range creates a “gray area” where the data might belong to
either the ID or OOD category. To more accurately classify
data within this gray area, we introduce the concept of an
energy score E(x) = —log (27 efi (‘””)) for a data point.

We employ the KNN algorithm to classify data based
on energy score. Specifically, we have two distinct sets of
energy scores: one set derived from ID data, denoted as
Ep = {ej,e2,...,e,}; and the other set derived from

7

OOD data, denoted as Eoop = {e],¢€h,...,el,}. We define
the distance metric function for energy scores as follows:
d(E(z), E(y)) = \/Z;ﬂ:l (Ei(x) — E;(y))>. For a given test
data point x, we calculate its distance from all training data
points: D(z) = {d(E(x), E(z;)) | z; € Training Data}. We
select the k nearest neighbors with the smallest distances:
Ni(z) ={z), z(2),

Ty | d(E(z), E(xy)) < d(E(z),E(xz))) < ... <
d(E (z) E(z()))}, and then compute the weight for each
neighbor as w; = m Finally, we predict the
class label y for the new data point:

>, wil

x; €N ()

max
cE{O 1}

y=ar (yi = ¢ @)

where the indicator function 1(y; = c) takes the value of
1 if the label y; of the neighbor z; is equal to the class c,
and 0 otherwise. We use label 0 and 1 to represent ID and
OOD, respectively. This process ultimately determines the
classification of samples that lie between the internal and
external decision boundaries.

5.2 Adjustment of Decision Boundaries

In Section 5.1, we identify the class of samples that fall
between the internal and external decision boundaries. This
classification guides the adjustment of decision boundaries.
During model testing, we only fine-tune for those data
points that lie between the inner and outer decision bound-
aries, ensuring the model focuses its attention on those
points where its recognition is in doubt. This approach
helps the model more precisely handle edge cases without
being influenced by its highly certain data points. At the
same time, adjusting the outer decision boundary may have
some impact on the inner decision boundary. However,
in our framework, after each update of the outer decision
boundary, the inner decision boundary is recalculated. This
recalculation ensures that the inner decision boundary can
adapt in real-time to changes in the outer decision bound-
ary. The adjustment of the inner decision boundary only
involves changes to the data points in the feature space and
does not affect the outer decision boundary.

5.2.1

When a new data point is determined to be ID data by the
KNN algorithm but does not fall within the inner decision
boundary, we label it as an extension point and moderately
expand the inner decision boundary. This strategy aims to
ensure that newly emerging, valid ID data can be correctly
recognized by the model, thereby enhancing its generaliza-
tion performance.

To expand the inner decision boundary, we employ a
data energy score-based approach to determine and adjust
the threshold. Initially, we establish an initial threshold
based on the energy scores from the initial dataset. This
threshold is subsequently used to determine whether data
belongs to the ID category. The threshold setting method
involves selecting a percentile of the energy scores:

E(xn)}, 95)
®)

The internal decision boundary expands

threshold = Percentile({E(z1), E(z2), . . .,
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where E(x1), E(x2), ..., E(zy) represent the energy frac-
tions of the initial ID data. The Percentile function is em-
ployed to derive the 95th percentile from these fractions.
This computed value is subsequently designated as the
internal decision boundary threshold. If the energy fraction
of such data exceeds the existing threshold, a recalculation
of the threshold is necessitated.

if max({E(Znew, )s E(Tnew,), - - -}) > threshold then
threshold = Percentile({E(z1), E(z2), ..., E(xn),
E(xn€W1)7E(xHEW2)7 M }595) (9)

Here, the recalculation involves computing the 95th per-
centile of the energy fraction set, which includes both new
and old data, in order to update the threshold.

5.2.2 The external decision boundary contracts

When a data point is identified as OOD data but is within
the outer decision boundary, the outer boundary should be
reduced to ensure that the OOD detector remains highly
sensitive to genuine OOD data and reduces over-reliance on
such data. This targeted strategy, which adjusts only for data
lying between the two decision boundaries, effectively pre-
vents frequent and unnecessary adjustments to the decision
boundary, ensuring the OOD detector’s robust operation.
To more effectively narrow down the outer decision
boundary, we fine-tune the model in each test batch us-
ing energy scores. This is done to enhance the OOD de-
tector’s ability to handle OOD samples. Specifically, we
calculate an energy score E(z) for each data point z. At
the testing phase, we utilize the energy score loss to opti-
mize the OOD detector with the aim of generating higher
energy scores for OOD samples. In each testing batch,
we randomly select a small portion of ID data, denoted
Xba“h, and the current OOD testing data, denoted as
gaot%‘, for OOD detector updating. We define a batch of
ID and OOD data as follows: X3 = {z[P, 20 ... 2P},
Xg%%‘ = {29, 2§0P, 2013} Where b is the batch size,
i1,%9,...,1p are random 1nd1ces from the ID data, and j1, jo
e jb are random indices from the OOD data. Considering
the randomness in batch selection and the optimization of
the loss function, our objective is to minimize the following
loss function:

1
Lpateh = 7 Z (max(oamlD_E(wi)))2
iexﬁ;\tch
1
+5 > (max(0, E(z;) — moop))® (10)
jexsuh

where the batch size b serves as a parameter used to control
the amount of data utilized in each update. The total loss
function for the current batch is represented as Lpqtcp. The
threshold m;p represents the typical upper limit of the
energy score for ID data, as described in Section 5.2.1, and
is derived through calculation. Conversely, moop denotes
the typical lower limit of the energy score for OOD data.
We have determined that setting the threshold at —3 is
optimal for mopop. By optimizing the loss function Lyasch,
the OOD detector can fine-tune itself in each batch based
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Fig. 5. RLD operates based on the decision rules defined in Section 5.3.
For items 1, 2, and 3, the output can be directly determined. For item 4,
KNN is used to determine the true class of the OOD detection output,
followed by a dynamic update of the decision boundary.

on the energy scores of ID and OOD data. This approach ef-
fectively narrows the external decision boundary, enhancing
the model’s accuracy in recognizing OOD data.

During the training process, updates to the outer de-
cision boundary can influence the energy distribution of
the ID data. This is because the optimization of the outer
decision boundary changes the energy distribution of the
OOD data (e.g., ensuring E(z;) > moop), which in turn
alters the parameters of the feature extraction layer. Since
the feature extraction layer is shared, these adjustments
inevitably affect the feature distribution of the ID data,
thereby influencing the inner decision boundary. To ensure
the correctness of the inner decision boundary, we recalcu-
late it after each update to the outer decision boundary. On
the other hand, updates to the inner decision boundary do
not alter the parameters of the feature extraction layer. As a
result, changes to the inner decision boundary do not have
a reverse impact on the outer decision boundary.

5.3 Real-Label Discriminator

By analyzing and contrasting the outputs from both the
OOD detector and mobile visual application, the RLD com-
ponent aims to accurately determine the true class of the
test data. As shown in Fig. 5, the detector is capable of
categorizing data as either ID or OOD, whereas the mobile
visual application is limited to producing ID classifications.
Given these differences, the RLD must reconcile the outputs
from both models to determine the correct classification. To
achieve this, we consider all possible output combinations
from the OOD detector and mobile visual application, al-
lowing to generate reliable and precise classification results.

5.3.1 When OOD detector outputs ID and mobile visual
application outputs ID

Both output the same: Since mobile visual applications
are unable to discriminate OOD data, and the decision
boundary of the OOD detector may be flawed due to the
lack of diversity in artificially synthesized OOD data, there
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TABLE 1
Comparison of POD’s OOD detection with baselines. The specialized baseline models are ResNet50 and WRN, while MobileNetV3 serves as the
general baseline model. BDD and VOC are used as ID datasets, and Openlmages and COCO as OOD datasets. Note: 1 indicates higher values
are better, and | indicates lower values are preferable. All values are presented as percentages, with bold numbers representing the best results.

ID dataset Model Method Openlmages COco
FPR95, AUROCT FPR95, AUROCtT
MSP [8] 92.03 64.21 88.44 64.99
Energy score [25] 67.63 79.47 65.13 79.03
ResNet50 VIM [21] 58.17 83.75 56.43 82.52
vOC VOS [14] 46.37 86.78 4448 86.97
POD 33.75 91.88 36.31 91.45
MobileNetV3 POD (common) 41.72 85.57 43.75 82.25
MSP [8] 80.63 75.84 79.78 76.09
Energy score [25]  49.69 84.63 50.00 84.79
WRN VIM [21] 42.70 90.16 45.15 88.95
BDD VOS [14] 22.21 93.36 29.83 91.53
POD 15.31 95.80 17.50 95.91
MobileNetV3 POD (common) 26.88 91.23 31.56 90.61

is a possibility of erroneous judgments in their ID outputs.
Hence, there are two possible output regions. The first is
when the output is within the inner decision boundary of
OOD detector; in this case, we consider the data as ID with-
out further judgment. The second case is when the output
is between the inner and outer decision boundaries of OOD
Detector. For this case, we employ the KNN algorithm in
Section 5.1 to further discern if the data is ID or OOD, and
update the model’s decision boundary accordingly.

Both output differently: As the mobile visual application
has superior ability in processing ID data compared to the
OOD detector, we thus consider the mobile visual appli-
cation’s output as more reliable. Under this circumstance,
the classification error appearing in the OOD detector may
be due to performance degradation from pruning. As il-
lustrated in Fig. 5, when the OOD detector exhibits an ID
classification error, it typically implies that the output falls
on the boundary between two ID categories. In this case,
we believe that the output is not OOD data, because if it
was OOD data, its output would be distant from the centers
of these two categories, leaning more towards the outer
decision boundary. Therefore, we directly adopt the output
from the mobile visual application as the final result.

5.3.2 When OOD detector outputs OOD and mobile visual
application outputs 1D

The mobile visual application inherently lacks the capability
to distinguish OOD, whereas the OOD detector is more
accurate in its judgment of OOD. Therefore, when the OOD
detector perceives the output as OOD, and this output
is outside the outer decision boundary, we will directly
categorize it as OOD, without taking into consideration the
output from the mobile visual application.

6 IMPLEMENTATION

We implement our approach using NVIDIA CUDA 11.8 and
Python 3.9. The experiments are conducted on an NVIDIA
GeForce RTX 4070, where we perform a range of evalua-
tions. Additionally, we test OOD detectors generated with
specialized models on the XiaoMi 14 and those generated
with general models on the Raspberry Pi 4B.

Models and datasets: We evaluate POD using the widely
adopted Faster R-CNN model [24], which is commonly used
in visual applications. The backbone networks of Faster
R-CNN model can serve as baseline models for generat-
ing OOD detectors, including ResNet50 [31], WRN [32],
and MobileNetV3 Small [33]. MobileNetV3 is utilized as
a general model for various applications, while ResNet50
and WRN are employed as application-specific models for
scenarios such as road monitoring and autonomous driving.
We train and test these models on the following datasets:

1) PASCAL VOC [34] comprises a series of images and
the corresponding annotations, covering 20 different
object categories, such as humans, animals, vehicles,
and furniture. It will be used for ID data training.
Berkeley DeepDrive [35] is a large-scale, diverse,
and rich autonomous driving dataset containing
100,000 driving video clips. This dataset contains 12
object categories, such as vehicles, pedestrians, and
traffic lights. It will be used for ID data training.
MS COCO [36] includes 80 object categories. It
features a wide range of everyday objects such
as utensils, electronics, furniture, and animals. The
substantial distributional difference between COCO
and VOC/BDD makes it an ideal OOD dataset.
Openlmages [37] contains hundreds of object cat-
egories, including household items, animals, scene
elements, and abstract objects. This broad coverage
makes it a highly challenging OOD dataset.

2)

3)

4)

System training: During the training phase of POD, we
first extract the backbone network from the mobile visual
application as the base model for the initial OOD detector.
This model is then lightweighted and trained using syn-
thetic OOD data to enable OOD recognition capabilities.
We implemented the full training pipeline in PyTorch and
conducted all model training on a single NVIDIA GPU. The
ID datasets are sourced from VOC and BDD, from which
we crop 224 x 224 images for training. The training batch
size was set to 32. To evaluate the generalizability of our
method, we use WideResNet (WRN) and ResNet-50 as back-
bone networks. WRN is configured as WRIN-40-2 (40 layers,
widening factor of 2) with a dropout rate of 0.3. Training
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Fig. 6. Impact of (a) variance 4, (b) parameter k,
and (c-d) dynamic decision boundary adjustment.

is performed using stochastic gradient descent (SGD) for 50
epochs, with a momentum of 0.9, weight decay of 0.0005, an
initial learning rate of 0.001, and cosine annealing learning
rate scheduling.

Metrics: To evaluate OOD detection performance, we
report: (1) the false positive rate (FPR95) of OOD samples
when the true positive rate of ID samples is 95%; (2) the area
under the receiver operating characteristic curve (AUROC);
and (3) the area under the precision-recall curve (AUPR).

7 EXPERIMENTS
7.1 Overall Performance

We firstly investigate the overall OOD detection perfor-
mance of four different methods. The compared baselines
include Maximum Softmax Probability, Energy score, and
VIM. The MSP method classifies samples by calculating the
maximum value of the softmax probabilities. The Energy
Score approach, on the other hand, takes logits as input and
maps them using an energy function. VIM, built on a Trans-
former architecture, integrates amplitude and distributional
information of features, effectively capturing internal model
variations when processing diverse samples. For the same
dataset (application), we utilize identical baseline models.
Additionally, we provide a general version for each dataset
(application). For the experimental results, a lower FPR95
and a higher AUROC are preferred. We employ BDD and
VOC as ID datasets and train the models with our synthe-
sized virtual data as OOD datasets. The models are then
tested on Openlmages and COCO as OOD datasets.

The experimental results shown in Table 1 indicate that
the specialized POD achieves the best performance across
all scenarios. Moreover, POD enhances performance through
an adaptive mechanism that dynamically adjusts the deci-
sion boundary of OOD detector. We compare POD with the
VOS method, which employs synthetic virtual outliers for
regularization to adjust decision boundaries, outperform-
ing most baseline methods. Compared to VOS, our data
synthesis method is more lightweight, albeit with fewer
types of synthesized OOD data. By integrating dynamic
decision boundaries, we further improved performance. POD
demonstrated an 12.33% and 12.62% improvement in OOD

0 50 100 150 200 250 300 350 400 0
(c) BDD (ID) COCO (OOD)

0.8

[T W1 W 05

50 100 150 200 250 300 350 400
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Fig. 7. Performance (AUROC and AUPR) and latency (unit: ms) variation with increasing OOD
samples. The baseline models for VOC and BDD are ResNet50 and WRN, respectively.

TABLE 2
The impact of OOD pruning rate on performance.

1D Pruning rate Openlmages COco
FPR95| AUROCtT FPR95] AUROC?T

0% 41.22 89.74 45.69 88.83

VOC 25% 39.34 89.51 42.19 90.63
50% 33.75 91.88 36.31 91.45
75% 35.28 90.08 38.75 90.81
0% 20.00 95.15 24.69 94.70

BDD 25% 12.81 96.59 19.06 95.23
50% 15.31 95.80 17.50 95.91
75% 19.69 95.03 21.88 94.38

detection performance (FPR95) on BDD (with COCO as
OOD) and VOC (with Openlmages as OOD), respectively.

7.2 Micro-benchmarks

Impact of pruning rates. We evaluate the performance
of the generated OOD detector across four pruning rates:
0%, 25%, 50%, and 75%. As shown in Table 2, the results
indicate that pruning not only maintains but even enhances
the model’s OOD performance. This improvement can be
attributed to our strategy for generating the OOD detector,
which preserves the most critical parameters for OOD de-
tection while eliminating less relevant ones. Notably, at a
pruning rate of 50%, the model achieves a lightweight ar-
chitecture without compromising OOD accuracy. Therefore,
we adopt a 50% pruning rate in the final implementation.
Impact of variance §. The appropriate setting of ¢ is
crucial in determining the candidate layers for pruning. We
use ResNet50 as the baseline model and VOC as the ID
dataset, and report the changes in FPR95 across two OOD
datasets: COCO and Openlmages. Equation (1) indicates
that candidate layers are marked when the cosine similarity
exceeds 0. In Fig. 6 (a), we analyze the impact of § on OOD
detection performance. Specifically, 6 = {0, 0.20, 0.40, 0.75}.
We observe that when ¢ is below 0.50, the model’s per-
formance is generally higher. However, in extreme cases
where ¢ is 0.75—meaning that only layers with an ID to
OOD similarity greater than 0.75 are marked—some layers
might not be marked at all. This results in subsequent
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TABLE 3
The impact of different architectures on PQD.

Architectures 1D Dataset Openlmages coco
FPR95 AUROC FPR95 AUROC

FasterRCNN VOC 33.75 91.88 36.31 91.45

DERT 38.43 90.17 40.68 89.91
TABLE 4

The impact of different data augmentation methods on the OOD
detection performance.

D Method Openlmages COCO
FPR95] AUROCt FPR95] AUROCYT

far-OOD [30] 39.78 84.77 51.56 77.34

VOC near-OOD [29] 48.47 79.59 47.97 82.19
Pixmix [27] 44.18 83.64 44.75 80.39
Our method 41.72 84.79 43.75 82.25
far-OOD [30] 30.63 85.84 32.50 87.35

ppp Near-OOD [29] 30.61 89.97 34.81 85.54
Pixmix [27] 28.69 86.83 29.06 86.15
Our method 26.88 91.23 31.56 90.61

random pruning, which can lead to a decline in the detection
performance.

Impact of k£ in KNN algorithm. We analyze the impact
of k, the number of nearest neighbors, on determining the
class of test data. We use ResNet50 as the baseline model
and VOC as the ID dataset, and report the changes in
FPR95 across two OOD datasets: COCO and Openlmages.
Specifically, we vary k as 25, 50, 75, 100 and 125. Results
in Fig. 6 (b) indicate that our method is not sensitive to
this hyperparameter. The model’s performance fluctuates
without a discernible pattern across the range of 25 to 125.
Therefore, we select k = 75 as it yielded the best result.

The impact of different architectures on POD. In our
experiments, we compared the Transformer-based DETR
[38] architecture with the conventional Faster R-CNN object
detection framework. Since the inputs to POD are cropped
image regions derived from the anchor boxes generated and
selected by these object detectors after feature extraction, the
differences in localization accuracy and quality of the pro-
posed regions across detection architectures can influence
the performance of the POD detector.

As shown in Table 3, we observed that DETR yields
slightly lower precision on the OOD datasets compared to
Faster R-CNN. This is primarily due to the large number
of small- to medium-sized objects (e.g., birds, dogs) in
VOC dataset, for which DETR’s bounding boxes tend to
be less precise. Loose or misaligned boxes may introduce
excessive background or truncate parts of the object in
the cropped region, which can confuse the OOD classifier
and result in more entangled feature distributions between
ID and OOD samples. In contrast, Faster R-CNN’s region
proposal mechanism (Rol) is specifically designed to ensure
high localization precision, making it more suitable for the
cropping operation required by our method. Overall, the
DETR + POD combination yields slightly lower detection
accuracy compared to the Faster R-CNN + POD setup.

Loss and Time per Epoch ‘Training Loss and Ti

—e— Train Loss 12
-m- Time per Epoch

—e— Train Loss 5
-m- "Time per Epoch

(a) BDD

(b) VOC

Fig. 8. The time overhead during the OOD training phase based on the
baseline model pre-trained on the BDD and VOC ID datasets.

7.3 Ablation study

Data augmentation for OOD. The quality of the synthe-
sized OOD data is a critical factor influencing the perfor-
mance of the generated OOD detector. First, it affects the
process of generating the OOD detector from the baseline
model; second, it impacts the detection performance during
fine-tuning. In Table 4, We report experimental results based
on our proposed concepts of “near-OOD” and “far-OOD”
data, as well as OOD data generated using traditional
methods. The results demonstrate that our data augmen-
tation approach significantly reduces FPR95 in the POD.
Unlike conventional methods, our approach addresses not
only the model’s adaptability to near-OOD data but also
its performance on far-OOD data, thereby offering a more
comprehensive solution.

Impact of dynamic decision boundary. We train our
model using BDD and VOC as ID datasets and evalu-
ate its performance on Openlmages (o) and COCO (c) as
OOD datasets. As shown in Fig. 6 (c-d), We conduct tests
both with and without the dynamic decision boundary
adjustment. Across different datasets, FPR95 significantly
decreases, while AUROC improves. We find that, compared
to fixed decision boundary methods, our dynamic decision
boundary module substantially enhances OOD detection
accuracy, with an average reduction in FPR95 by 52.70%.

POD’s impact on memory usage and power consump-
tion. As shown in Table 5, we further analyzed the impact
of POD on memory usage and power consumption. We com-
pared the memory and power consumption of the mobile
visual application (MVA) when integrated with POD versus
when operating without it. We selected MobileNetV3 as the
baseline architecture.

To better simulate inference scenarios on edge devices,
we fixed the batch size to 1 while evaluating peak memory
usage and power consumption, reflecting the inference load
for a single image. In this setup, integrating POD into the
mobile visual application resulted in a 17% increase in peak
GPU memory usage and a 48% increase in average GPU
power consumption. The experiment demonstrates that the

TABLE 5
Peak memory usage and average GPU power of mobile visual
applications with and without P0OD integration.

POD model Deployment = Peak memory (MB)  Avg GPU (W)
. MVA 854.96 31.02
Mobilenetv3 1y | pgp 998.66 15.88
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Fig. 9. The latency vari-
ations of POD with the in-

crease in OOD samples. OOD detection was evaluated.

POD framework maintains high efficiency, consuming only
limited system resources.

7.4 System Overhead

Training overhead and loss of the OOD detector. As shown
in Fig. 8, we report the loss and time overhead of the
OOD detector (MobileNetV3) during the training phase. We
observe that the red curve (training loss) drops rapidly at the
beginning and stabilizes within approximately 10 epochs.
This indicates that the model successfully learns effective
information for distinguishing between ID and OOD data,
demonstrating good convergence and training efficiency. Al-
though the model quickly adapts to the synthetic OOD data
and acquires a certain level of OOD recognition capability,
its detection accuracy may still degrade when faced with
large amounts of emerging and diverse OOD categories in
real-world environments. To address this, we introduce an
adaptive decision boundary update mechanism during the
testing phase to enhance the model’s generalization ability
in practical scenarios.

Meanwhile, the blue curve (training time per epoch)
shows that the fluctuation in training time remains within 2
second per epoch. Although training times vary depending
on the model size, the overall computational cost remains
within an acceptable range.

Impact of test samples on performance. We use VOC
and BDD as the ID training sets, and select portions of the
COCO and Openlmages datasets as OOD test samples. As
shown in Fig. 7, the performance of our model improves
as the number of test samples increases. This improvement
is primarily due to the dynamic adjustment and refinement
of decision boundaries in response to OOD data that lies
between the internal and external decision boundaries. As-
suming accurate assessment of these test data, our decision
boundaries will theoretically become more precise and ro-
bust as the number of test samples increases.

Impact of test samples on latency. As shown in Fig.
9, we report the average latency observed when processing
50 newly encountered OOD samples for the OOD detector
and the mobile visual application across different datasets,
Openlmages (0) and COCO (c). ResNet50 was used for
training on the VOC dataset, while WRN was used for the

mobilenet  ghostnet  shufflenet

(d) VOC COCO

Fig. 10. The performance (FPR95 and AUROC) of Mo-
bileNet, GhostNet, and ShuffleNet as baseline models for

-
I PRYS
| m— T

Latency (ms)

. mobilenet ghostnet shufflenet

(b) BDD

resnetS0 mobilenet ghostnet shufflenet

(c) VOC

Fig. 11. (a) compares the memory usage of model
parameters before and after pruning, while (b) and
(c) illustrate the latency performance.

BDD dataset. The black curve represents the average latency
of the mobile visual application when processing every 50
samples. The red and blue curves represent the average
latency of the OOD detector when processing every 50 OOD
samples, including the additional delay caused by decision
boundary updates.

In the early stages of testing, the OOD detector needs
to adapt to the newly encountered OOD data, so the de-
cision boundary undergoes multiple dynamic adjustments,
leading to an increase in latency. However, as the model
gradually adapts to this type of OOD data, the latency
stabilizes, and the need for further boundary adjustments
decreases. Experimental results show that in most cases, the
average latency of the OOD detector remains below 40ms,
significantly lower than the processing latency of the mobile
visual application. Furthermore, decision boundary updates
are only triggered when samples fall between the predefined
internal and external decision boundaries.

Our experiment simulates an extreme scenario where
all samples are OOD data. However, in real-world deploy-
ments, OOD samples are typically fewer. Hence, the deci-
sion boundary is usually updated before the next detection
cycle, ensuring that real-time performance is not affected.

Model Selection in Black-Box Mobile visual Applica-
tions. We conducted experiments using VOC and BDD as
ID datasets and COCO and Openlmages as OOD datasets.
MobileNetV3-Small, ShuffleNet, and GhostNet were eval-
uated under these conditions. As shown in Fig. 10, the
results demonstrated that MobileNet and GhostNet exhib-
ited superior performance. In subsequent experiments, we
further assessed memory usage and latency. Among the
models, MobileNet demonstrated more comprehensive per-
formance, broader applicability, and greater generalization
capabilities. Therefore, in scenarios where the mobile visual
application is treated as a black box, MobileNet is selected
as the benchmark model for the OOD detector.

The impact of pruning on memory usage and latency.
We compared the parameter memory usage of models
before and after pruning, as shown in Fig. 11 (a). Post-
pruning, the models can be efficiently deployed on edge
devices. Fig. 11 (b) and (c) illustrate the average latency
performance of different models on OOD detection samples
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(Openlmages) before and after pruning, using VOC and
BDD as ID training datasets. The results demonstrate that
POD ensures millisecond-level processing.

=1K 3

ID Data:
car, pedestrian, ...

-y

0OD Data:
\ barricade, ...

Fig. 12. lllustration of our real-world data collection using mobile devices.

Real-world environment testing. As shown in Fig. 12,
we collect a real-world dataset in a road environment,
capturing one frame per second, resulting in a total of
1,000 image frames as test samples. We use X-AnyLabeling
[39] for image annotation and convert the annotations into
the VOC dataset format for validation. Due to the limited
amount of OOD data on the road, we select a portion of
the LostAndFoundDataset [40] to serve as OOD data, so
as to better validate the effectiveness of our method. The
LostAndFoundDataset is a dataset used for obstacle detec-
tion in autonomous vehicles and intelligent transportation
systems. It includes a variety of different types of obstacles,
such as suitcases, trash bins, and rocks. These obstacles vary
significantly in size, shape, and material to simulate the
various situations that might be encountered in real driving
environments.

We perform tests using both a Raspberry Pi 4B and a
Xiaomi 14 smartphone. The Raspberry Pi 4B is equipped
with a 1.5GHz quad-core ARM Cortex-A72 CPU, 4GB of
LPDDR4-2400 SDRAM. The Xiaomi 14 is equipped with a
Qualcomm Snapdragon 888 processor, 8GB of RAM, and
256GB of storage. On the Xiaomi 14, we employ Faster-
RCNN for detection, utilizing its backbone network WRN
as a specialized baseline model. On the Raspberry Pi 4B,
assuming the detection model is unknown, we adopt Mo-
bileNetV3 as the general baseline model. As shown in Fig.
13, we conduct performance and latency tests in a real road
environment. We observe that the model’s performance
improves progressively with an increasing number of test
samples. However, due to the limited number of OOD sam-
ples, the improvement in OOD recognition performance is
relatively modest. Additionally, the adjustment of decision
boundaries allows the model to better adapt to OOD data,
becoming increasingly refined. As a result, the frequency of
decision boundary adjustments decreases, thereby reducing
the processing latency.

We focus solely on evaluating the OOD detector’s per-
formance metrics, as the OOD detector is representative of
the OOD detection capabilities within mobile visual appli-
cations. Moreover, when the mobile visual application and
the OOD detector operate in parallel, the longer latency
of the mobile visual application can effectively mask most
of the latency introduced by the OOD detector. We find
that both the smartphone and the Raspberry Pi maintain
millisecond-level processing speed during the dynamic up-
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Fig. 13. Performance and latency variation with increasing test samples
on different mobile devices.

dates of decision boundaries, and their performance in real-
world environments is also excellent.

8 RELATED WORK

Mobile visual applications. Mobile visual applications
have been widely deployed across edge platforms such
as smartphones, in-vehicle systems, and wearable devices,
supporting a broad range of tasks including image clas-
sification, object detection, scene understanding, and aug-
mented reality [41]-[45]. The primary objective of these
applications is to achieve efficient and accurate visual in-
ference under resource-constrained environments. For in-
stance, the MobileNet family and EfficientNet-Lite models
[46]-[48] are commonly adopted for image classification due
to their favorable trade-off between speed and accuracy,
while lightweight variants of the YOLO series [49] enable
millisecond-level object detection performance on mobile
devices. In addition, numerous optimization techniques
tailored for mobile platforms have been proposed, such
as neural network pruning, quantization, and knowledge
distillation [50]-[52], to further enhance runtime efficiency
in embedded environments.

To improve the reliability of these systems in real-world
scenarios, we propose POD, a lightweight OOD detector
designed for automatic generation and dynamic adaptation.
POD effectively strengthens the model’s ability to recognize
unknown inputs, thereby enhancing overall system robust-
ness in practical open environments.

OOD detection. OOD detection has evolved signifi-
cantly from early Softmax-based baselines, leading to a wide
range of improved strategies. Specifically, Softmax-based
methods [7], [8], [25], [53] aim to enhance OOD detection by
post-processing the output probabilities of neural networks.
For example, ODIN [7] applies temperature scaling and in-
put perturbation to suppress the confidence scores of OOD
samples, while GradNorm Score [53] further improves OOD
discrimination by analyzing the gradient norm associated
with the input. However, these methods are limited by
the overconfidence of Softmax distributions and struggle to
capture deep distributional characteristics of OOD samples
at the feature level. In contrast, distance-based methods [11],
[12], [54], [55] perform OOD detection directly in the in-
termediate feature space. Although these methods partially
alleviate the overconfidence issue associated with Softmax,
their performance heavily relies on the quality of feature
representations, and distance metrics can become unstable
in high-dimensional spaces.

Generative model-based approaches [9], [10], [18], [56]
attempt to model the ID data distribution explicitly and
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detect OOD samples by identifying anomalies in the gener-
ative space. Specifically, Generative Adversarial Networks
(GANs) are used to assess OOD-ness based on discrimina-
tor confidence, while Variational Autoencoders (VAEs) are
employed to detect anomalies using reconstruction errors or
latent variable likelihoods. However, these approaches often
suffer from training instability in high-dimensional data and
may assign high likelihoods to certain OOD samples, as
observed in flow-based models [57].

Recent efforts have focused on synthesizing virtual
OOD samples near the decision boundary [13], [14], [19],
[58] to enhance the classifier’s discriminative capability.
These methods bypass the complexities of modeling high-
dimensional distributions found in generative models while
improving the classifier’s sensitivity to OOD data during
training. However, the quality of synthetic OOD samples re-
mains problematic, as they are often created through pertur-
bations around decision boundaries and may not accurately
reflect the complexity of real-world OOD data. To mitigate
this issue, some approaches incorporate auxiliary OOD
datasets, such as naturally occurring anomalous images
[59] or GAN-generated samples [60], and use techniques
like background-class regularization or the integration of
unlabeled noisy data to improve detection performance.
Additionally, various studies propose actively generating
virtual OOD samples near the decision boundary. For ex-
ample, VOS [14] maximizes sample entropy or classification
uncertainty to guide the generator in producing challenging
“fake” samples near the decision boundary. Similarly, BAL
[61] employs adversarial learning to synthesize virtual OOD
features, progressively generating harder samples to bolster
the classifier’s discriminative ability. In contrast, our POD
framework adaptively adjusts the decision boundary during
the testing phase, allowing it to effectively address the con-
tinuously emerging OOD data in real-world environments.

9 CONCLUSION

This paper presents POD, a framework designed to automat-
ically generate corresponding OOD detectors for any classi-
fication model, enhancing the OOD detection capabilities of
existing mobile visual applications without compromising
their classification performance. POD operates across both
training and testing phases: it generates OOD detectors
during the training phase and continuously refines its per-
formance in the testing phase by dynamically adjusting the
decision boundaries. Extensive experiments demonstrate
that POD significantly improves OOD detection performance
with millisecond-level latency.
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