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Abstract

Accurate modeling of tra�c demand through cellular traf-

�c generation is crucial for optimizing base station deploy-

ment. We thus present STOUTER, a Spatio-Temporal dif-

fusiOn model for cellUlar Tra�c genERation. To e�ectively

capture spatial and temporal dynamics, we pretrain both a

temporal graph and a base-station graph, and introduce a

Spatio-Temporal Feature Fusion Module (STFFM). On �ve

datasets from two regions, STOUTER reduces Jensen–Shannon

Divergence by 52.8% over prior methods, generating distribu-

tions that closely match real tra�c and aiding downstream

planning tasks.
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1 Introduction

Cellular networks serve as essential infrastructure for emerg-

ing applications such as smart cities and autonomous sys-

tems. With the rapid adoption of 5G and beyond, growing

tra�c demands call for e�cient network resource planning
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(b) Hourly Internet traffic volume of Base Station 1. 

(a) Daily Internet traffic volume of 2 base stations. 

(c) Hourly Internet traffic volume of Base Station 2.
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Figure 1: Statistics on (a) daily Internet tra�c and (b,
c) hourly Internet tra�c for two typical base stations,
where ‘BS’ means Base Station.

and deployment. However, existing tra�c prediction meth-

ods face key limitations: they rely heavily on large-scale his-

torical data and often lack access to real-time operator infor-

mation, hindering scalability and practical usage. Moreover,

suboptimal base station deployment strategies frequently

overlook actual demand distributions. While existing data

generation approaches [2, 6], such as generative adversar-

ial networks (GANs) or autoregressive models, have shown

promise, they often lack scalability, diversity, and the ability

to model real-world uncertainty.

To address these challenges, we propose STOUTER1, a

spatio-temporal di�usion model that generates realistic cel-

lular tra�c by learning both spatial heterogeneity and tem-

poral periodicity, while simulating uncertainty via a denois-

ing di�usion framework. Our approach enables scalable and

realistic tra�c generation to support data-driven network

optimization.

1This poster is based on our previous work [4].
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2 Spatio-temporal Graph Modeling

By visualizing Internet tra�c data from two typical base

stations in the Milan dataset (Figure 1), we identify three key

patterns in cellular tra�c that realistic generation models

must consider.

Pattern 1: Temporal Periodicity. Tra�c exhibits both

long-term (e.g., lower weekend vs. higher weekday volumes)

and short-term (daily peaks and troughs by hour) cycles.

Pattern 2: Spatial Heterogeneity. Di�erent base sta-

tions show distinct local usage levels—densely populated

areas carry more load—yet share global trends, necessitating

region-speci�c modeling without losing overall correlations.

Pattern 3: Tra�c Uncertainty. Even at the same station

and time, volumes �uctuate unpredictably due to varying

user behaviors and application demands, so generated data

must re�ect this inherent randomness rather than producing

�xed values.

To capture the temporal periodicity of cellular tra�c, we

model hourly statistics for a week (Sunday to Saturday) and

divide a single day into 24 graph nodes, with directed hourly

edges connecting consecutive hours and daily edges linking

the same hour across days of theweek. AGraph Isomorphism

Network (GIN) -based autoencoder is adopted to learn node

embeddings that capture both short-term (hourly) and long-

term (weekly) tra�c cycles.

To e�ectively di�erentiate cellular tra�c characteristics

across base stations, we construct the base station graph,

where nodes are base stations, with undirected edges be-

tween any two stations within 1:<. Each node’s initial fea-

tures count surrounding Points of Interest (POIs). A graph

convolutional network (GCN) -based autoencoder is applied

to encode spatial heterogeneity across the network.

Encoder Decoder
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Reconstructed Base Station Graph

Node Representations

Loss

Figure 2: Spatio-temporal graph autoencoder.

These two graph encoders are pretrained and utilized to ob-

tain latent representations of the corresponding graph nodes,

preserving essential spatio-temporal features. As shown in

Figure 2, both the temporal and base-station graphs are

trained via an encoder-decoder framework to produce node

embeddings.We optimize the encoders GIN and GCN bymin-

imizing the scaled cosine error (SCE) loss function, which

ensures that the learned node representations retain essential

structural and feature information:

L?A4 =
1

|V|

∑

E8 ∈V,ℎ8 ∈H,I8 ∈Z

(

1 −
ℎ)8 I8

∥ℎ8 ∥ · ∥I8 ∥

)W

, (1)

where the scaling factor W > 1, E8 represents the �nal node

embedding from VC or VB , ℎ8 denotes the original node fea-

ture fromHC orHB , and I8 is the restored node feature from

the decoder.

3 Di�usion-based Tra�c Generation

Once the temporal embeddings FC and spatial embeddings

FB are learned, STOUTER can be trained and used to gen-

erate tra�c data via a denoising di�usion process guided

at every step by these priors. Figure 3 illustrates the frame-

work of STOUTER, which employs a denoising network that

integrates spatio-temporal information to iteratively re�ne

generated data and produce large-scale cellular tra�c data.

The di�usion model simulates tra�c uncertainty through

a two-phase process: forward process and reverse denois-

ing. Real tra�c undergoes a forward di�usion that incre-

mentally adds Gaussian noise, then a reverse denoising via

STUnet re�nes samples from pure noise back into realistic

tra�c sequences. STUnet’s U-Net backbone is enriched by

a Spatio-Temporal Feature Fusion Module (STFFM), which

injects both pretrained temporal and spatial embeddings at

each denoising step. FC and FB are concatenated and pro-

jected with a fully-connected layer, and timestep embedding

encoded by sinusoidal position is then added to obtain a

fused context steering the denoising toward realistic spatial

heterogeneity and temporal cycles.
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Figure 3: Framework of STOUTER.

4 Performance Evaluation

Weevaluate STOUTER on two real-world Call Detailed Records

(CDR) datasets: Milan and Trentino[1], each covering �ve
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Table 1: Performance comparisons of our proposed STOUTER and baseline methods using the metrics of MAE,
RMSE, and JSD (×10−4). Detailed results for Internet, Call, and SMS datasets from Milan and Trentino. The optimal
results are highlighted in bold and the suboptimal results are underlined.

Methods

Milan

Internet Call SMS

MAE RMSE JSD MAE RMSE JSD MAE RMSE JSD

TCN-GAN 0.4183 0.4693 2.6895 0.1357 0.1598 1.0161 0.2714 0.4335 9.2472

VAE 0.1057 0.1444 0.8017 0.0818 0.1071 0.4765 0.0612 0.0735 0.2652

Di�Wave 0.1329 0.1707 0.9199 0.0860 0.1086 0.5573 0.0721 0.0837 0.2213

STOUTER 0.0781 0.1088 0.4843 0.0697 0.0925 0.3963 0.0583 0.0715 0.1997

Methods

Trentino

Internet Call SMS

MAE RMSE JSD MAE RMSE JSD MAE RMSE JSD

TCN-GAN 0.4786 0.5312 2.9059 0.1267 0.1488 0.8921 0.0977 0.1103 0.3402

VAE 0.1044 0.1440 0.7938 0.0810 0.1018 0.3520 0.0721 0.0896 0.3369

Di�Wave 0.0986 0.1348 0.8333 0.0809 0.1005 0.5050 0.1540 0.1668 0.4479

STOUTER 0.0827 0.1139 0.5196 0.0719 0.0915 0.3076 0.0613 0.0808 0.3380

tra�c types (Internet, Call, SMS, Incoming-Call, Outgoing-Call

or aggregated Call/SMS). Three representative generation

methods are selected as baselines: a TCN-GAN[2], a convo-

lutional VAE[5], and a Di�Wave-style di�usion model[3]

with a WaveNet backbone. Models are assessed by Mean

Absolute Error (MAE), Root Mean Square Error (RMSE) and

Jensen-Shannon Divergence (JSD) between generated and

real tra�c distributions.

Table 1 presents the results of the performance evalua-

tion of our model compared to baseline models in multi-

ple datasets from Milan and Trentino. STOUTER achieves

the lowest error and divergence in nearly all settings. On

the Milan Internet dataset, it reduces MAE by 26.1%, RMSE

by 24.6%, and JSD by 39.5% compared to the best baseline.

Similar trends are observed in Trentino, where STOUTER

lowers JSD by 34.5% on Internet data. These results con-

�rm STOUTER’s ability to generate realistic, distributionally

aligned cellular tra�c at scale.

5 Conclusion

In this work, we propose STOUTER, a spatio-temporal fusion

di�usion model for cellular tra�c generation. By embedding

spatio-temporal relationships into the di�usion process, it

produces realistic, high-quality synthetic tra�c. We vali-

date STOUTER on large-scale real-world datasets, showing

signi�cant improvements across multiple metrics over ex-

isting generative models, and demonstrate its e�ectiveness

for downstream tasks such as network optimization, tra�c

prediction, and resource allocation.
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