
DSETA: Driving Style-Aware Estimated Time of Arrival
Bolin Zhang

Shenzhen University
College of Computer Science and Software Engineering

Shenzhen, Guangdong, China
zhangbolin2023@email.szu.edu.cn

Zhidan Liu∗
The Hong Kong University of Science and Technology

(Guangzhou)
Intelligent Transportation Thrust, System Hub

Guangzhou, Guangdong, China
zhidanliu@hkust-gz.edu.cn

Abstract

The accurate estimated time of arrival (ETA) is crucial for mobility
and transportation applications. Although significant efforts have
been made to improve ETA prediction, most existing approaches
ignore the influence of individual driving habits and preferences,
known as the driving style. Since different drivers may prefer spe-
cific routes and speeds based on their experience and familiarity
with traffic conditions, driving styles play a crucial role in deter-
mining the actual ETA. To fill this gap, we present a novel ap-
proach, DSETA, which leverages deep learning to learn and then
integrate driving style representations for personalized and pre-
cise ETA predictions. Our method employs a diffusion model that
captures nuanced driving styles by generating driving speed dis-
tribution. We also utilize attention mechanisms to dynamically
adjust the impacts of various spatio-temporal factors and driving
styles on ETA predictions. Additionally, we introduce a Multi-View
Multi-Task framework that incorporates auxiliary tasks, includ-
ing segment-view driving style classification and route-view speed
distribution prediction, to enhance the ETA learning process. A
route-level speed prior regularization strategy further improves
the model’s generalization capabilities. Extensive experiments con-
ducted on a large real-world trip trajectory dataset demonstrate
that DSETA achieves high effectiveness and outperforms various
baselines across multiple evaluation metrics.
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Figure 1: Variation in travel durations between the same

origin 𝑜 and destination 𝑑 for driver A and driver B due to: (a)

distinct driving styles; (b) familiarities on travel routes with

the same travel distance; and (c) different departure times 𝑡 .

Annotations along the lines indicate total travel duration (in

seconds) and driver’s average driving speed (in km/h).
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1 Introduction

Estimated time of arrival (ETA) is designed to forecast the travel du-
ration from a specified origin to a destination along a planned travel
route, taking into account a particular departure time. As a crucial
component of location-based services, ETA is extensively utilized
in a variety of contemporary mobility and transportation applica-
tions, including map navigation [3], instant delivery services [13],
online ride-hailing platforms [25], and vehicle dispatch systems
[24]. Accurate ETA predictions can greatly boost transportation
efficiency, enhance user experiences, and promote environmental
sustainability by reducing energy consumption.

Due to its essential functionality, ETA prediction has recently
garnered significant attention from both industry [7, 9, 10, 22, 35]
and academia [20, 21, 38]. For instance, Didi’s WDR [35] employs a
deep learning model that integrates spatio-temporal and route fea-
tures for ETA, and has recently evolved into ProbTTE [22]. Similarly,
Baidu Map’s ConSTGAT [10] utilizes a graph attention mechanism
to simultaneously model spatial and temporal information, later
advancing to a meta-learning approach known as SSML [9]. More-
over, Google Maps [7] employs graph neural networks (GNNs) to
capture spatial dependencies within road networks for ETA esti-
mates. In academia, various ETA methods [15, 31, 32, 37] have been
developed as well. In particular, the ADS-ETA framework [32] aims
to address data sparsity in ETA predictions, while STHR [37] en-
hances ETA accuracy by leveraging spatio-temporal features across
multiple dimensions. Despite significant research advancements
in ETA prediction, most existing methods overlook the impact of

https://orcid.org/0009-0000-6984-8219
https://orcid.org/0000-0002-0211-877X
https://doi.org/10.1145/3746252.3761171
https://doi.org/10.1145/3746252.3761171
https://doi.org/10.1145/3746252.3761171


CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Bolin Zhang and Zhidan Liu

individual driving habits and preferences, referred to as driving
style [29]. These driving styles are crucial in determining actual
ETA, as different drivers may favor specific routes and speeds based
on their experience and familiarity with traffic conditions. In reality,
many drivers perceive the estimated travel times provided by map
services as inaccurate. This discrepancy arises primarily because
these services fail to account for variations in driving styles when
predicting ETA. In fact, drivers can experience notably different
travel times for identical trips, even with the same origin, desti-
nation, and departure time. For example, as illustrated in Figure
1(a), if driver B is an aggressive driver with a high average speed,
B will complete the trip more quickly than driver A, who drives
cautiously at a lower speed. Due to varying driving styles, their
ETAs for the same journey should vary considerably.

Some notable studies [23, 31, 40] have considered driving styles
in ETA predictions. These works, namely CoDriver [31] and MT-
STAN [40], typically use travel speeds derived from historical trip
data to provide personalized ETA predictions. However, a high
average speed does not imply that a driver maintains that pace
on every route. Using only speed does not capture the complexity
of individual driving habits and preferences. Therefore, a more
nuanced representation of driving styles is essential to enhance the
accuracy of ETA predictions.

To address this gap, we thus propose a Driving Style-aware
Estimated Time of Arrival (DSETA) approach. This method learns
effective driving styles from historical trip data and utilizes these
learned features to provide personalized and accurate ETA predic-
tions. However, implementing DSETA presents several challenges
that must be addressed.

First, how to effectively represent driver’s driving style for ETA
predictions? While using average speed is straightforward, it fails
to capture the complexity and variability of a driver’s style across
different roads and traffic conditions. We contend that driving style
should not be viewed as simply fast or slow, but as a distribution
of speeds under varying circumstances. For example, Figure 1(b)
further shows that driver B takes an alternative route with the same
travel distance between the same origin and destination. However,
this route takes longer due to a lower average speed on unfamiliar
roads compared to the original route. Thus, it is crucial to conceptu-
alize driving style as a speed distribution rather than a single value.
To achieve this, we introduce the concept of distance-duration pair
(DDP), which represents a trip by its travel distance and duration.
We then propose a diffusion-based driving style representation
method that learns from historical DDPs while simultaneously gen-
erating virtual DDPs. This approach allows the model to capture
the implicit driving styles reflected in the distribution of a driver’s
speeds. More importantly, our driving style representation can
be seamlessly integrated with existing ETA prediction methods,
enhancing their overall performance.

Second, how to dynamically adjust the impacts of driving style
and various factors on ETA predictions? In addition to driving style,
external factors such as origin and destination locations, road types,
and departure time significantly influence travel time. For example,
even an aggressive driver cannotmaintain high speeds on congested
roads during peak traffic hours. As shown in Figure 1(c), both dri-
ver A and driver B are compelled to drive slowly during rush hour.
Integrating driving style with these spatial-temporal factors and

precisely adjusting their influences on ETA predictions pose a chal-
lenge. To address this challenge, we devise embedding techniques
for spatial-temporal factors and employ attention mechanisms to
model the relationships between driving style and these factors.
The attention weights learned by the model allow for varying de-
grees of focus on each factor, thereby regulating their respective
influences on the final ETA estimation.

Third, how to efficiently train the model to achieve accurate ETA
predictions? A single ETA prediction task often lacks sufficient con-
straints to effectively capture the nuances of driving styles, resulting
in representation deficiencies. Therefore, it is essential to design
additional mechanisms to guide the model in leveraging driving
styles for accurate ETA predictions. To tackle this issue, we propose
a Multi-View Multi-Task (MVMT) learning framework that incorpo-
rates several well-designed auxiliary tasks to support the main ETA
learning task. Specifically, we introduce a route-view speed distri-
bution prediction task to learn the driver’s speed distribution across
various travel routes. Additionally, we implement a segment-view
driving style classification task to capture the fine-grained effects
of driving styles. Furthermore, we incorporate route-level speed
prior regularization (PSPR) to bolster the model’s generalization
capabilities. Together, these auxiliary tasks and the ETA learning
task fully leverage the potential of driving styles for more accurate
ETA predictions.

In summary, we make the main contributions as follows:

• To our best knowledge, this is the first work to design the
DDP generation task and employ a diffusion model to learn
driving style representations. This representation enables
deep learning models to effectively embed semantics related
to practical driving styles.
• We introduce DSETA, a driving style-aware ETA approach
that utilizes attention mechanisms to explore the relation-
ships between spatio-temporal factors and driving styles.
• We propose a multi-view multi-task learning framework
that incorporates several auxiliary tasks to guide driving
style learning and enhance ETA predictions. Additionally,
we devise the PSPR to improve the model’s generalization
capabilities.
• We evaluate DSETA using a large real-world trip trajectory
dataset. Experimental results demonstrate that DSETA out-
performs various baselines across all metrics, confirming the
effectiveness of our approach.

The rest of this paper is organized as follows. Section 2 intro-
duces the ETA prediction problem and the system overview of
our DSETA. Later, we elaborate the design of diffusion-based driv-
ing style learning, transformer-based multi-factor fusion, and the
MVMT framework for ETA learning in Sections 3, 4, and 5, respec-
tively. Experimental results are reported in Section 6. We review the
related works in Section 7. Finally, Section 8 concludes this paper.

2 Preliminary and Framework Overview

In this section, we present some preliminary definitions and the
ETA prediction problem statement, and then introduce the system
overview of our solution DSETA.
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Figure 2: The architecture of DSETA.

2.1 Definitions and Problem Statement

Definition 1. (Road Network) A road network is denoted by
a directed graph G = ⟨V, E⟩, where each vertex in V represents a
road intersection and each edge 𝑒 ∈ E represents a road segment in
the road network.

Definition 2. (Travel Route) A travel route r is defined as a
sequence of connected road segments r = ⟨𝑒1, 𝑒2, · · · , 𝑒𝐿⟩, where 𝐿 is
the number of road segments in the route.

Definition 3. (Historical Trip) A historical trip is defined
as a 6-tuple s = ⟨𝑢, 𝑜, 𝑑, 𝑡, r, 𝑦⟩, where 𝑢 denotes the driver who ac-
complished the trip, 𝑜 and 𝑑 represent the trip origin and destination
locations, respectively, 𝑡 is the departure time, r denotes the travel
route, and 𝑦 is the travel time of this trip.

Definition 4. (Distance-Duration Pair, DDP) Given a trip s,
a DDP can be extracted and denoted by a 2-tuple 𝑥 = ⟨ℓ,𝑦⟩, where
ℓ and 𝑦 represent the total travel distance and duration of this trip.
Particularly, x denotes a set of DDPs.

Definition 5. (Trip Query) A trip query is defined as a 5-
tuple z = ⟨𝑢, 𝑜, 𝑑, 𝑡, r⟩, where 𝑢 denotes the driver of the trip, 𝑜 and 𝑑
represent the trip origin and destination, respectively, 𝑡 is the departure
time, and r denotes the planned travel route.

Problem 1. Driving Style-aware Estimated Time of Arrival
Problem: Given a trip query z = ⟨𝑢, 𝑜, 𝑑, 𝑡, r⟩, we aim to predict the
travel time 𝑦 for driver 𝑢 who drives from origin 𝑜 to destination
𝑑 along a given travel route r based on 𝑦 = F(z,G), where G is
the underlying road network and F(·) is a mapping function, which
perceives driver 𝑢’s driving style and can be learned from historical
trip dataset S = {s𝑖 }𝑛𝑖=1.

2.2 Overview of DSETA Solution
To address above problem, we propose a novel ETA learning ap-
proach – DSETA. As illustrated in Figure 2, DSETA comprises three
key modules. First, the Diffusion-based Driving Style Learning mod-
ule generates DDPs, enabling the extraction of implicit driving style
representations for drivers (Section 3). Next, the Transformer-based
Multi-Factor Fusion module integrates learned driving styles with
spatial-temporal factors to enhance ETA predictions (Section 4).
Finally, the Multi-View Multi-Task (MVMT) Learning module incor-
porates auxiliary tasks focusing on driving style from both route
and segment perspectives, thereby supporting and improving the
ETA learning task (Section 5).

The operational workflow of DSETA is outlined as follows.

• Training phase: DSETA learns driver style representations
from dataset S with a diffusion model for DDP generation. A
transformer encoder, guided by an MVMTmodule, is trained
on embeddings of trip features and the style representations.
• Inference phase: The auxiliary classifiers in MVMT are inac-
tive during inference. DDP generation is also unnecessary
at this stage. Consequently, these components do not partic-
ipate in the computation.

3 Diffusion-based Driving Style Learning

3.1 Motivation

Instead of a single average speed, we propose using speed distri-
bution to better represent driving style. Analyzing drivers A and
B from a real-world dataset, we show in Figure 3(a) that driver B,
despite a higher average speed, has a broader speed distribution,
indicating frequent speed adjustments due to changing conditions.

To analyze trip characteristics, we generate distance-duration
pairs (DDPs) for drivers A and B, as visualized in Figure 3(b) with
Min-Max normalization, while overlaying the average speeds. The
DDP dispersion indicates that a single average speed is insufficient
to represent driving style across varying distances and durations.
Thus, DDPs are proposed as a better representation.

However, DDPs’ discrete nature and the impracticality of mod-
eling them with functions like Gaussian mixed models [30] for
integration with deep learning-based ETA prediction frameworks
[22, 35] lead us to propose a DDP generation task. This task synthe-
sizes DDPs based on actual speed distributions, indirectly encoding
driver information along with driving style semantics.

Drawing on the generative capabilities of diffusion models [39],
we develop a DDP generation model using Denoising Diffusion
Probabilistic Models (DDPM) [16]. The right part of Figure 2 shows
the model’s two Markov processes: the forward diffusion process
and the reverse denoising process, detailed as follows.

3.2 Diffusion Process

The diffusion process, commonly referred to as forward diffusion,
incrementally introduces noise into a driver’s original DDP data,
denoted as x0, over a series of time steps until the resulting cor-
rupted DDPs conform to a predefined prior distribution, such as a
Gaussian distribution.
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Formally, the transformation occurring during the diffusion pro-
cess, e.g., from 𝑥0 to 𝑥𝑚 , for one DDP can be expressed as follows:

𝑞(𝑥𝑚 |𝑥0) = N(𝑥𝑚 ;
√
𝛼𝑚𝑥0, (1 − 𝛼𝑚)I), (1)

where 𝑥𝑚 is the DDP derived at the𝑚-th step,N(·) is the Gaussian
distribution, 𝛼𝑚 is the hyperparameters used for controlling the
Gaussian noise level in the𝑚-th step, and I is the identity matrix.

3.3 Denoising Process

The denoising process serves as the reverse of the forward diffu-
sion, aiming to produce a clean DDP 𝑥0 from noise sampled from
the standard Gaussian distribution, represented as 𝑥𝑀 ← N(0, I).
Specifically, the restored DDP 𝑥0 belong to the speed distribution
of a particular driver 𝑢, thereby reflecting the driving style of that
individual. Formally, a single transition from the𝑚-th step to the
(𝑚 − 1)-th step of the denoising process for one DDP can be ex-
pressed as follows:

𝑝𝜃 (𝑥𝑚−1 |𝑥𝑚, 𝑢) = N(𝑥𝑚−1; 𝜇𝜃 (𝑥𝑚,𝑚,𝑢),Σ𝜃 (𝑥𝑚,𝑚,𝑢)), (2)

where 𝜃 is the parameters of neural network model employed to
instantiate the denoising process, and 𝜇𝜃 (·) and Σ𝜃 (·) are the mean
and covariance matrix, respectively. Since the denoising process
is also a Markov process, the clean DDP 𝑥0 can be progressively
restored from the noisy DDP 𝑥𝑀 using the following approach:

𝑝𝜃 (𝑥0 |𝑥𝑀 , 𝑢) =
𝑀∏
𝑖=1

𝑝𝜃 (𝑥𝑖−1 |𝑥𝑖 , 𝑢). (3)

Consequently, the intended neural networks will incorporate driver
priors and subsequently generate DDPs that reflect the driving
characteristics of the driver.

3.4 DDP Denoiser

To integrate driver priors into denoising, we redesign the diffusion
model’s denoiser, creating our DDP denoiser capable of accepting
driver information 𝑢 as input. Since DDP only has two dimensions,
i.e., travel distance and duration, we utilize a simple Multilayer
Perceptron (MLP) as the backbone network for the DDP denoiser.

Given that both driver ID𝑢 and current time step𝑚 are numerical
values, we employ one-hot encoding and a fully connected layer

to obtain their embeddings, resulting in 𝑓𝑑𝑟𝑖 and 𝑓𝑚 respectively.
Specifically, 𝑓𝑑𝑟𝑖 is obtained as follows:

𝑓𝑑𝑟𝑖 = OneHot(𝑢)W𝑢
𝑇 + b𝑢 , (4)

where W𝑢 and b𝑢 denote the model’s weights and bias. We perform
similar operations as shown in Eq. (4) to obtain 𝑓𝑚 . Additionally,
since a noisy DDP in 𝑥𝑚 is a two-dimensional vector as well, we
use another fully connected layer to project each DDP in 𝑥𝑚 into
the same dimensional space as 𝑓𝑑𝑟𝑖 and 𝑓𝑚 , resulting in 𝑓𝑥𝑚 . Finally,
the three vectors, i.e., 𝑓𝑥𝑚 , 𝑓𝑑𝑟𝑖 and 𝑓𝑚 , are combined to form the
input of the DDP denoiser, while the output of the DDP denoiser is
the predicted noise.

We employ the same training algorithm as the DDPM [16] to
optimize our diffusion model. Upon completion of training, we
obtain driver features imbued with driving style semantics. At this
stage, we have two strategies for utilizing the learned driver features.
One approach is to treat the learned embedding 𝑓𝑑𝑟𝑖 as the definitive
representation of driving style, allowing direct application for ETA
predictions. Alternatively, we can utilize model parameters W𝑢

and b𝑢 from Eq. (4) as pre-trained parameters, enabling them to
be jointly trained alongside the downstream ETA prediction task.
In our DSETA design, we choose the latter to dynamically update
driving style features alongside downstream tasks.

4 Transformer-based Multi-Factor Fusion

In addition to driver driving style, several other factors influence the
travel time of a trip, including the origin and destination, departure
time, and the travel route.

4.1 Feature Embedding

To incorporate these factors and assess their impacts on the ETA
prediction, DSETA represents them as segment feature 𝑓𝑠𝑒𝑔 , spa-
tial feature 𝑓𝑠𝑝𝑎 , temporal feature 𝑓𝑡𝑚𝑝 , and driving style feature
𝑓𝑑𝑟𝑖 . A route feature is represented as a feature matrix Fr by se-
quentially stacking the feature of each segment within r as Fr =

[𝑓𝑠𝑒𝑔1 ; 𝑓𝑠𝑒𝑔2 ; · · · ; 𝑓𝑠𝑒𝑔𝐿 ]. As a preprocessing step, various feature em-
bedding techniques can be utilized. To effectively and reasonably
consider the characteristics of various factors, we employ differ-
ent embedding techniques to represent the factors. For example,
graph structural features can be embedded using Node2Vec [14],
and sparse features can be embedded using One-Hot encoding. Fur-
thermore, DSETA adjusts the weights assigned to these factors in
determining ETA using attention mechanisms, as follows.

4.2 Multi-Factor Fusion via Attention

Taking the derived segment embedding, spatial and temporal em-
beddings, and driving style representation as inputs, the Transformer-
based encoder of DSETA aims to learn the relationships among these
factors and dynamically adjust their influences on ETA predictions
through attention mechanism. The cross-attention module requires
three key components: the queryQ, keyK, and valueV. Accordingly,
we organize the segment embedding as the query, and concatenate
the spatial-temporal embeddings and driving style representation
into a sequence to serve as the key and value, as follows:

Q = SelfAttention(Fr), (5)

K = V = SelfAttention( [𝑓𝑠𝑝𝑎 ; 𝑓𝑡𝑚𝑝 ; 𝑓𝑑𝑟𝑖 ]) . (6)
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In this formulation, Eq. (5) learns the relationship among differ-
ent segments of a travel route, while Eq. (6) captures the relationship
between spatial-temporal features and driving style. The advantage
of organizing [𝑓𝑠𝑝𝑎, 𝑓𝑡𝑚𝑝 , 𝑓𝑑𝑟𝑖 ] in this manner is that when a new
contextual factor needs to be considered, its representation can
be seamlessly concatenated into the existing sequence. Prior to
concatenation, a fully connected layer is employed to project 𝑓𝑠𝑝𝑎 ,
𝑓𝑡𝑚𝑝 , and 𝑓𝑑𝑟𝑖 onto the same dimensional space as 𝑓𝑒𝑖 .

With Q, K, and V as inputs, the Transformer leverages the cross-
attention mechanism to generate representations as:

H𝑟𝑜𝑢 = CrossAttention(Q,K,V). (7)

Specifically, we obtain H𝑟𝑜𝑢 = [h𝑒1 , h𝑒2 , · · · , h𝑒𝐿 ], where each
vector h𝑒𝑖 is fulfilled with the attention weight values that reflect
the impacts of various influencing factors on the segment 𝑒𝑖 within
travel route r. Unlike previous approaches that utilize the final
vector h𝑒𝐿 as the sole representation [22], we propose to aggregate
all vectors in H𝑟𝑜𝑢 to form a comprehensive representation for the
travel route as follows:

h𝑟𝑜𝑢 = SumPooling(H𝑟𝑜𝑢 ) . (8)

This design offers a significant advantage: by employing the
sequence of segments as the query Q, we can derive segment-
level representations that integrate multiple influencing factors
into a single attention query. These segment-level representations
facilitate the exploration of various segment combinations (i.e.,
different travel routes) beyond the currently inputted one, thereby
providing more detailed information for downstream tasks.

5 Multi-View Multi-Task Learning

To achieve robust and accurate ETA predictions, we propose the
Multi-View Multi-Task (MVMT) learning framework. This frame-
work integrates auxiliary tasks for driving style classification to
support the main task of ETA learning. The learning process is
conducted at both the route view and the segment view, thereby
enhancing the driving style-aware ETA predictions by taking into
account the influences of global route characteristics as well as
local segment details.

5.1 ETA Learning Tasks

The primary objective of this main task is to predict the travel time
of a trip based on its origin, destination, departure time, and the
planned travel route.

5.1.1 Route-View. The route-view ETA is modeled as a regression
task aimed at predicting the travel time of a trip given its route
representation h𝑟𝑜𝑢 , as derived from Eq. (8). We employ an MLP as
the regressor, i.e.,

𝑦𝑟 = MLP𝑒𝑡𝑎 (h𝑟𝑜𝑢 ), (9)
where 𝑦𝑟 is the predicted ETA given h𝑟𝑜𝑢 .

Additionally, we compute the mean average error (MAE) as the
instantaneous training loss, defined as follows:

L𝑟
𝑒𝑡𝑎 =

1
𝑛

𝑛∑︁
𝑖=1
|𝑦𝑖 − 𝑦𝑟𝑖 |, (10)

where 𝑛 is the total number of travel routes in historical trip dataset
S = {s𝑗 }𝑛𝑗=1.

5.1.2 Segment-View. From the segment view, we calculate the
travel time for each individual road segment and aggregate these
times to derive the final ETA prediction for the entire travel route.
The segment-level time is predicted as 𝑦𝑠

𝑗,𝑒𝑖
= MLP𝑒𝑡𝑎 (h𝑒𝑖 ), 𝑒𝑖 ∈ r𝑗 ,

where theMLP regressor shares parameters with the one used in the
route-view. By summing the segment-level travel times, we obtain
an estimation of travel time over the route r𝑗 as 𝑦𝑟𝑠𝑗 =

∑𝐿𝑗

𝑖=1 𝑦
𝑠
𝑗,𝑒𝑖

.
Consequently, we can derive two training losses, both measured us-
ing MAE, from the segment-view ETA predictions. Specifically, Eq.
(11) calculates the MAE loss associated with segment-level travel
time, while Eq. (12) computes the MAE loss for route-level time.

L𝑠
𝑒𝑡𝑎 =

1
𝑁

𝑛∑︁
𝑗=1

𝐿𝑗∑︁
𝑖=1
|𝑦 𝑗,𝑒𝑖 − 𝑦𝑠𝑗,𝑒𝑖 |, (11)

L𝑟𝑠
𝑒𝑡𝑎 =

1
𝑛

𝑛∑︁
𝑗=1
|𝑦 𝑗 − 𝑦𝑟𝑠𝑗 |, (12)

where 𝐿𝑗 represents the number of segments in the 𝑗-th travel
route, and 𝑁 =

∑𝑛
𝑗=1

∑𝐿𝑗

𝑖=1 1 denotes the total number of segments
traveled by the trips in S.

Therefore, the training loss associated with the main ETA learn-
ing task can be summarized as follows:

L𝑒𝑡𝑎 = L𝑟
𝑒𝑡𝑎 + L𝑠

𝑒𝑡𝑎 + L𝑟𝑠
𝑒𝑡𝑎 . (13)

5.2 Driving Style Classification Tasks

5.2.1 Route-View. In addition to implicit representation of driving
styles, travel speed serves as an intuitive indicator of a driver’s
driving preferences. To this end, we introduce an auxiliary task
focused on route-view speed prediction that aims to learn a driver’s
speed preference for the planned travel route. Instead of directly
predicting absolute speed value as a regression problem, we refor-
mulate the task as a multi-class classification problem. Specifically,
we discretize continuous speed values into distinct categories, with
a maximum speed limit of 120𝑘𝑚/ℎ and a speed interval denoted as
Δ (e.g., 10𝑘𝑚/ℎ). The boundary values 𝑏 𝑗 for all category intervals
are calculated as 𝑏𝑖 = 𝑖 · Δ, 0 ≤ 𝑖 ≤ 𝐶 , where 𝐶 = ⌈120/Δ⌉ stands
for the total number of categories.

Based on these settings, we construct a speed classifier using an
MLP combined with Softmax. The classifier takes the route-view
representation h𝑟𝑜𝑢 , as derived from Eq. (8), as input and produces
a probability vector v̂ representing the predicted speed distribution:

v̂ = Softmax(MLP𝑟
𝑐𝑙𝑠
(h𝑟𝑜𝑢 )). (14)

To train the classifier, we minimize the classification loss L𝑟
𝑐𝑙𝑠

,
defined as the cross entropy that quantifies the divergence between
the predicted speed distribution and true labels:

L𝑟
𝑐𝑙𝑠

=
1
𝑛

𝑛∑︁
𝑖=1

v𝑖 · log(v̂𝑖 ), (15)

where v𝑖 is the one-hot encoded label for the 𝑖-th route. Specifically,
if 𝑣𝑖 is the ground true average speed for the 𝑖-th route, the 𝑘-th
element of v𝑖 is set to 1, where 𝑘 = ⌊𝑣𝑖/Δ⌋.

Furthermore, we introduce Route-level Speed Prior Regulariza-
tion (RSPR) to incorporate speed prior knowledge. Unlike the pre-
vious Route-Wise Prior Regularization [22], which needs trips on
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the same route, RSPR needs trips by the same driver. It’s easier to
get trajectories from the same driver than the same travel route.

Figure 3(a) shows that a driver’s speed distribution often follows
a log-normal pattern, which we use to model the driver’s speed
prior. The expected average speed can be computed by equation

𝑣 = 𝑒𝜇+
𝜎2
2 , where 𝜇 and 𝜎2 represent the expectation and variance

of the log-normal distribution, respectively. To model the speed
prior, we introduce a parameterized log-normal distribution. Let
the random variable 𝑉 denote the average speed of driver 𝑢 on a
specific route r, which is assumed to follow the distribution 𝑝 (𝑣):

𝑉 ∼ 𝑝 (𝑣) = 1
𝑣
√

2𝜋𝜎2
exp(− (log(𝑣) − 𝜇)2

2𝜎2 ), (16)

where 𝜇 and 𝜎2 represent the expectation and variance of log(𝑉 ),
respectively. We discretize the continuous distribution into a dis-
crete form as 𝑝𝑖 = 𝑝 ( 𝑏𝑖+𝑏𝑖+12 ) · Δ, 0 ≤ 𝑖 ≤ 𝐶 − 1, where 𝑏𝑖+𝑏𝑖+1

2
stands for the speed cluster center. Then, we obtain the discrete
variable b = [𝑏0+𝑏1

2 ,
𝑏1+𝑏2

2 , · · · , 𝑏𝐶−1+𝑏𝐶
2 ] and a probability vector

p = [𝑝0, 𝑝1, · · · , 𝑝𝐶−1].
Subsequently, we leverage the cross-entropy between v̂ and p

to derive the log-normal distribution that best approximates the
model’s output distribution. By setting ▽𝐿𝑝𝑟𝑖𝑜𝑟 = 0 to address the
optimization problem defined in Eq. (17), we obtain the analytical
solution represented in Eq. (18).

min
𝜇,𝜎
L𝑝𝑟𝑖𝑜𝑟 = −v̂ · log(p), (17)

𝜇 = v̂ · log(b), 𝜎2 = v̂ · (log(b) − 𝜇 · 1𝐶 )2, (18)
where 1𝐶 is a vector of ones with a length of 𝐶 .

Once we have determined 𝜇 and 𝜎2 for the log-normal distri-

bution, we compute the expected average speed as 𝑣 = 𝑒𝜇+
𝜎2
2 . To

facilitate the model’s learning of the route-level speed prior, we
introduce the loss function L𝑟𝑠𝑝𝑟 as follows:

L𝑟𝑠𝑝𝑟 =
1
𝑛

𝑛∑︁
𝑖=1
|𝑣𝑖 − 𝑣𝑖 |, (19)

where 𝑣𝑖 is the ground true average speed for the 𝑖-th route.

5.2.2 Segment-View. In addition to assessing driving style at the
segment level, we have designed an auxiliary task focused on
segment-level driving style classification. This task can be analo-
gized to sequence annotation task , such as text annotation [5] .
In our context, the travel route is analogous to a sentence, while
each segment represents a word in that sentence. Consequently,
segment-level driving style classification involves annotating the
driving style of a driver for the current segment.

Formally, we classify a driver’s driving style based on the average
speed for a segment using the following rules:

𝑐 =


0, 𝜇 + 𝛼 < 𝑣,

1, 𝜇 − 𝛼 < 𝑣 < 𝜇 + 𝛼,
2, 𝑣 < 𝜇 − 𝛼,

(20)

where 𝑣 represents the average speed of a driver 𝑢 on a specific
road segment, 𝜇 is the average speed of all drivers on the same
segment, and 𝛼 is a threshold that defines the category boundaries.
For our implementation, we set 𝛼 = 0.1 × 𝜇 to maintain relative

control, ensuring a balanced distribution of instances across the
three classification categories.

Thus, we classify a driver 𝑢’s driving style on a road segment
into three distinct categories. Specifically, category 0 indicates that
driver 𝑢 drives significantly faster than most other drivers; category
1 signifies that driver𝑢 maintains a speed close to the average speed
of all drivers on that segment; and category 2 suggests that driver 𝑢
drives more slowly compared to the average speed.

For this auxiliary task, we employ an MLP as the classifier to
determine the driving style classification for drivers on segments,
expressed as ĉ = Softmax(MLP𝑠

𝑐𝑙𝑠
(ℎ𝑢𝑒𝑖 )). Subsequently, we get the

category as 𝑐 = arg max(ĉ). We train this classifier by minimizing
the cross-entropy loss L𝑠

𝑐𝑙𝑠
, defined as:

L𝑠
𝑐𝑙𝑠

=
1
𝑁

𝑛∑︁
𝑗=1

𝐿𝑗∑︁
𝑖=1

c𝑗,𝑒𝑖 · log(ĉ𝑗,𝑒𝑖 ), (21)

where c𝑗,𝑒𝑖 represents the one-hot encoded label for the 𝑖-th seg-
ment in the 𝑗-th travel route.

5.3 Joint Optimization

Building upon the MVMT learning framework, we train the DSETA
model by jointly optimizing the following objective:

L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = L𝑒𝑡𝑎 + 𝜆1L𝑟
𝑐𝑙𝑠
+ 𝜆2L𝑟𝑠𝑝𝑟 + 𝜆3L𝑠

𝑐𝑙𝑠
, (22)

where L𝑒𝑡𝑎 represents the ETA regression loss as defined in Eq.
(13). The terms L𝑟

𝑐𝑙𝑠
, L𝑟𝑠𝑝𝑟 , L𝑠

𝑐𝑙𝑠
correspond to the auxiliary losses

specified in Eq. (15), Eq. (19), and Eq. (21), respectively. Additionally,
𝜆1, 𝜆2, and 𝜆3 are hyperparameters that regulate the importance of
different auxiliary components in the overall objective.

6 Performance Evaluation

6.1 Experimental Setup

Dataset. We conduct experiments using a large, real-world anony-
mous trip trajectory dataset collected in Shanghai city, China, in
April 2015. This dataset comprises nearly 1.5 million trips gener-
ated by 1000 drivers. Each trip includes information of the origin,
destination, departure time, and GPS records sampled during the
trip at a low frequency of 0.1𝐻𝑧. We split the dataset into training,
validation, and testing sets following a ratio of 21:2:7. Specifically,
trips from the first three weeks are utilized for training, data from
the subsequent two days are designated as the validation set, and
trips from the last week serve as testing set. We extract the road
network corresponding to the area covered by these trips from
OSMnx [1] which models the road network as a graph G. Using the

Table 1: Overall performance. The best results are marked in

bold, and the second-best results are underlined.

Model MAE (𝑠) RMSE (𝑠) MAPE (%)
Transformer 69.65±0.56 114.09±2.04 18.59±0.42
MURAT 69.05±0.44 116.71±1.00 18.20±0.15
WDR 67.92±0.27 113.65±0.49 17.74±0.21

ProbTTE 68.20±0.22 113.10±0.39 18.18±0.27
CoDriver 67.83±0.24 113.50±0.90 17.93±0.10

DSETA (ours) 65.00±0.57 106.99±1.68 17.47±0.37
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Table 2: Performance comparison of different approaches across varying travel distances. The values in the last row indicate

the average improvement of DSETA over the four baseline methods.

Model

Short Medium Long
MAE (𝑠) RMSE (𝑠) MAPE (%) MAE (𝑠) RMSE (𝑠) MAPE (%) MAE (𝑠) RMSE (𝑠) MAPE (%)

Transformer 47.53±0.40 69.47±1.08 21.45±0.68 81.58±0.38 113.76±1.37 14.03±0.26 145.95±3.00 217.31±5.52 12.77±0.29
MURAT 46.51±0.24 69.02±0.51 20.95±0.22 81.20±0.54 115.78±0.97 13.72±0.06 146.75±1.28 225.38±2.22 12.68±0.10
WDR 46.16±0.27 69.07±0.38 20.33±0.28 80.12±0.70 113.98±1.01 13.61±0.13 142.38±1.05 216.19±1.79 12.46±0.13

ProbTTE 46.71±0.07 69.20±0.41 20.97±0.38 80.52±0.31 113.74±0.32 13.80±0.16 141.33±0.88 214.32±1.56 12.40±0.10
CoDriver 46.12±0.22 68.60±0.49 20.64±0.10 79.87±0.23 113.44±0.81 13.63±0.15 142.24±0.55 216.69±2.07 12.40±0.11

DSETA (ours) 45.11±0.29 67.09±1.08 20.30±0.57 77.56±0.92 109.81±1.72 13.12±0.05 131.13±1.68 198.89±3.49 11.52±0.16

Avg. ↑ 1.01 (2.19%) 1.51 (2.20%) 0.03 (0.15%) 2.31 (2.89%) 3.63 (3.20%) 0.49 (3.60%) 10.20 (7.22%) 15.43 (7.20%) 0.88 (7.10%)

Table 3: Performance comparison among DSETA variants.

Variant MAE (𝑠) RMSE (𝑠) MAPE (%)

𝑉0 (Transformer) 69.65±0.56 114.09±2.04 18.59±0.42
𝑉1 (𝑉0 + A) 68.03±0.59 111.14±1.59 18.21±0.30
𝑉2 (𝑉1 + E) 67.48±1.03 112.39±2.01 17.35±0.06
𝑉3 (𝑉2 + D) 66.98±1.29 110.71±1.60 17.42±0.21
𝑉4 (𝑉3 + R) 65.79±0.87 108.45±1.88 17.72±0.32
𝑉5 (𝑉4 + P) 65.44±0.48 107.91±1.75 17.26±0.06

DSETA (𝑉5 + S) 65.00±0.57 106.99±1.68 17.47±0.37

graph G, we employ an advanced map-matching algorithm, FMM
[36], to accurately reconstruct the travel route for each trip based
on its GPS records.

Baselines.We compare DSETA with several baseline approaches
for ETA predictions, including Transformer [34],MURAT [20],WDR
[35], ProbTTE [22], and CoDriver [31]. It is worth noting that the
middle three methods are developed by Didi [6], the largest ride-
hailing company in China, and have undergone online validation.

Performance metrics.We employ three widely used metrics,
including Mean Absolute Percentage Error (MAPE), Mean Absolute
Error (MAE), and Root Mean Squared Error (RMSE), for model
performance evaluation.

Environment settings. All experiments are conducted on a
workstation server equipped with an i7-10700K CPU operating at a
frequency of 3.80GHz, 32GB of RAM, and an RTX 3090 GPU with
24GB of memory.

6.2 Performance Comparison

Table 1 presents the overall performance comparison among various
methods across three metrics. It is clear that DSETA outperforms all
baseline methods across all metrics, achieving an average accuracy
improvement of 2.83 seconds over the best-performing baseline in
terms of MAE, 6.11 seconds for RMSE, and an enhancement of 0.27%
in MAPE. Among the baseline methods, Transformer demonstrates
the weakest performance, exhibiting significant gaps compared
to other approaches, primarily because it does not account for
the specific characteristics of the ETA problem. In contrast,WDR
secures the best-second results in MAPE, while ProbTTE secures
the best-second results in RMSE. Additionally, CoDriver achieves
performance similar toWDR, owning to its same main architecture

as WDR. Overall, DSETA consistently delivers the most superior
results for ETA predictions, largely due to our incorporation of
driver driving styles into the modeling process and the design of
effective auxiliary tasks to support ETA learning.

To gain a deeper understanding of the performance of various
methods across different types of trips, we categorize the testing
trips based on travel distance ℓ into three groups: Short (ℓ ≤ 3𝑘𝑚),
Medium (3𝑘𝑚 < ℓ ≤ 6𝑘𝑚), and Long (ℓ > 6𝑘𝑚). Based on the
experimental results presented in Table 2, we have the following
key observations.

(1) DSETA achieves the best performance across all three trip cat-
egories and metrics. This indicates that DSETA can accurately
predict travel time regardless of trip distance. The superiority
of DSETA can be attributed to our ETA learning framework,
which integrates both route-view and segment-view tasks
to capture both global and local constraints.

(2) CoDriver and WDR demonstrates strong performance for
both short and medium-distance trips. This success may be
attributed to their utilization of LSTM as its underlying back-
bone, which effectively models dependencies in sequences
of short and medium lengths.

(3) As travel distance increases, ProbTTE outperforms other
baseline models due to the Transformer’s exceptional abil-
ity to learn from long sequences. Notably, DSETA shows
more pronounced improvements (i.e., greater than 7% en-
hancement) for long-distance trips relative to the short and
medium trips. This suggests that the manifestations of driv-
ing style become more pronounced during longer trips.

6.3 Ablation Study

To evaluate the effectiveness of our design, we systematically in-
corporate components into the original Transformer architecture,
which serves as the baseline variant 𝑉0. This incremental approach
generates various variants, ultimately culminating in the complete
DSETA design. For clarity, we provide the abbreviations for each
key component below.
• A: route representation via sum pooling (Add) in Eq. (8);
• E: segment-view ETA learning task;
• D: Driver embedding with driving style semantics;
• R: Route-view driving style classification task;
• P : route-level speed Prior regularization (RSPR);
• S: Segment-view driving style classification task.
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(a) Effect of 𝜆1.
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(b) Effect of 𝜆2.
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(c) Effect of 𝜆3.

Figure 4: Impact of hyperparameter settings for 𝜆1, 𝜆2, and 𝜆3.

The results of ablation experiment are presented in Table 3.
Effect of improved route representation (+A): The design,

adopting the sum of the vectors from each segment as the route
representation (as described in Eq. (8)), yields significant reductions
in prediction error across all three metrics, specifically a decrease of
1.62 𝑠 for MAE, 2.95 𝑠 for RMSE, and 0.38% for MAPE, as observed
in Table 3 (comparing 𝑉0 and 𝑉1). This indicates the enhanced
representation can effectively captures the nuances of a travel route.

Effect of segment-view ETA learning task (+E): A compari-
son between variants𝑉2 and𝑉1 reveals that the addition of segment-
view ETA learning task results in a notable reduction of 0.86% in
MAPE. This component effectively enhances the model’s focus on
local segments, leading to a significant decrease in MAPE which is
particularly sensitive to routes with shorter travel distances.

Effect of enhanced driver embedding (+D): The distinction
between 𝑉2 and 𝑉3 lies in the use of driver embeddings from the
DDP task in the ETA task. Incorporating embeddings with explicit
driving style semantics in 𝑉3 improves MAE and RMSE metrics,
indicating a positive contribution to ETA prediction performance.

Effect of route-view driving style classification task (+R):
Updating 𝑉3 to 𝑉4 with component R results in further reductions
in MAE and RMSE, though MAPE slightly increases. Since the
route-view driving style classification is a discretized form of route-
level speed prediction, favoring longer distances, the performance
improvement is mainly due to long trips.

Effect of route-level speed prior regularization (+P): RSPR
introduction further reduces all metrics, achieving the best MAPE
and second-best MAE and RMSE results. This indicates RSPR im-
proves performance for both long and short trips in the route-view
driving style classification task.

Effect of segment-view driving style classification task (+S):
Incorporation of S completes DSETA ’s design, showing best MAE
and RMSE results, and reasonable MAPE performance. Operating
at the segment level, it enables driving style comparisons among
drivers, potentially improving the model’s ability to weigh driving
style influence on ETA predictions.

6.4 Impact of Hyperparameters

In this section, we sequentially determine the optimal values for
𝜆1, 𝜆2, and 𝜆3. Once a hyperparameter is established, we fix its
value and proceed to identify the next one in the sequence. All
experiments conducted in this section utilize the same random seed
to ensure consistency in results.

We first evaluate the effect of 𝜆1 (varied from 80 to 120), finding
that DSETA performs optimally at 𝜆1 = 100 (Figure 4(a)). Next, we

Table 4: Accuracy of auxiliary classification tasks.

Task All (%) Short (%) Medium (%) Long (%)

Route-view 51.09±3.43 46.71±4.37 59.02±2.87 58.82±0.60
Segment-view 47.22±0.48 47.02±0.55 46.05±0.53 48.35±0.40

assess 𝜆2 in the range of 8 to 12; as shown in Figure 4(b), both
MAE and RMSE initially decrease and then rise, peaking at 𝜆2 = 10.
Finally, with 𝜆1 and 𝜆2 fixed, we vary 𝜆3 from 80 to 120 and observe
optimal performance at 𝜆3 = 100 (Figure 4(c)).

6.5 Performance of Auxiliary Tasks

We have designed two auxiliary driving style classification tasks, on
both route view and segment view, to support the ETA learning task.
We conduct experiments to evaluate their classification accuracies,
with results presented in Table 4. In the route-view classification
task, which includes 12 speed categories, our approach achieves a
high accuracy of 51.09%, significantly exceeding the random guess-
ing accuracy of 8.33% (i.e., 1

12 ). When comparing accuracies across
different trip sets with varying distances, we find that this task
performs notably better for medium and long trips.

In the segment-view classification task, which includes 3 driving
style categories, we find an overall accuracy of 47.22%, demonstrat-
ing a relatively stable performance across the three trip sets. This
may be attributed to the task’s focus on local segments, independent
of the travel distance of a trip.

6.6 Effectiveness of Driving Style Embedding

To evaluate the versatility of our diffusion-based driving style learn-
ing approach, we integrate the derived driver embedding 𝑓𝑑𝑟𝑖 with
other methods. As illustrated in Table 5, the models enhanced with
our driver embedding show improved ETA prediction performance
across all metrics compared to the original versions. These results
suggest that our driving style representation, learned through the
DDP generation task, can be effectively integrated with other ETA
prediction methods, enhancing their performance by incorporating
nuanced driving style semantics.

To further clarify the observed improvements, we visually com-
pare the driving embeddings generated by WDR and our method
using two visualization schemes. First, we rank 1000 drivers by av-
erage speed and apply a blue-to-red gradient. Second, we cluster the
embeddings into eight groups using k-means [28], each assigned a
unique color, and visualize them with t-SNE [33].
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Table 5: Performance comparison between the originalmodel

and the one enhanced with our driver embedding 𝑓𝑑𝑟𝑖 .

Model MAE (𝑠) RMSE (𝑠) MAPE (%)

WDR 67.92±0.27 113.65±0.49 17.74±0.21
WDR w/ 𝑓𝑑𝑟𝑖 67.42±0.46 113.05±1.81 17.51±0.06
Improvement ↓ 0.50 ↓ 0.60 ↓ 0.23%
ProbTTE 68.20±0.22 113.10±0.39 18.18±0.27

ProbTTE w/ 𝑓𝑑𝑟𝑖 67.80±0.71 112.26±2.13 17.92±0.27
Improvement ↓ 0.40 ↓ 0.84 ↓ 0.26%
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(b) DSETA

Figure 5: t-SNE visualization of driver embeddings generated

byWDR and DSETA using two coloring schemes. In the first

scheme, drivers are ranked by their average speeds. In the

second scheme, drivers are clustered using their embeddings.

As shown in Figure 5(a), WDR’s embeddings exhibit intermin-
gled blue and red dots with indistinct category boundaries. In con-
trast, Figure 5(b) shows our method produces a gradual blue-to-red
transition and well-separated clusters. This demonstrates that our
approach effectively captures speed-related driving style semantics,
enabling clear driver categorization and labeling.

7 Related Works

7.1 Estimated Time of Arrival

Estimated Time of Arrival (ETA) is a critical component of mobility
and transportation services. Accurate ETA predictions can effec-
tively enhance the operational efficiency of transportation systems
[12, 20] and improve user travel experience [4, 15]. Considerable
efforts have been made to achieve more precise travel time esti-
mates. As the capabilities of deep learning models continues to
evolve, recent approaches to addressing the ETA problem have
predominantly leveraged deep learning architectures. Approaches
are categorized by route information in trip queries:

Without specified routes. Yuan et al. utilize historical tra-
jectory representations as an auxiliary task [38]. Lin et al. adopt a
diffusion model to generate pixel-level trajectories as route informa-
tion [21]. Liu et al. use adversarial inverse reinforcement learning
for personalized route inference [23]. Due to the absence of route
information in this category of tasks, these methods are employed
to generate or introduce trajectory information in various manners.

With specified routes (our focus). Wang et al. treat ETA as
regression, using RNNs for route representation [35]. Liu et al.
advance this with probabilistic prediction and a Transformer ar-
chitecture [22]. Other research furtehr considers spatio-temporal
factors [17], route context [10], and data sparsity [32]. Sun et al.
explore driving style using average speed [31], but this is too sim-
plistic for capturing the complexities of driving behavior. Zou et
al. simultaneously predict traffic speed and travel time, taking into
account individual preferences reflected in ETC data [40].

7.2 Driving Style

Driving style, often referred to as driving behavior and driving
pattern in various contexts [29], has been extensively studied due
to its significant implications in practical applications such as ve-
hicle insurance [11, 19], safe driving [2, 18], and other domains.
Numerous methods have been developed to learn driving style rep-
resentations from trajectory data. For examply, Dong et al. employ
an autoencoder framework to directly learn driving style from GPS
data [8], while Liu et al. utilize an adversarial generative network
to indirectly learn driving style [26, 27].

However, these methods may be overly complex and lack speci-
ficity for the context where ETA prediction is the primary task. In
this regard, Sun et al. use average speed as a measure of driving
style to learn driver embeddings [31], demonstrating the advantages
of driving-style-aware ETA prediction. In this paper, we propose,
for the first time, a diffusion-model based DDP generation task to
implicitly learn a driver’s driving style and leverage this knowledge
to enhance ETA predictions.

8 Conclusion

This paper presents DSETA, a novel approach designed to effectively
learn driver driving styles for accurate and personalized ETA pre-
dictions. We propose, for the first time, the use of a diffusion model
to implicitly derive driving style representations. Additionally, we
employ attention mechanisms to dynamically assess the impacts
of driving style and various spatio-temporal factors on travel time
estimates. Furthermore, we develop a multi-view multi-task lean-
ing framework to enhance ETA learning, enabling the model to
learn simultaneously from both segment and route perspectives
through well-designed auxiliary driving style learning tasks. Ex-
tensive experiments on a large real-world trip dataset demonstrate
the superiority of our approach. Notably, the driving styles de-
rived from our method can be seamlessly integrated into other ETA
prediction models, greatly improving their performance.
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