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Abstract—Quality-of-Service (QoS) based collaborative predic-
tion models are emerging to select appropriate edge cloud services
for users. Nevertheless, there are still challenges in the real-
world QoS prediction task. First, existing QoS prediction models
are mostly transductive, failing to generalize to unseen users
and services. Secondly, an accurate prediction model remains
unexplored under the extreme sparse data scenario, where only
a few interactions are available for collaborative filtering. To
address these problems, we propose Inductive Subgraph Pattern
Aware Graph Neural Network (ISPA-GNN), which leverages a
novel graph-based collaborative filtering method with a subgraph
sampling strategy. We further optimize the embeddings compo-
nents, replacing the user/service embeddings with compositional
context information to enable better generalization to unseen
nodes while reducing memory usage. Extensive experiments
on a large-scale real-world service QoS dataset demonstrate
some decent properties of our model, including high prediction
accuracy, memory efficiency, and slight performance degradation
even if 25% of users/services are never seen.

Index Terms—Collaborative Filtering, Cloud Service, Graph
Neural Network, QoS Prediction

I. INTRODUCTION

Recent years have witnessed the prosperity of edge cloud
computing, 5G networks, and Internet-of-Things (IoT) ser-
vices. Any organization or individual can become a service
provider or a service user, which dramatically accelerates
the flourishing of the cloud service market and enables the
constant emergence of services that offer similar functional-
ity. From users’ perspective, applications integrated by cloud
services may be impacted by the dynamic nature of the edge
cloud network environments, service availability, and service
performance. These make it challenging to match the user
with good services. Therefore, effective and efficient service
selection among large-scale Web services in the edge cloud
is essential for facilitating high-performance service-based
applications.

Quality of Service (QoS), which describes the non-
functional properties of services (e.g., response time, through-
put, and failure rate), has been commonly employed to distin-
guish the functionally equivalent Web services [1]. However,
it is nontrivial to acquire pairwise QoS values due to the time
and cost constraints. Besides, monitoring many services will
introduce prohibitive overhead in computing and bandwidth
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resources for service providers. Derived from these facts, the
collected QoS records are highly sparse. In addition to the
restriction of monitoring cost, the ever-increasing size of the
service market may aggravate the sparsity problem. Thus,
developing an accurate and inductive QoS prediction model
under the extremely sparse scenario is necessary for cloud
service selection.

Many QoS prediction methods have been proposed in recent
studies, among which Collaborative Filtering (CF) algorithms
are the most prevalent. CF-based QoS prediction methods
mainly exploit historic QoS records from similar users to
predict the missing values [2], ensuring the recovery ability
to an incomplete QoS value matrix of service recommender
systems. However, the technical gaps below are hindering the
industrial deployment of these methods:

• Transduction. Most of the existing QoS predictive meth-
ods [3]–[8] are transductive, indicating a frequently pe-
riodic model retraining is required for the latest joined
users, services, and updated QoS data. An ideal model
should be inductive and serve in an online manner with
less update requirement. Current transductive solutions
lead to two shortcomings: 1) the latest received QoS data
from new users and services can not instantly contribute
to the model; 2) the current training data predetermine
the predicting QoS values of the new users and services,
ignoring the preferences of the new users/services. In
short, the transductive characteristic hampers the perfor-
mance of a QoS prediction model, and low predictive
performance for the newly joined users/services imposes
frequent retrainings to preserve the model accuracy.

• Suboptimal Performance in Highly Sparse Prediction.
Based on our extensive experiments, we find that both
classic and the state-of-the-art neural network models fail
to gain a satisfying performance in the highly sparse
scenario. Every QoS prediction system, however, ex-
periences a start-up period when the observed data is
highly sparse. This may lead to grave consequences
if the predictive model achieves an inferior accuracy.
Participants (e.g., users, services) may leave the newly
established system, leading to user churn or a business
failure. Therefore, there is an urgent need for a QoS
prediction model that is still effective under high sparsity.
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• Massive Storage. Previous model-based QoS prediction
models served in service recommender systems create
unique embeddings for each user, service, and sometimes,
even their context feature. This will linearly scale up the
model storage and thus occupy a massive space, which
is incompatible with the edge cloud scenario. Therefore,
an efficient embedding technique is yet to explore.

To address the limitations of existing QoS prediction mod-
els, this paper aims to introduce an inductive solution for
highly sparse QoS prediction, which can be served in a
dynamic, online cloud service recommender system without
frequent retraining. We propose a novel model named Induc-
tive Subgraph Pattern Aware Graph Neural Network (ISPA-
GNN), which mainly learns local subgraph patterns generated
from the QoS matrix. To improve the performance under high
sparsity, we then design another context-guided neighborhood
subgraph sampling strategy to extract coarse-grain network
environments. We simplify the unique user/service embedding
as the composition of context embeddings to generalize to
unseen users and services to support inductive inference.
Based on the experiments, our model can gain an excellent
QoS predictive performance in the extreme sparse scenario.
The main technical contributions are summarized as follows:

1) New Approach. ISPA-GNN is an inductive and
memory-efficient approach based on GNN for QoS
prediction, which can generalize to unseen users and
edge services without retraining. Instead of assigning
embedding for each user/service, the presented model
uses compositional context embeddings to generate em-
beddings, effectively reducing memory usage.

2) Decent Sampling Technique. We present two sampling
strategies, BFS-based subtree sampling, and context-
guided neighborhood subgraph sampling, facilitating
accurate QoS prediction under extreme data sparsity.
Unlike current models, our model learns the patterns
of reported QoS data directly rather than a low-rank
approximation, enabling inductive inference.

3) Extensive Experiment. We conduct a wide range of
experiments on a public QoS dataset and compared ours
to well-known existing methods under extreme sparse
matrix density settings, demonstrating the effectiveness
of our proposed model in addressing sparse prediction
problems. We then hold out up to 25% of the users and
services in the training process to simulate the unseen
users and services, ISPA-GNN gains a competitive per-
formance under the sparse scenario (density = 1%), with
only incurring up to 3.52% performance loss on RMSE
metrics.

The rest of our paper is organized as follows: Section II
illustrates a motivating example. Section III elaborates our
model design. We then presents the experimental results in
Section IV. Related work is summarized in Section V. Finally,
Section VI draws the conclusion and discusses future work.
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Fig. 1. Illustration of the inductive QoS prediction problem.

TABLE I
MAIN NOTATIONS

Notation Meaning
Q, G QoS record set and the global invocation graph
u, s a user node and a service node
(u, s) the edge between the user u and the service s
nc
u, nc

s the context node of the user u (the service s)

e
(L)
u , e(L)

s
embedding of the user u (the service s) after L layers
message propagation

qus QoS value of the user u invoking the service s

m
(L)
u←s, m(L)

s←u
message received by the user u (the service s) in the
L propagation layer

p
(L)
u , p(L)

s
the context representation of the user u (the service
s) after L layers propagation

f(·) an MLP function
r̂us, rus the predicted value and the ground truth QoS value

II. MOTIVATING EXAMPLE

In this section, we provide a motivating example to demon-
strate the need for an inductive QoS prediction model as
shown in Figure 1. Assume that a user is running a service-
based application. The application function is achieved by
several abstract tasks. And the application should choose the
best service from candidates for each task according to QoS
values. The application will upload QoS values to the service
recommender system after invocation. With collected QoS
records, a QoS matrix can be built for service recommendation
and service selection via matrix completion. However, new
users and services (e.g., u6, C2) are not included in the
previous training set. Therefore, the transductive model cannot
predict QoS for new users/services. Besides, the real-world
QoS matrix may be highly sparse. According to the business
recommendation dataset, the sparsity is usually below 1% [9].
However, the current research mainly conducts experiments on
2.5%-10% or 10%-30%, we argue that this setting may fail to
simulate the real-world scenario.

To achieve every missing value in the QoS matrix, we
convert the matrix completion task into a link prediction
problem and propose our approach, ISPA-GNN, which will
be elaborated in the following section. The main notations
used throughout the paper are described in Table I.

III. OUR SOLUTION

In this section, we elaborate our model design step by step,
which consists of four stages: graph construction, subgraph
extraction, graph neural network, and link prediction. Before
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Fig. 2. ISPA-GNN framework for sparse QoS prediction. The framework consists of four procedures: 1) Graph Construction. We construct bipartite graph
from QoS data matrix and user/service context graph from reported records. 2) Subgraph Extraction. We utilize two sampling strategies to extract subgraph
for furthur GNN-based feature extraction. 3) Graph Neural Network. GNNs are applied to learn patterns inside the subgraph. 4) Link Prediction. Based
on the extracted subgraph patterns, we can predict the QoS value via link prediction component.

we go into detail, we first present the whole framework of
ISPA-GNN, as illustrated in Figure 2.

A. Graph Construction

Given a sparse QoS record set Q, we use undirected
heterogeneous graph G to turn the invocation QoS record
set Q into a graph-structured format. Initially, a node is
either a user u or a service s in the graph G, and each
edge (u, s) carries invocation details (e.g., Response time,
Throughput) that user u experienced after invoking service
s. Next, context nodes of the users/services are added into
the graph. Users/services under the same context are linked
to a specific context node. Then, the QoS prediction task
can be considered as a link prediction problem, which is
one of the most common formulations in the recommender
system domain. We will detail the entire process of performing
QoS prediction as a link prediction task in the following
subsections.

Algorithm 1: QoS Subtree Extraction
Input: user u, service s, depth h
Output: User-, Service-QoS Subtree Tu and Ts

1 Initialize set U = Nu = {u}, S = Ns = {s} ;
2 for i=1:h do
3 N

′

u = {ui| if edges (ui, Ns) exist}\U ;
4 N

′

v = {si| if edges (si, Nu) exist}\S;
5 Ns = N

′

s, Nu = N
′

u ;
6 U = U ∪Nu, S = S ∪Ns ;
7 end
8 Let Tu, Ts be the node-induced subtree extracted from

G using U and S ;
9 Remove any edge (u,s) from Tu, Ts ;

10 return Tu, Ts ;

B. Subgraph Extraction

Based on the graph construction mentioned above, we
extract two different subgraph (tree is a kind of special

graph), namely, the QoS subtree and coarse-grain network
environment subgraph.

1) QoS Subtree Extraction: First we introduce QoS subtree
extraction. For a link prediction task for (u, s) pair, we extract
subtree for u and s from G, respectively. The subtree contains
local collaborative signals for link prediction. We present a
Breadth First Search (BFS) based algorithm to extract subtree
of height h in algorithm 1. Noted that, in the training process,
the link between (u, s) is our label, therefore, we should
remove target link (u, s) before running subgraph extraction
algorithm.

Algorithm 2: Coarse-grain Network Environment Sub-
graph
Input: user u, service s, context c
Output: Context Neighbors Subgraph Gc

us

1 Initialize set U = Nu = {u}, S = Ns = {s} ;
2 N c

u = {nc
u | if edge (u, nc

u) exist};
3 N c

s = {nc
s | if edge (s, nc

s) exist};
4 for each n ∈ N c

u do
5 N

′

u = {un| if edges (n, un) exist}\U ;
6 Nu = N

′

u;
7 U = U ∪Nu ;
8 end
9 for each n ∈ N c

s do
10 N

′

s = {sn| if edges (n, sn) exist}\S;
11 Ns = N

′

s;
12 S = S ∪Ns ;
13 end
14 Let Gc

us be the node-induced subgraph constructed
from G using U and S ;

15 Remove any edge (u,s) from Gc
us ;

16 return Gc
us ;

2) Coarse-grain Network Environment Subgraph: If the
QoS matrix is not highly sparse, then the extracted QoS subtree
contains rich semantics for collaborative filtering. However,
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when it comes to the extreme sparse scenario, the subtree
only contain few edges. This may degrade the prediction
performance due to the lack of collaborative signals. To cope
with this problem, we propose another subgraph extraction
strategy to describe coarse-grain network environment between
target user-service pair (u, s). The core idea behind is that
the users and services in the same region may have very
similar QoS values. We try to exploit other users’ QoS record
who are in the same region (e.g., AS, Country) with target
user u, so do the service, to provide more information for
QoS prediction. As mentioned in subsection III-A, we first
joint the existing users and services under different context
environments with respectively different nodes. In this paper,
these context nodes are denoted as nc

u (for user context) and
nc
s (for service context). With different context nodes, we can

filter out neighbors within the same context environment as the
target user or service does, respectively. Let nc

u denotes the
set of users share the same context c with user u, similarly nc

s.
The process of the coarse-grain network environment subgraph
extraction is described in algorithm 2.

C. Graph Neural Network for Subgraph Pattern Learning

Based on the extracted subgraphs (QoS subtree and network
environment subgraph), we utilize graph neural networks to
extract features for link prediction. Before we introduce the
message passing in GNN, let look at the embeddings compo-
nents.

1) Compositional Embeddings: Traditional model-based
Web service recommender system commonly uses ID as input
features to get user/service embeddings. However, this widely
adopted design has two disadvantages:

• Embedding Extrapolation Failure. The ID-based em-
beddings can not instantly adapt to the new user. Newly
assign embeddings need to be trained. Therefore, ID-
based embedding technique is not suitable for inductive
settings.

• Memory Inefficient. The system assigns a unique em-
bedding for new users, services, and context, which often
occupies extensive storage resources. We find that there
is an opportunity to optimize.

To meet our requirement of being inductive and memory
efficient, we propose our compositional embeddings. The
basic idea is to decouple ID-based embeddings. ID-based
embeddings aggregate information from both QoS values and
user/service context into a single vector. We decouple into
personalized part and the common part. The personalized part
is the information contained in the QoS subtree, while the
common part is constructed by the sum of context embeddings
(e.g., AS, Country, Service Provider). When a new user joins,
as long as the user reports its context, then the common part
can be computed. With QoS values reported by the users, the
personalized part can be calculated by GNNs which will be
introduced later. In this way, we successfully get rid of the
transductive problem in previous methods to enable inductive
prediction even for new users/services.

2) Message Passing: In this part, we describe the message-
passing scheme in GNN to extract features on two subgraphs.
Message-passing layers are utilized for embedding propa-
gation, which capture the collaborative information in the
subgraphs. Inspired by [9] and [10], each message passing
layer consists of two stages: message construction stage and
message aggregation stage.

Message Construction. On the QoS subtree, the message
received by the target user u is formulated as:

m(L)
u←s = W(L)

us (e(L−1)s ||qus), (1)

where m
(L)
u←s denotes a message embedding which contains

the information distilled from the invoked service embedding
e
(L−1)
s and the corresponding QoS value qus for an existing

invoked record (u, s). L is the propagation layer. e(0)s denotes
the initial embedding of the service s. || is a concatenation
operation. W(L)

us ∈ Rd′×d is a trainable weight matrix which
distills information for propagation layer L. d′ denotes the
transformation size. Analogously, we can obtain the message
m

(L)
s←u for the target service s in the L propagation layer from

s’s QoS subtree as:
m(L)

s←u = W(L)
su (e(L−1)u ||qus) (2)

On the network environment subgraph, we adopt the same
message construction operation to obtain the context message
representation of the target user u and service s.

Message Aggregation In this stage, we aggregate the
messages constructed on the target u’s subtree. We define the
aggregation function as:

e(L)
u = σ(

1

|Nu|
∑
s∈Nu

m(L)
u←s), (3)

where e
(L)
u denotes the representation embedding of the target

user u obtained after L message propagation layer. Nu is the
(L−1)-hop services that are invoked by the user u. σ denotes
an activation function, such as LeakyReLU [11]. Analogously,
we aggregate the messages of the target service s to achieve
the representation e

(L)
s as:

e(L)
s = σ(

1

|Ns|
∑
u∈Ns

m(L)
s←u) (4)

For the network environment subgraph, we aggregate the
messages by mean pooling on the user side and the service
side to achieve the embedding of every layer. The context
representation of the L propagation layer p

(L)
u and p

(L)
s

can then be obtained, respectively. Noted that the initialized
embedding p

(0)
u and p

(0)
s are exactly the same with e

(0)
u ,

e
(0)
s when constructing messages for the network environment

subgraph.
With L layers messages propagation, we obtain multi-

ple representations for the target user u and service s,
namely {e(0)u , e

(1)
u , ..., e

(L)
u } and {e(0)s , e

(1)
s , ..., e

(L)
s }, respec-

tively. Since the representations are generated from the respec-
tive QoS subtree, rich personalized semantics are contained
in these representation embeddings. Thus, we concatenate the
embeddings generated from the QoS subtree for prediction:

e = e(0)u ||e(1)u ...||e(L)
u ||e(0)s ||e(1)s ...||e(L)

s , (5)
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where || denotes the concatenation operation. Besides, we
have {p(0)

u ,p
(1)
u , ...,p

(L)
u } and {p(0)

s ,p
(1)
s , ...,p

(L)
s } as con-

text readouts via mean pooling distilled from the coarse-
grain network environment subgraph, reflecting the common
characteristics of the respective context environment they are
within. For each propagation layer, we concatenate both user
side and service side representation as the graph readout:

p(L) = p(L)
u ||p(L)

s , (6)
where p(L) is the graph readout in the L-th propagation layer.

D. Link Prediction

In this stage, we first apply a multi-layer perceptron (MLP)
neural network to reduce the embeddings from the QoS
subtree:

e∗ = f(e|Θf ), (7)
where e∗ is a compressed intermediate embedding, and Θf

denotes the parameters of the MLP function f(·). For the
network environment subgraph, since the context neighbors
may contain noise nodes that are dissimilar with the target
node, we design a shortcut for directly transmitting all the
graph readout to the prediction layer instead of going through
the multi-layer perceptron. So far, the prediction layer is
capable of achieving a link prediction r̂us by:

x = e∗||p0||p1||...||pL, (8)

r̂us = g(x|Θg), (9)
where || is a concatenation operation, x is the input embedding
of the prediction layer, and Θg denotes the parameters of a
fully connected layer g(·).

IV. EXPERIMENTS

In this section, we conduct experiments to show our model
performance. Different experiments are designed to answer the
following research questions:

RQ1 Does ISPA-GNN outperform baselines under high data
sparsity?

RQ2 Is ISPA-GNN still effective when new users/services
join?

RQ3 How does ISPA-GNN perform on memory efficiency?
RQ4 How do the propagation layers affect our model?

A. Experimental Settings

We conduct all our experiments on the WS-DREAM [12]
dataset, a large-scale real-world QoS dataset that collected
1,974,675 web service invocation QoS records of response-
time (RT) and throughput (TP) between 339 users and 5825
services from distributed locations. All experiments are carried
out on a GPU server with 6 cores Intel Xeon E5 CPU, NVIDIA
RTX2080Ti, and 32G RAM under Ubuntu OS. We implement
our model based on PyTorch v1.7.0 and DGL v0.6, which are
widely adopted deep learning framework and graph learning
library, respectively. The experimental dataset is divided into
two groups, namely the training matrix and the test matrix. The
elements in the training matrix are randomly selected, and the
remaining forms the test matrix. In order to accurately simulate
the highly sparse QoS scenario, we vary the QoS record matrix

density (MD) between 0.50% and 2.00%, with a step length of
0.50%, to form the training set. In terms of the loss function
for our model training, we minimize the mean absolute error
(MAE) between the predictions and the labels:

L =
1

N

N∑
i=1

I(i, j) |rij − r̂ij | , (10)

where I(i, j) is a mask function indicating the observed edges
in graph G.

For the gradient descent algorithm, we apply Adam [13]
as the optimizer. For other training detailed settings of our
model, we set the messages propagation layers as 2, and
fix the embedding dimension in every massage passing and
aggregation layer as 32. The hidden unit of the MLP and
the prediction layer are set to {128, 128} and {128}. For
the training process, we set the batch size to 128. The initial
learning rate is 0.002.

B. Baseline Methods

We compare our model with existing classic and state-
of-the-art methods to demonstrate the advantages of ours.
PMF [4] and NMF [5] are widely used model-based methods,
while UPCC [14], IPCC [15] and UIPCC [3] are memory-
based methods. LN LFM [16] conducts MF incorporated with
location information. NIMF [6] and EMF [7] are hybrid meth-
ods. For neural network based methods, we reproduce CSMF
and DNM according to [17] and [8]. For fair comparison,
we adopt model codes from open source library released by
WSDream1for the aforementioned baseline methods.

C. Evaluation Metrics

In this paper, we focus on the accuracy of the prediction
and employ the following classic predictive accuracy metrics
to evaluate our model performance in comparison with other
existing methods.

• MAE (Mean Absolute Error) measures the average ab-
solute deviation between a predicted rating and the real
rating. MAE is calculated as:

MAE =
1

N

∑
us

|rus − r̂us|, (11)

where rus is the real QoS value of service s observed
by user u, and r̂us is the predicted value, and N is the
number of testing samples.

• RMSE (Root Mean Squared Error) is used to illustrate
the degree of dispersion of the sample. RMSE is calcu-
lated as:

RMSE =

√
1

N

∑
us

|rus − r̂us|2 (12)

For both metrics, smaller value indicates a better perfor-
mance.

1https://github.com/wsdream

749

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on February 21,2024 at 08:53:13 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
PERFORMANCE COMPARISON OF QOS RESPONSE-TIME PREDICTION USING DIFFERENT MATRIX DENSITIES

Methods
Density MD=0.50% MD=1.00% MD=1.50% MD=2.00%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
UPCC 0.8903 1.8396 0.8664 1.8281 0.8042 1.7156 0.7389 1.5496
IPCC 0.8079 1.9147 0.7719 1.7709 0.7587 1.7106 0.7602 1.6954

UIPCC 0.8255 1.6987 0.8071 1.7000 0.7645 1.6357 0.7203 1.5229
PMF 0.8923 2.1224 0.8947 2.1346 0.8447 2.0642 0.7728 1.9509
NMF 0.8920 2.1218 0.8577 2.0740 0.7783 1.9453 0.7099 1.8270

LN LFM 0.8491 1.6509 0.7754 1.5749 0.7276 1.5219 0.6878 1.4787
NIMF 0.8982 2.1376 0.7003 1.8177 0.7582 1.9400 0.7003 1.8177
EMF 0.8923 2.1224 0.8828 2.1221 0.7719 1.9877 0.6988 1.8612

CSMF 0.7935 1.9414 0.6636 1.7307 0.5951 1.5587 0.5835 1.5205
DNM 0.7377 1.9720 0.6233 1.7009 0.5631 1.5682 0.5323 1.5013

ISPA-GNN-1 0.5979 1.5781 0.4998 1.4208 0.4547 1.3511 0.4292 1.3110
ISPA-GNN-2 0.5757 1.5725 0.4882 1.4251 0.4448 1.3466 0.4245 1.3016

Gains 21.96% 4.75% 21.67% 9.78% 21.01% 11.52% 20.25% 11.98%
1 The best values for both baselines and ISPA-GNN are marked in bold. The gains are calculated based on them.

TABLE III
PERFORMANCE COMPARISON OF QOS THROUGHPUT PREDICTION USING DIFFERENT MATRIX DENSITIES

Methods
Density MD=0.50% MD=1.00% MD=1.50% MD=2.00%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
UPCC 52.5699 104.1792 49.2746 101.4672 40.2990 87.1788 34.0954 73.5738
IPCC 31.1793 77.5450 30.0654 74.0104 29.9783 72.7395 31.0753 73.6052

UIPCC 34.6277 75.0232 33.6681 74.4862 31.7632 72.4633 30.8620 70.2904
PMF 41.5016 105.3395 34.1022 93.1312 29.5836 84.3541 26.5696 77.6570
NMF 41.5094 105.3577 34.1011 93.1223 29.5782 84.2814 26.5750 77.5530

LN LFM 40.2361 84.8351 34.1250 75.7049 31.0520 71.1949 28.3710 66.6500
NIMF 39.7875 102.8491 31.9814 88.1882 28.7872 79.7137 27.3017 74.7455
EMF 44.1035 110.8194 35.7752 97.9137 31.1697 87.1053 28.9771 80.0971

CSMF 36.6621 99.2980 28.9750 80.9790 24.6179 70.0257 22.1117 62.5988
DNM 34.8189 98.7324 28.2889 82.7692 26.1544 79.2907 22.8549 73.2483

ISPA-GNN-1 30.5991 79.4281 27.3405 72.4542 24.6495 67.4802 21.8470 61.5726
ISPA-GNN-2 29.7816 78.3509 25.8139 70.0355 23.4371 65.4268 21.1362 59.9950

Gains 4.48% -4.44% 8.75% 5.37% 4.80% 6.57% 4.41% 4.16%
1 The best values for both baselines and ISPA-GNN are marked in bold. The gains are calculated based on them.

D. Comparison with Baseline Methods (RQ1)

Table II and Table III shows the performance comparison
results. Specifically, ISPA-GNN-1 denotes the ISPA-GNN
model without activating the network environment subgraph
processing and only applies GNN on two QoS subtrees. ISPA-
GNN-2 is the intact design of our model. We test our proposed
model for 5 times in every density and take the average of the
five as the final results. According to the results, we have the
following observations:

• For the baseline models, neural-based models like DNM
are generally superior to those MF-based and PCC-
based methods. This confirms that the neural network
models have powerful non-linearity approximation ability
in handling the QoS prediction tasks. However, when it
comes to the extreme sparse scenario, the preponderance
of the DNM becomes smaller as the lack of graph-
based information may constrain the neural network to
exploit its powerful feature extraction ability perfectly.

Hence, abundant graph-based information is crucial for
model inference, whereby sufficient auxiliary information
is guaranteed for further processing.

• Compared to those pure neighborhood-based CF meth-
ods, the performance of CSMF, DNM, and LN LFM ver-
ify that with more context introduced into the model, the
prediction accuracy further improves. This demonstrates
that contextual information has positive effects on QoS
prediction.

• Compared with the baseline methods, the graph neural
network (GNN) based model (ISPA-GNN-1) consistently
performs flawlessly on all sparse matrix densities. Such
improvement by a large margin is attributed to the ability
of the GNN that captures the high-order connectivity on
the subgraph pattern. Our pure GNN-based model ISPA-
GNN-1 achieves a satisfying performance in the extreme
sparse scenario by explicitly injecting the collaborative
signal into model inference. It proves that the user-service
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TABLE IV
PERFORMANCE COMPARISON OF QOS RESPONSE-TIME PREDICTION w.r.t THE COLD START ISSUE

Holdout 0% 5% 10% 15% 20% 25%

ISPA-GNN-1 MAE 0.4998 0.5037 0.5077 0.5184 0.5212 0.5359
RMSE 1.4208 1.4457 1.4428 1.5030 1.4729 1.4909

ISPA-GNN-2 MAE 0.4882 0.4959 0.5002 0.5079 0.5183 0.5219
RMSE 1.4251 1.4432 1.4404 1.4844 1.4738 1.4752

Degradation-MAE 0% 1.59% 2.46% 4.03% 6.17% 6.91%
Degradation-RMSE 0% 1.28% 1.08% 4.16% 3.42% 3.52%

interaction subgraph contains rich semantics. Leveraging
the collaborative signal is crucial to refining a better
representation of a user or a service in the QoS prediction
problem while facing a highly sparse situation.

• ISPA-GNN-2 gains the best performance among other
baseline methods in both QoS attributes datasets. Specifi-
cally, ISPA-GNN-2 improves over the strongest baselines
w.r.t the MAE by over 20% in different matrix densities
on response time. When the matrix density is decreased
sequentially, the improvement of the ISPA-GNN-2 model
becomes more significant compared to the ISPA-GNN-1
that only learns from the two QoS subtrees. The network
environment subgraph provides the GNN with adequate
neighbor nodes that contribute to refining the common
context feature. This also demonstrates the contribution
of the coarse-grain network environment in capturing the
feature, which leads the model to alleviate the cold start
failure caused by extreme data sparsity.

E. Extrapolation Performance (RQ2)

In this section, we further investigate the extrapolation
performance of our model when facing the newly joined
users/services. We consider a scenario where a well-trained
QoS model is deployed while new users and services are
constantly joining in. To this end, we randomly hold out {5%,
10%, 15%, 20%, 25%} of users and services from the dataset
and fix the matrix density as 1% to form the training matrix
from the remaining dataset. The rest of the records from the
original dataset are all divided into the testset. Other settings
of the model remain the same. This experiment is performed
on the response-time dataset.

Table IV summarizes the experimental results. With the
increased percentage of holdout elements in the training
set, ISPA-GNN incurs a performance degradation both in
MAE and RMSE metrics. However, our proposed model
still outperforms all other baseline methods training on the
original set when we jointly compare the result with Table II.
This result declares that a comprehensive additional quality
degradation (6.91% in MAE and 3.52% in RMSE) leads
to an extrapolation (up to 25% unseen participants) ability
of our model. Comparing with ISPA-GNN-1, ISPA-GNN-
2 achieves a better performance under every holdout rate
in MAE metrics. It verifies the effectiveness of the coarse-
grain network environment subgraph to reveal the common
preference and thus ensure the model performance.

TABLE V
EMBEDDING QUANTITY BETWEEN MF-BASED MODELS AND ISPA-GNN

Methods Users Services Users+Services
MF-based 339 5825 6164
ISPA-GNN 139 2737 2876
Reduction 59.00% 53.01% 53.34%

F. Memory Efficiency of ISPA-GNN(RQ3)

We gain insight into the memory efficiency of our model
compared with other transductive methods. They assign em-
beddings for each UserID, ServiceID, and ContextID. We
use compositional embeddings instead in ISPA-GNN without
using ID. We conduct an embedding quantity comparison
between transductive models and our ISPA-GNN. The result
shows in Table V. Our model uses [Country, AS] as users
context and [Country, AS, Provider] as services context and
takes only 139 and 2737 embeddings to initialize the users
and services representations, compared to the 339 and 5825
in other models. We gain 53.34% memory efficiency improve-
ment by embedding sharing technique than the traditional
ID initialization does. Besides, such a contextual embedding
technique can easily generalize to unseen nodes because
the context environment has already existed in the previous
training in most cases. Noted that, for a very-large-scale
recommender system, the gap between our scheme and others
will enlarge.

G. Impact of Propagation Layers (RQ4)

To investigate how the layers in GNNs affect the perfor-
mance of ISPA-GNN, we vary the parameter of the message
passing layers from 1 to 5 to conduct the experiments. In
particular, we run our model 5 times on the RT and TP datasets
under the MD of 1.00%. Other parameters keep the same as
the default settings. Figure 3 and Figure 4 plotted the results.

The result shows that a small number of convolution layers
(two layers in RT and one layer in TP) usually leads to
the best performance of the model. We realize that the key
reason may lie in two folds: 1) High orders users and services
may introduce noises to the node representation and training
process, leading the model to achieve a suboptimal perfor-
mance. 2) The prior work [18] demonstrates that the over-
smoothing problem will weaken the embedding representation
and therefore hinder the performance of the model. In the QoS
system of WSDream, ISPA-GNN achieves peak performance
with two layers in the RT dataset and one layer in the TP
dataset. However, when the convolution layer of our model is
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Fig. 3. Various convolution layers w.r.t the performance of ISPA-GNN
in the QoS response-time dataset.
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Fig. 4. Various convolution layers w.r.t the performance of ISPA-GNN
in the QoS throughput dataset.1, the message from the high-order will not be received during

the training process. Hence we set the default convolution
layers of our model as 2 in the default experiment settings.

V. RELATED WORK

Accurate QoS values are critical for various QoS-driven
approaches to cloud services. Collaborative Filtering (CF),
which is a mature technique in recommender systems for
predicting unknown ratings [1], has been applied to facili-
tate QoS prediction tasks. Existing CF-based approaches can
be categorized into memory-based, model-based, and deep
learning-based approaches.

For memory-based CF methods, xPCC (eg. UPCC [14] and
IPCC [15]) methods applied Pearson Correlation Coefficient
(PCC) to calculate the similarity between users/services and
then obtain the predicting QoS values. UIPCC [3] attempted
to combine both UPCC and IPCC approaches to gain better
QoS prediction. As the QoS values might vary from in-
vocation contexts, many context-aware methods (i.e., [19]–
[21]) were proposed by using the contextual information for
performance improvement. However, the main weaknesses of
these memory-based CF methods are that they are prone to
low performance when the data is sparse.

In terms of model-based CF methods, matrix factorization
(MF) is the most widely-used approach undertaking the QoS
prediction tasks [2]. Concretely, Zheng et al. [4] proposed
a probabilistic matrix factorization (PMF) to decompose the
user-service matrix for personalized QoS prediction. Analo-
gous to PMF, several typical model-based approaches such as
NMF [5], LN LFM [16] and AMF [22], are all MF-driven.
Approaches exploiting additional side information (i.e., loca-
tion) were proposed to improve the accuracy of the prediction
[23]. Wu et al. [17] made full use of implicit and explicit con-
textual factors in the QoS data and proposed a general context-
sensitive matrix factorization approach (CSMF). The major
drawback of MF is its transductive characteristic. Some studies
combine memory-based and model-based CF approaches to
achieve hybrid methods (eg. NIMF [6] and EMF [7]). Such
hybrid methods can generally obtain better prediction results.
However, they also inherit drawbacks from both memory-
based and model-based methods.

Another research line is neural network-based (NN-based)
attempts on QoS prediction tasks. Wu et al. [8] designed
a Deep Neural Model (DNM), capturing rich contextual
features for multiple attributes QoS prediction. Xiong et al.
[24] proposed a personalized LSTM (P-LSTM), which can
capture the dynamic latent representations of multiple users
and services. Furthermore, Zhou et al. [25] suggested a spatio-
temporal context-aware collaborative multilayered neural net-
work model. The outstanding performance that the aforemen-
tioned NN-based methods have achieved demonstrates that
incorporating neural networks with QoS prediction tasks is
a promising direction.

Inspired by the prosperity of graph-based neural network,
recent research has made some attempts in the recommen-
dation domain. Wang et al. [9] proposed a graph-based rec-
ommendation framework named Neural Graph Collaborative
Filtering (NGCF), which explicitly encodes the collaborative
signal and the connectivity information to the node embedding
for collaborative filtering. He et al. [10] further optimized
the design of NGCF and proposed LightGCN. Liu et al.
[18] designed an Interest-aware Message-Passing GCN (IMP-
GCN) model to avoid propagating negative information from
higher-order neighbors. Such solutions performs decently for
recommender systems and the GNN-based models are yelling
the powerful performance for the CF-related tasks.

VI. CONCLUSION

We study the inductive QoS prediction problem under
extreme data sparsity. Previous transductive models struggle to
handle new users/services appropriately, and the highly sparse
records may degrade the model performance. To address these
problems, we proposed ISPA-GNN with two novel designs.
First, instead of learning latent representation for matrix com-
pletion, we directly learn local QoS patterns around the target
user and service via neighborhood sampling. We further im-
prove the model performance via context-guided neighborhood
subgraph sampling. We exploit GNNs to learn user/service
embeddings for collaborative filtering with two subgraphs
extracted. Second, we use compositional embeddings rather
than assigning unique embedding for each user/service to
enable inductive inference and reduce memory usage. We
conduct extensive experiments to prove the effectiveness of our
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model and show its nice properties for real-world cloud service
recommendation. In future work, we intend to incorporate
GNN with time series, which will infer the services’ QoS
fluctuation.
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