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Abstract-Keeping data collecting while preserving the scarce 
energy of sensor nodes is always one of the most crucial problems 
in wireless sensor networks. In this paper, we propose the 
DCS scheme to effectively exploit the Ubiquitous temporal-spatial 
correlation in most natural phenomena for energy-efficient data 
collection of wireless sensor networks. Specifically, for temporal 
correlation, we build lightweight AR model locally to capture data 
distribution at sensor node; for spatial correlation, by making 
use of our novel definition of similarity measure between sensor 
nodes, we perform centralized model clustering, which is a kind 
of clustering that emphasizes data similarity between nodes but 
ignores geographical distance, to group sensor nodes with similar 
data distribution on both magnitude and trend into the same 
cluster. Then through scheduling sensor nodes to report readings 
alternately and performing dual-prediction at both sensor nodes 
and Sink, DCS acquires sensing readings without compromising 
too much data accuracy loss. Simulation results illustrate the 
efficiency of DCS scheme on a data set synthesized from real­
world temperature data, i.e., 82.94% communication overhead 
reduction while keeping data error as low as O.0456°C when 
user-provided error-tolerance threshold sets as O.2°C. 

Keywords- Energy Efficient, AR Model, Time Series Analysis, 

Temporal-Spatial, Data Collection, Wireless Sensor Network 

I. INTRODUCTION 

Wireless sensor networks (WSNs) enable people to observe 
details of real-world phenomena in both temporal and spatial 
dimensions. Data collection is the fundamental function of 
WSNs, but also a challenging task due to limited resources of 
those tiny sensor nodes. Among all activities of a sensor node, 
it is well-known that data communication causes the maximum 
energy drain. Therefore, data collection scheme, which avoids 
abundant communication overhead yet keeps the data quality, 
becomes the effective method to achieve a longer network 
lifetime of WSNs for data-driven applications, which require 
sensor nodes to perform data sampling and transmit data to 
Sink periodically, such as environmental monitoring [1] [2]. 

To Conserve the finite resources, such as energy, network 
bandwidth and CPU usage, extensive research work has been 
done and various energy-saving protocols and algorithms have 
been proposed for these data-driven applications [3]. Among 
of these work, model-driven data acquisition has been proved 
to be an effective approach to reduce communication without 
compromising data quality, not only in theory [4] [5] [6] [7] 
[8] but also in practice [9]. BBQ [4] and Ken [5] approximate 
the data with user-specified confidence by keeping statistical 
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model local and global in sync. However, both BBQ and Ken 
need amount of data to train an appropriate statistical model at 
expensive communication cost. Besides, these two frameworks 
are so complicated that related domain knowledge is needed. 
As typical time series data, sensing readings can be modeled 
and analyzed with methods of time series analysis [10]. L. 
Chong et al. [8] firstly apply the ARIMA model in energy­
efficient data collection for WSNs. In their data collection 
scheme, Sink node builds suitable ARIMA model for each 
sensor node at first. During the adaptive data collection phase, 
both node and Sink perform forecasting for next sampling 
value with the same model, and Sink keeps the prediction 
value as sampling data if it does not receive the real value 
from sensor node, which sends the actual value only when 
the prediction error is beyond a pre-defined error-tolerance 
threshold. With models built by Sink, large amount of data 
communication are triggered. Compared to ARIMA, AR model 
is more lightweight but still offers competitive prediction ac­
curacy. PAQ [7] and SAF [11] both adopt AR model to capture 
the underlying trend of data distribution. With dual-prediction 
at both node and Sink, redundant data communication are 
suppressed and energy is conserved. Furthermore, PAQ has 
proposed monitoring algorithm to maintain a local dynamic 
model to adapt to the changing phenomenon. Similar work 
relying on linear regression to perform data collecting are also 
presented in [6] [12] [13]. 

Though most of the work stated above have taken advantage 
of temporal correlation among consecutive samples of a sensor 
node, they have overlooked the ubiquitous spatial correlation 
among neighboring sensor nodes. As an alternative to model­
based data collection, some solutions seek to identify some 
clusters, whose members share the similar data distribution, 
and schedule nodes to work alternately as representative nodes 
to obtain approximate data for other nodes in the same cluster. 
EEDC [14], for example, identifies this kind of clusters based 
on both magnitude and trend similarity with raw readings 
in a centralized manner. After clustering, sensor nodes work 
and report readings following the schedules drafted by Sink. 
With raw readings collected from all sensor nodes to Sink for 
clustering, it is inevitable that EEDC will produce considerable 
communication overhead. SAF [11] also pays attention to spa­
tial correlation, and proposes model clustering to distinguish 
similar nodes. Unlike traditional clustering in WSNs, model 
clustering emphasizes the data similarity between nodes but 
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ignores the real geographic distance between them. Moreover, 
model clustering allows sensor nodes to be unaware of their 
membership and cluster variations as Sink will process all 
of these issues transparently. However, SAF identifies model 
clusters based on the predicted values at Sink, which could 
reduce data communication between sensor nodes and Sink 
yet obviously reduce the accuracy of acquired data. 

In this paper, inspired by ideas of dual-prediction and 
model clustering in SAF [11], we propose an energy-efficient 
data collection scheme (referred as DeS) to perform long­
term data acquisition without losing too much data accuracy. 
Specifically, each sensor node builds and transmits its AR 

model to Sink firstly. With help of our novel definition on 
similarity measure, we perform model clustering to group 
nodes with similar data distribution and variation trend into 
the same cluster. It is worthy to note that model clustering in 
DCS is based on the AR models but not the predicted values. 
Subsequently, sensor nodes in the same cluster are arranged 
to report sensing readings alternately. Furthermore, schedule 
making and dynamic model cluster maintaining strategies are 
also designed. Simulations on synthetic data set prove the 
efficiency of DCS scheme, namely that more energy can be 
preserved while incurring negligible error shown as results. 

The rest of this paper is organized as follows. In Section 
II, we present some preliminaries about our DCS scheme, 
including a brief introduction to AR model, system model and 
similarity measure method. The proposed DCS scheme is e­
laborated in Section III, followed with performance evaluation 
in Section IV. Finally, we draw conclusions in Section V. 

II. PRELIMINARIES 

A. AutoRegressive Model 

In general, a time series data is a set of observations Xt, each 
one being recorded at a specific time t. An important objective 
of time series analysis is the description of a suitable uncertain­
ty mode for these data. The AutoRegressive Integrated Moving 
Average (ARIMA) model belongs to such kind of models and 
has been widely used for univariate time series. Obviously, 
readings of sensor node belongs to such kind of time series 
data, and the ARIMA model can be used for data forecasting 
in WSNs. Compared to ARIMA model, the AR model is much 
simpler and more lightweight but still offer excellent accuracy 
in WSN-based applications [7]. An AR model with order p, 
which is the number of lagged values in a linear regression, 
is usually denoted as AR(p), and expressed as 

p 
Xt = C + L CXiXt-i + Et 

i=l 
(1) 

Where a = {cxl, ... , cxp} are the coefficients of AR model, c is 
a constant but always omitted for simplicity, and Et is the White 

Noise. The calibration of AR model is quite simple, and various 
methods can be adopted, such as Burg, Yule-Walker, ordinary 
least-square, or maximum likelihood estimation. More details 
of AR model and time series analysis are referred to [10]. 
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B. System Model 

In this paper, we consider a sensor network consisting of 
a collection S = {8l) 82) ... ) 8 N} of N sensor nodes and one 
Sink node. All sensor nodes are uniformly and randomly dis­
tributed in a size of Lx L sensing field. The Sink node locates 
outside of the field but not far away. Each sensor node has 
the identical communication radius R, and communicates with 
distant node hop-by-hop. Periodically, sensor nodes generate 
environmental sensing readings which evolves over time, and 
transmit these readings to Sink via data collection tree (DCT). 
In multi-hop scenario, DCT is indispensable and can be easily 
built in a distributed manner. For instance, by circulating a 
tree formation message originated by Sink and making use of 
a min-hop parent selection strategy, or other algorithms used 
for constructing maximum-lifetime data gathering tree [15]. 

Furthermore, each sensor node maintains a local queue 
Ql to store the most recent W sensing readings and keeps 
tracking of the average value f..L of those W readings. By 
exploiting these data in queue, each sensor node can learn 
an AR model using least-square or other methods. Similar to 
PAQ [7], we adopt a narrow prediction window, such as p = 3, 

to neglect the impact of non-stationary physical environment, 
and also to make the AR model simple and lightweight enough 
for resource-constrained sensor nodes. To cope with dynamic 
nature of environment and keep accuracy of AR models, we 
adopt the monitoring algorithm of PAQ to maintain a dynamic 
local AR model for each node, namely, sensor node re-learns 
its AR model using the latest W readings in queue Ql if the 
number of times the prediction error beyond error threshold e 
within consecutive A epochs exceeds the pre-defined threshold 
v. Besides, for dual-prediction case, Sink keeps tracking the 
latest AR model of each sensor node, and maintains a smaller 
size of global queue Qg to store the latest p historical values 
for each sensor node. 

C. Similarity Measure 

To perform model clustering effectively, in this subsection 
we will introduce our novel similarity measure method, which 
is in accord with the context of model-driven data collection. 
Unlike methods presented in EEDC [14] or SAF [11], we 
argue that similarity measure should not only consider the 
magnitude similarity on raw time series data, but also take 
the underlying trend of time series into account. Capturing 
the relation between latest historical data and recent future 
data, AR model built at each sensor node could be a good 
structure to reflect the trend of time series data in that region. 
In addition, average value f..L maintained at each sensor node 
is an ideal baseline to represent the magnitude situation of the 
monitored region. Consequently, it is reasonable and feasible 
to combine their AR models and corresponding average values 
f..L to measure the similarity of two sensor nodes. As typical 
linear systems, correlation between two AR modes can be 
well measured with Pearson Correlation Coefficient. Formally, 
assume tw<:: sensor nodes 8i and Ej with their AR(3) model co­
efficients X = {Xl, X2, X3} and Y = {YI, Y2, Y3} respectively, 
trend similarity between them can be calculated as 
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(2) 

Moreover, Manhattan distance could be used to detect the sim­
ilarity between their baseline values, namely, if their magni­

tude similarity Ms;,s; = IfLs; - fLs; I � � then these two nodes 
are considered magnitude similar, where E is a user-defined 
parameter to bound the maximum difference of readings of any 
two nodes in the same cluster. Therefore, we have following 
definition to estimate whether two nodes are similar. 

Definition: similar nodes. two sensor nodes, Si and Sj, are 
similar nodes and can be grouped into the same model cluster 
if their trend similarity PSi,Sj � cth and magnitude similarity 
Msi,sj � �, where both cth and E are user-defined parameters 
to guide model clustering. 

III. THE DATA COLLECTION SCHEME 

A. Overview 

By exploiting the temporal and spatial correlation in WSNs, 
our scheme, i.e. , DCS, aims to suppress data communication 
through making tradeoff between tiny data accuracy loss and 
large energy saving. Keeping AR models between sensor nodes 
and Sink node in sync, DCS firstly groups nodes into clusters 
based on their data similarities, and then alternately schedules 
nodes to act as representative nodes, which report readings to 
Sink periodically. On the other side, Sink restores approximate 
data for each node to feed its queue Q 9 respectively based on 
the collected real values. Meanwhile, Sink adjusts all model 
clusters timely once variation of data distribution is detected 
by sensor node or variation of cluster similarity is detected by 
Sink. In general, DCS includes three major phases: 

1) Local model learning phase: To avoid transmitting vast 
of raw sensing readings to Sink node to build probabilistic 
model for each sensor node, we prefer to learn and maintain 
the AR model locally at each sensor node. After accumulating 
enough data, i.e. , W data to feed the queue Ql full, each node 
estimates the coefficients of AR(3) via least-square regression 
method. Notice that, other parameter estimation methods for 
AR model, such as maximum likelihood, could be used, but 
least-square regression could be the best fit method as it is 
simple enough to avoid complicated computation. 

2) Centralized model clustering phase: Once completing 
the local AR model learning phase, each sensor node transmits 
the model coefficients a and average value fL of the W data 
in Ql to Sink via DCT. With these information, Sink performs 
model clustering in a greedy manner to obtain as few clusters 
as possible. Details of model clustering are presented in III-B. 

3) Approximate data collection phase: In this phase, 
Sink establishes working schedules for each model cluster. 
Instead of reporting readings to Sink by all sensor nodes, 
only some nodes in each model cluster are appointed as 
representative nodes to report data periodically. To balance 
energy consumption, working schedule of each model cluster 
is re-designed every W epoches. With the acquired data from 
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Algorithm 1: centralized model clustering 

1 Label nodes unclustered: L( si)=false, i=l--+ N; 
2 Compute similar nodes set r Si' i=l--+ N; 
3 Descending sort nodes S according to cardinality If!; 
4 for i=l to N do 

/ * Si is the node with the i-th 
largest cardinality in S 

5 if !L( Si) then 
6 L( Si)=true; 
7 CSi={S;}; 
8 foreach S j in r Si do 
9 if !L( Sj) then 

10 flag=true; 
11 foreach Sk in CSi do 
12 l ;f 'j i, di"imila, with 'k then 
13 l flag=false; 
14 break; 

15 if flag then 
16 l L(sj)=true; 
17 CSi=CSi U{Sj}; 

18 Output all m model clusters C, U7:1 Ci = S 

* / 

representatives, Sink restores approximate data for other un­

working nodes. Moreover, depending on these real values and 
their corresponding predicted values via AR models at Sink, 
Sink node could detect potential dissimilarity among cluster 
members, which will trigger the model cluster maintaining 
procedure at Sink. Besides, sensor nodes which detect varia­
tion of data distribution, such as AR model updating or drastic 
change of average value fL, could also trigger the model cluster 
maintaining procedure. More details are described at III-C. 

B. Centralized Model Clustering 

With user-defined model clustering parameters cth and E, 

Sink node computes similar nodes set r for each sensor node 
firstly. For example, if node Si and Sj are similar nodes, then 
Sj is included in the similar nodes set r Si of Si. Obviously, 
relation of similar nodes is symmetric, namely Si is included 
in set r s; too. To produce the minimum number of clusters, 
we adopt a greedy algorithm to finish the centralized model 
clustering, as shown in Algorithm 1. At first, we sort all 
nodes in descending order according to their cardinalities 
of similar nodes sets. Heuristically, node with larger similar 
nodes set could form cluster with more members, resulting in 
fewer clusters to cover all nodes. Therefore, our greedy model 
clustering starts from sensor node with the largest cardinality, 
and iteratively its similar nodes, which are similar with all 
nodes already in the cluster, are added in to expend current 
cluster. This process is repeated until all nodes are covered. It 
is necessary to remind that model clustering does not take the 
node location into account. 
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C. Approximate Data Collection 

Actually, approximate data collection phase of DCS com­
bines the concepts of representative node and dual-prediction, 
which make use of ubiquitous spatial correlation and temporal 
correlation in WSNs respectively. Generally, there are three 
primary tasks in this phase, namely, schedule making, data 
acquisition and dynamic model cluster maintenance. 

schedule making: During data collection phase, at least one 
node in each model cluster is scheduled to report sensing read­
ings to Sink. These working nodes are called representative 

nodes of their clusters respectively. Specifically, each node is 
assigned with a different probability A to be selected randomly 
as representative node. Given the size of model cluster, e.g. r;" 

and hop distance, e.g. hi, between node Si and Sink, A could be 
computed as Ai = � x (\h:a����;)2 , where hop distances can 
be obtained from the messages transmItted by all sensor nodes, 
and hmax is the maximum hop distance in the whole network. 
Once completing the schedule making, Sink will transmit the 
schedules to all nodes. To balance energy consumption among 
all nodes, Sink should make another random schedule for each 
model cluster every W epoches. 

data acquisition: Obviously, Sink can get the real values 
of representative nodes during their working period. Besides, 
Sink can also obtain piggyback real values of specific sensor 
nodes which will transmit notifications about variation of data 
distribution to Sink for dynamic model cluster maintenance at 
some epoches. Like conventional dual-prediction based data 
collection scheme, sensor nodes which have great prediction 
error will also send their real values to Sink to replace 
current prediction values. For sensor nodes of these cases 
mentioned above, Sink feeds queues Q 9 with their real values 
respectively. By keeping AR models at Sink in accord with 
local AR models at all sensor nodes, DCS acquires data for 
sensor nodes which have no real values of current epoch via 
prediction. However, we feed the queues Q 9 of this kind of 
nodes in the same model cluster with the same restored data, 
1· e max1.+min1. where maXt and mint denote the maximum . .  , 2 ' 
and minimum values of the collected real values in the same 
cluster at epoch t. We adopt this rule to restore data as it is 
considered that the restoration error could be bounded [14]. 
Remember that AR models at Sink predict data based on these 
data stored in queues Q g. 

dynamic model cluster maintenance: Both variations of da­
ta distribution and cluster similarity will trigger the procedure 
of dynamic model cluster maintenance. For the former case, 
when a sensor node re-Iearns its AR model as indication by 
monitoring algorithm of PAQ [7] or detects drastic change on 
its average value J.L of the latest W data in queue Ql, i.e. , 
lJ.Li - J.L/I > c where J.Li is the current average value and 
J.L/ is the value used in the most recent model clustering, 
this sensor node, e.g. Si, should notify Sink that an inspect 
of cluster membership of Si is necessary. Once notified, Sink 
will check whether Si is still similar with all other nodes in 
the model cluster. If not, Sink merges Si with other model 
cluster whose members are all similar with Si. In the worst 
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case, node Si would form a new model cluster solely. Notice 
that there is no distance constraint when finding another 
similar cluster for Si. For the latter case, Sink will check the 
similarity situation of all model clusters at every epoch by 
exploiting the collected real values and the predicted values 
of working nodes. Formally, let's assume that the working 
nodes set of a model cluster is Sw = {WI, W2, ... , wn} with 
their real values Vi = {VI, V2, ... , vn} and predicted values 
Vi' = {VI', V2', ... ,vn'} respectively at epoch t. If the average 

2:" IVi-v,'1 
absolute prediction error e = i-I n > W . c, where 
w is a system parameter to adjust the sensitivity of cluster 
similarity detection. If prediction error e of a model cluster 
exceeds the defined threshold, namely W· c, Sink will split this 
cluster into serval clusters with similar method like Algorithm 
1. If necessary, re-clustering of all nodes could be performed 
when the total cluster number is beyond certain threshold, i.e. , 
M ax_Clusters. Lastly notice that after cluster maintaining, 
Sink should check the schedules of all model clusters to ensure 
that each cluster has at least one sensor node in working status. 

IV. PERFORMANCE EVALUATION 

A. Simulation Setup 

To study and evaluate our DCS scheme, we have performed 
simulation study with Matlah. In our simulations, N = 100 
sensor nodes are deployed in a size of 100m x 100m sensing 
field, and Sink node locates at (120m, 50m). Communication 
radius R sets to be 30m for all sensor nodes. For the mon­
itoring algorithm to maintain dynamic local AR models, we 
employ similar parameters setting as PAQ [7], i.e. , e = 0.03 , 
A = 15 , and v = 8. Besides, we set Max_Clusters = 30, 
namely re-clustering is needed when cluster number is greater 
than 30. Regarding to cluster similarity detection, we adjust 
value of system parameter w to ensure w . c = 0. 1 with various 
setting of user-defined c. We argue that data error with 0. 1 is 
sufficient to make an decision on variation of cluster similarity. 

For our simulation study, we generate synthetic data set with 
following method: 25 event sources are fixed in the sensing 
field in uniform distribution, readings of each sensor node are 
comprehensive influencing results of all event sources, and 
the influence of an event source, say ew, to sensor node Si 
is inversely proportional to the geographic distance between 
them. To simulate the evolutive values of event sources, we 
use the publicly available Intel Lab dataset [16] which consists 
of 5 4  sensor nodes to measure various attributes, such as 
temperature, humidity, light and voltage. Owning to some data 
missing, We pick out and restore the temperature values of 
51 nodes on March 9, 2004. The restored data series of each 
sensor node contains 1060 values which correspond with 1060 
epoches. At the beginning of each simulation, we randomly 
select 25 data series from the selected 51 sensor nodes to map 
to the 25 event sources. Lastly, notice that all results in this 
section are the average values of 10 simulations. 

B. Results on Model Clustering 

There are serval key parameters in our DCS scheme, such 
as c, cth and W. In this subsection, we study the impacts of 
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these parameters on both model clustering and data collection 
with simulations. By varying W from 10 to 100, firstly we 
study the impacts of the size of queue Ql maintained at each 
sensor node on model learning and data collection. Generally, 
a larger queue Ql means that there are more data to train a 
better AR model. However, it means more computations are 
needed as well. As shown in Fig.l, we find that larger queue 
could not always lead to the best choice. When below 60, a 
smaller W will result in more model updates, which incur 
more data communication between sensor nodes and Sink to 
keep models in sync. At the same time, less accurate AR model 
will generate larger prediction error, just as indicated by the 
metric of cumulative square prediction error. On the other side, 
increasing the size of queue to larger than 60 will not bring too 
much benefit but more computations, shown as when W > 60. 
As a result, W = 60 could be the best choice for our AR(3) 

model, and we employ W = 60 for the rest of simulations. 
In DCS scheme, both c and cth are the user-defined 

parameters to guide model clustering, meanwhile these two 
parameters will also affect the accuracy of data collection. In 
Fig.2 with cth fixed as 0.9, we observe that with increase of c, 

the number of formed model clusters drops rapidly. It is easy to 
understand that when user-provided error-tolerance threshold 
becomes larger, sensor nodes are easy to be grouped into the 
same cluster, resulting in fewer clusters needed to cover all 
nodes. For the similar reasons, if we have a stronger require­
ment on correlation between two AR models, nodes are more 
difficult to meet the requirements of similar nodes. Just as 
reported in Fig.3 with c fixed as 0.2, more clusters are needed 
to cover all nodes when correlation requirement becomes more 
rigorous, namely cth becomes larger. Actually, correlation of 
two AR models with cth = 0.9 could be considered as highly 
correlated. As stated before, model clustering does not take 
geographic distance into account, so the number of clusters 
are not very great no matter what settings of c and cth are. 
Besides, we also carry out simulations to study the impact of 
c on data collection. As illustrated in FigA, with the increase 
of c and a fixed value of cth = 0.9, the messages generated 
for data collection decrease dramatically, while the average 
absolute error rises at the same time. Results in FigA also 
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TABLE I 
SUMMARY INFORMATION FOR VARIOUS SCHEMES 

metric PureDC PureAR DCS 

number of messages 356160 73013 60771 
average absolute error / 55.58 45.59 

demonstrate our statement on tradeoff between data accuracy 
and energy consumption, i.e. , the improvement on accuracy of 
collected data builds on expensive cost of energy consumption 
(here we substitute messages for energy consumption as data 
communication is the dominating energy consumer). 

C. Results on Energy Efficiency 

To prove the energy efficiency of DCS scheme, in this 
subsection we will perform compared experiments with other 
two alternative data collection scheme, namely, PureDC and 
PureAR. In PureDC scheme, all sensor nodes report their 
real values to Sink via DCT periodically. In PureAR scheme, 
only dual-prediction mechanism similar with methods in [7] 
[8] [12] is adopted, i.e. , both sensor node and Sink perform 
forecasting with the same AR model, and sensor node transmits 
the real value only when the prediction error is beyond defined 
threshold, while Sink node keeps the predicted values as 
sampling readings when there are no real values received. In 
this compared experiments, we set cth = 0.9 and c = 0.2 for 
DCS, other parameters are the same as in the IV-A. Summary 
results are presented in Table I, thanks to the efficiency 
of AR model, PureAR reduces 79. 50% messages, and our 
scheme cuts down 82.94% data communication further. On the 
other side, though less data communication generated between 
sensor nodes and Sink, DCS still improves the data accuracy 
with 1 7 .97 % than PureAR. With DCS scheme, taking the 
starting W = 60 epoches for local AR model learning phase 
off from the total 1060 epoches, there are only approximate 

1O�50�960 � 0.0456°C error between the acquired data at Sink 
and the real values. Obviously, by effectively exploiting the 
temporal-spatial correlation in WSNs in the forms of dual­
prediction and model clustering, DCS can save large amount 
of energy without compromising too much data accuracy loss. 

V. CONCLUSION 

In this paper, we propose an energy-efficient data collection 
scheme named DCS, for WSNs to reduce communication 
overhead yet keep data acquisition without too much accuracy 
loss. Taking advantages of lightweight AR model and novel 
concept of model clustering inspired by SAF [11], DCS per­
forms data collection by perfectly exploiting temporal-spatial 
correlation in WSNs. Simulation results illustrate the effi­
ciency of our model clustering algorithm and data collection 
scheme. Specifically, DCS can reduce 82.94% communication 
overhead while incurring approximate 0.0456°C error when 
user-defined error-tolerance threshold c sets as 0.2°C, which 
are much better than previous dual-prediction based data 
collection schemes on both communication overhead reducing 
and accuracy retaining. 
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