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Abstract—Grouping sensor nodes with similar readings into
the same cluster and scheduling them to alternately report their
sensing readings is an effective and efficient method to perform
approximate data collection, which exploits the tradeoff between
data quality and energy consumption. However, to partition
all sensor nodes into exclusive clusters while incurring as less
communication overhead as possible in a distributed manner is a
challenging task. In this paper, by exploiting inherent spatial and
data correlation in wireless sensor network, we have proposed
the distributed spatial correlation-based clustering algorithm to
complete this tough mission. With nodes information exchange
in certain region and the novel ranking strategy, our clustering
algorithm can terminate in a small number of iterations. Exten-
sive simulations show that the proposed algorithm outperforms
three other noteworthy clustering algorithms, namely EEDC,
ASAP and DClocal, on some key metrics, such as number of
clusters, energy consumption for clustering, average dissimilarity
of clusters and residual energy level of cluster heads.

Keywords—Wireless Sensor Network; Clustering; Spatial Cor-
relation; Energy Efficient;

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely used in

many applications for continuously collecting information of

surrounding environment [1]. In these data-driven applications,

sensor nodes sample environmental data and transmit to Sink
(or called base station) periodically for subsequent utilization.

It is generally acknowledged that data collection is a fun-

damental but challenging task as the limited communication

bandwidth and energy budget [2]. Fortunately, most applica-

tions of WSNs can tolerate certain accuracy loss of sensor data

to perform data analysis or decision making [3]. By exploiting

the tradeoff between data quality and energy consumption,

approximate data collection can be a wise choice for long-term

data collection. Although the number of sampling nodes and

data communication quantity have reduced, approximate data

collection still can acquire environment data with high fidelity.

This is done either with probabilistic models [4] [5] [6] or with

other data approximation approaches [7] [8]. Due to the dense

and high redundant deployment of WSNs, neighboring sensor

nodes usually have similar readings and this phenomenon is

named as spatial correlation which is frequently exploited

in data collection. Spatial clustering, which takes advantage

of the ubiquitous spatial correlation in WSNs, could group

sensor nodes with similar sensing readings into the same
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cluster [7] [8] [9] [10]. Obviously, spatial clustering supports

further procedures of approximate data collection and can

save more energy of WSNs. Because of sharing similar data

distribution, instead of having all nodes in the same cluster

work simultaneously, it is more energy-efficient to schedule

nodes to work alternately to prolong the lifetime of WSNs.

Therefor, finding the sets of sensor nodes with similar readings

is usually the first procedure of approximate data collection,

no matter with model-based methods [5] or with other data

restoration approaches [7]. However, spatial clustering in an

energy-efficient and distributed manner is a tough work, not

only because the resource constraints, but also because it is

hard to discover the spatial correlation pattern in a distributed

way. Besides, dynamic nature of physical environment makes

it difficult to maintain these clusters.

In this paper, to solve the problem of spatial clustering

for approximate data collection, we propose the Distributed

Spatial Correlation-based Clustering (DSCC) algorithm. By

exploiting spatial correlation and application-specific parame-

ters (namely error-tolerance threshold ε and spatial correlation

range Rsc), our algorithm can select some well-distributed

nodes with more residual energy to act as cluster heads. In

addition, DSCC makes effects to decrease the variance of

cluster sizes to balance the energy consumption of all sensor

nodes and minimize reading dissimilarity of nodes in the same

cluster. Foremost, DSCC will pay less communication cost

for clustering operation when compared with other distributed

spatial clustering algorithms.

The rest of this paper is organized as follows. Section II

briefly discusses related work on clustering in WSNs. System

model and problem statement are described in section III.

Details of DSCC algorithm are elaborated in section IV. Per-

formance evaluation with extensive simulations is presented in

section V. Finally, we conclude our paper in the last section.

II. RELATED WORK

Clustering is a popular technique for topology manage-

ment and plays an important role in the objective of energy

conservation in WSNs [11]. Recent years many clustering

algorithms have been proposed in the literature. LEACH [12]

is a well-known clustering algorithm which selects cluster

heads randomly with a fixed probability p. Taking the residual

energy into account, HEED [13] selects these nodes whose

probabilities approach 1 firstly in an iterative manner as cluster

2013 IEEE 27th International Conference on Advanced Information Networking and Applications

1550-445X/13 $26.00 © 2013 IEEE

DOI 10.1109/AINA.2013.26

56



heads. However, these kinds of clustering algorithms [11] have

neglected the inherent spatial and data correlation in WSNs.

To perform efficient data aggregation or approximate data

collection, it is necessary to take the spatial correlation into the

design of clustering algorithms. A renowned example for data

aggregation is CAG [14], which is a query-driven clustering

algorithm and can provide approximate aggregation results

within user-predefined error-tolerance threshold. YEAST [15]

also takes advantages of spatial correlation and groups nodes

into correlated regions for event-based data aggregation.

In the context of approximate data collection, it is preferable

to discover similar node sets firstly and then properly schedule

sensor nodes to report readings to Sink by turns, in order to

reduce redundant communication. B. Gedik et al. in ASAP

[6] provide a distributed sensed-driven clustering algorithm to

group nodes with similar readings. In ASAP, cluster heads are

selected based on probability which takes relative energy level

of nodes and cluster count factor fc into account. Ordinary

node will score each cluster head candidate according to hop

distance and data distance, and join the cluster with the highest

score. Leveraging the probability-based method to select clus-

ter heads, ASAP needs a number of iterations to select enough

cluster heads to “cover” all nodes and there is no guaranty on

the “good” distribution of cluster heads. L. Chong et al. [7]

propose an energy-efficient data collection framework called

EEDC, which measures the similarity between two sensor

nodes with raw readings both on magnitude and trend. EEDC

models the clustering problem as clique-covering problem and

proposes a centralized algorithm to partition sensor nodes

into clusters. Another centralized algorithm proposed in [8] is

called DCglobal, which names cluster head as representative

node (R-node) and models the selection of R-nodes as a set-

cover problem. By utilizing the concepts of data coverage
range, where data coverage range of a sensor node is the

set of sensor nodes whose readings are very close to this

node, and partial order relation, DCglobal solves the set-

cover problem in a centralized fashion and selects R-nodes as

few as possible. However, in order to accumulate enough raw

sensor readings at Sink for similarity measure between nodes,

abundant communication overhead for spatial clustering will

be triggered in both EEDC and DCglobal. DClocal [9] is a

distributed version of DCglobal. By exchanging the sensing

readings and energy level among neighboring sensor nodes

in a limited region, each node sets a counter according to its

energy level and data coverage range, and later dynamically

changes the state depending on its own counter which counts

down through time or state alterations of other neighboring

nodes. Finally, those sensor nodes with higher energy level

and larger data coverage range will become the R-nodes, and

other ordinary nodes choose their R-nodes respectively during

state transitions. Relying on the counters to select cluster

heads, rigorous time synchronization is required to complete

the clustering operation accurately in DClocal. Furthermore,

there are some other work [5] [10] [16] [17] that involves

spatial clustering. However, most of these work has no specific

or strict requirements on similarity measure between nodes.

III. PROBLEM STATEMENT

A. System Model

In this paper, we consider a WSN consisting of N sensor n-

odes randomly deployed in a size of L×L square sensing field

in uniform distribution. We denote sensor node i as si, and

the sensor node set is S = {s1, s2, ..., sN}, where |S| = N .

There is a powerful Sink node located outside of the sensing

field. All sensor nodes and Sink node are stationary after

deployment. We assume all sensor nodes are homogeneous

and have the same initial energy when deploying, yet they

may have different residual energy when clustering begins.

Sensor nodes can estimate the approximate distance through

Received Signal Strength Indication (RSSI). We assume loose

time synchronization among sensor nodes is guaranteed. This

assumption could hold true as time synchronization is one

of the fundamental requirements of WSNs and there have

been a lot of research work on this problem [18]. Besides,

it is relatively easy to guarantee loose time synchronization

in WSNs. Last and the most important, we assume each

sensor node can adjust the transmission power to change the

communication range, and single-hop communication can be

built between an active node and the Sink. Actually, single-hop

communication assumption has been made in many previous

work [7] [8] [12] [13], and transmission power control can be

supported by some real sensor node, e.g., Berkeley motes [19].

Even in large-scale network, some more powerful relay nodes

could be deployed to partition the network into hierarchical

architecture with similar method presented in EEDC [7], so

that direct communication between sensor nodes and Sink or

relay nodes could be realized.

We adopt a simple but popular radio model introduced by

LEACH [12] to estimate energy dissipation for sensor nodes.

To transmit and receive a l-bits packet over distance d, energy

consumption is given by following equations respectively.

ETx(l, d) =

{
(Eelec + εfsd

2)·l, if d < do (1)

(Eelec + εmpd
4)·l, if d ≥ do (2)

ERx(l) = Eelec·l (3)

where Eelec is the baseline to run transmitter or receiver cir-

cuitry. εfsd
2 and εmpd

4 are energy consumption to amplifier

signal of radio, and which one used depends on the distance

between sender and receiver with distance threshold do.

B. Problem Statement

Spatial clustering considers a problem that partitions all

sensor nodes into exclusive clusters by making utilization

of the inherent spatial correlation in WSNs [7] [8] [9] [10].

Within the same cluster, sensor readings dissimilarity of any

two nodes meets a user-defined error-tolerance threshold ε.

To accelerate the progress of clustering, spatial correlation
range Rsc which shares the same meaning with gmax dist
in EEDC [7] that defines the maximal geographic distance

between two nodes with similar readings can be taken as a
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measurement of spatial correlation. Note that both ε and Rsc

are application-specific. To effectively and efficiently support

approximate data collection, the most important objective of

spatial clustering is to generate as few clusters as possible to

reduce the number of simultaneously sampling nodes. Besides,

the variance of cluster sizes should be minimized so that each

node can roughly work the same amount of time. Furthermore,

to ensure the stability of a cluster, the dissimilarity among

cluster members should be minimized too. Formally, the

problem of spatial clustering could be defined as follows.

Definition 3.1: spatial clustering problem. For a WSN with

a collection S = {s1, s2, ..., sN} of N sensor nodes, the whole

sensor network can be partitioned into definite node sets C =

{C1, C2, ..., Cy}, where
y⋃

a=1
Ca=S. For ∀si, sj ∈ Ca, sensor

reading dissimilarity meets h̄(si, sj) ≤ ε
2 where h̄ is similarity

measure function in certain metric, and dist(si, sj) ≤ Rsc in

Euclidean metric. Spatial clustering aims to obtain min y.

Just as demonstrated by DClocal [9], the spatial clustering

problem could be modeled as a set-cover problem which is an

NP-hard problem and there are no approximation algorithms

with constant approximation factors.

IV. THE DSCC ALGORITHM

A. Preliminaries

To measure the sensor readings dissimilarity between two

nodes, we employ Manhattan distance, which is also adopted

by [2] [7] [9] [10] for similarity measurement, as the similarity

function fmd that is defined as

fmd(si, sj) =

∑q
k=1

∣∣∣vk(si)− v
′
k(sj)

∣∣∣
q

. (4)

In Eq.(4), v(si) = {v1, v2, ..., vq} and v
′
(sj) = {v′

1, v
′
2, ..., v

′
q}

are the sensor reading serials of si and sj respectively. It is

worthy to note that the selection of an appropriate similarity

function depends on specific requirements of applications. Two

sensor nodes, say si and sj , are called similar nodes if their

geographic distance is smaller than Rsc and their dissimilarity

distance meets fmd(si, sj) ≤ ε
2 .

Given the similarity function, we have following definitions.

Definition 4.1: similarity coverage rate Cr. Assume there

are n neighboring nodes of si in the range of Rsc. Among the

n neighboring nodes, there are m nodes that are similar nodes

of si. The neighboring node set of si is denoted as NBR(si) ,

and the similar node set is denoted as SN(si). Then similarity

coverage rate of node si can be defined as

Cr(si) =
|SN(si)|
|NBR(si)| =

m

n
. (5)

Definition 4.2: similarity difference rate Sr. For node si
with its corresponding similar node set SN(si), the similarity

difference rate of si is defined as

Sr(si) =
ε−

∑
sj∈SN(si)

fmd(si,sj)

m

ε
. (6)

Theoretically, Cr(si) reflects the “covering” power of sensor

node si, and Sr(si) expresses the similar degree between si
and its similar nodes. We estimate the representative capability

of a sensor node via these two parameters. Notice that, both

Cr(si) and Sr(si) fall in the range of [0, 1].

B. Algorithm

The clustering operation in our proposed DSCC algorithm

is initiated by the clustering-command message broadcasted

by the Sink node. Through the message, each node obtains

the user-defined error-tolerance threshold ε and spatial cor-

relation range Rsc. After that, each sensor node adjusts the

transmission power to broadcast a “Hello” message (H-msg),

which contains its residual energy and recent reading serial,

to neighboring nodes in the range of Rsc. Based on the

local information, each node decides whether to become a

cluster head candidate (CHC) according to its energy level and

representative capability. Later, all CHC nodes will compete

to be the final cluster head (CH), and all non-CH nodes will

choose an appropriate cluster to join. Details of the clustering

procedure are elaborated in what follows.

1) Selection of cluster heads: Right after collecting all the

neighboring information from nodes in range of Rsc, each

node computes its own similarity coverage rate and similarity

difference rate according to Eq.(5) and Eq.(6) respectively.

Node si will become a CHC node if it meets the following

two qualifications:

• Q1: Relative energy level ER(si) is above the average

energy of si’s neighboring nodes, i.e.

ER(si) =
E(si)·(n+ 1)

E(si) +
∑

sj∈NBR(si)
E(sj)

> 1, (7)

where E(si) is the residual energy of node si.
• Q2: Representative capability p(si) ≥ δ, where p(si) is

computed as Eq.(8), in which α is an adjustable parameter

to decide the relative importance of Cr and Sr. Here, δ is

a pre-defined threshold to control the quantity of potential

CHC nodes.

p(si) = α·Cr(si) + (1− α) · Sr(si). (8)

If sensor node meets the two qualifications, then it decides

to be a CHC node and broadcasts competition message (C-
msg) which includes information about this CHC node, such

as ID and the size of similar node set SN(si), to nearby nodes

to compete for the role of CH. In the context of spatial correla-

tion, we define that node si defeats node sj if and only if they

are similar nodes, SN(si) contains more nodes than SN(sj)
and more than half nodes of set SN(sj) are in set SN(si), i.e.

|SN(si)| > |SN(sj)| and |SN(si)
⋂
SN(sj)| > |SN(sj)|

2 ,

which mean that node si can “cover” more than half of sj’s

similar nodes. However, it will consume a lot of energy to

directly find the common items of two nodes’ similar node

sets in the distributed situation as considerable messages are

needed. Thanks to the uniform distribution of sensor nodes,
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(b) Defeated one by one

Fig. 1. Sample competitions of CHC nodes

we can solve this problem with an approximative method via

the distance between two nodes. If node si defeats node sj ,

besides meeting the conditions that they are similar nodes and

|SN(si)| > |SN(sj)|, their overlapping communication area

should be more than half. Formally, assume the geographic

distance between node si and sj is d = βRsc, obviously

0 < β < 1. Then we can formulize the contrast problem

of set elements as

Roverlapping =
Aoverlapping

πR2
sc

>
1

2
. (9)

With the help of Fig.1(a), we can express Aoverlapping as

Eq.(10) further, where angle ϕ is expressed as Eq.(11).

Aoverlapping =
(2ϕ− β

√
4− β2)·R2

sc

2
(10)

ϕ = arccos(
β2 − 2

2
) (11)

Combining equations (9), (10) and (11), we learn that when

0 < β < 0.8079, the overlapping communication area of the

two nodes is more than half, i.e., node si defeats node sj .

Details of solving process are omitted due to space limitation.

Therefore, each CHC node can adjust the transmission

power and transmit C-msg only in the range of r = βRsc ≈
0.8Rsc, which is called as competitive radius. The competing

rules of CHCs are as follows: when CHC node si receives C-
msg from sj , si checks whether node sj is in its similar node

set firstly. If sj is contained in SN(si), si checks whether the

size of its similar node set is larger than sj’s, where residual

energy level is the tie-breaker. If true, we say node si defeats
node sj , otherwise node si is defeated by node sj .

Due to the inexistence of global information about the

distribution of CHC nodes, it is quite difficult to select a

certain amount of appropriate CHs. For example in Fig. 1(b),

if CHC node sj defeats CHC node sk, at the same time si
defeats sj , then it is very likely that finally there will be no

CHs to “cover” node sk and its similar nodes. To avoid this

case, DSCC ranks each CHC node in a competitive scope,

i.e., in the range of competitive radius r. At the initial phase,

each CHC node ranks itself with number 1. During the CHC

competition phase which will last for time TCHC to make

sure all C-msgs can be received, CHC node sj will increase

its ranking by 1 when it receives a C-msg from a stronger

Algorithm 1: cluster heads selection of DSCC

/* Ranking CHC nodes */
1 All nodes set timer to TCHC ;

2 if si is CHC node then
3 ranking(si) ← 1;

4 Transmit a C-msg with competitive radius r;

5 Listen for C-msgs for time TCHC , add received

competitive CHC nodes info to listCHC ;

6 for each chc ∈ listCHC do
7 if chc defeats si then
8 ranking(si) + +;

/* Iteratively select CH nodes */
9 All nodes set timer to TCH ;

10 if si is CHC node then
11 repeat
12 if ranking(si)==1 then
13 Transmit an A-msg with radius Rsc;

14 si ← CH;

15 else
16 Listen for A-msgs for time Trank;

17 if received A-msg from stronger CHC then
18 si ← non-CH;

19 else
20 ranking(si) =

⌈
ranking(si)

2

⌉
;

21 until si becomes CH or non-CH;

CHC node si, namely sj is defeated by si. At the expiry of

TCHC , each CHC node confirms its own ranking and DSCC

will select the final CHs in an iterative manner by exploiting

these rankings. At each node, the clustering process requires a

small number of iterations denoted as Nc. Each step takes time

Trank which is long enough to ensure that messages from any

neighboring node in range of Rsc can be received. During any

iteration, each CHC node checks whether its ranking equals

to 1, if so it selects itself as a final CH and broadcasts a CH

advertising message (A-msg) which only includes its node ID

to neighbors in range of Rsc. Note that other information,

e.g., residual energy and size of similar node set have been

broadcasted early. After receiving an A-msg, any ordinary node

or CHC node whose ranking is larger than 1 will add this CH

to its listCH and consider itself as being “covered” by a CH

node. At the expiry of Trank, every “uncovered” CHC node

reduces its ranking a half and goes to next iteration. Totally,

CH selection phase will last for time TCH = Nc · Trank. The

pseudo-code for CHs selections is outlined in Algorithm 1.

2) Formation of clusters: After Nc iterations, a certain

number of CH nodes are elected. Each non-CH node calculates

attracting score for each CH node in its listCH according to

relative distance and similarity degree. For example, at node

si, attracting score of a CH node in its listCH , say sch, is

scored as
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Gsi(sch) =
Rsc − dist(si, sch)

Rsc
+

ε− fmd(si, sch)

ε
·λ. (12)

In Eq.(12), dist(si, sch) is the geographic distance between

these two nodes, fmd(si, sch) is the dissimilarity measured

by Manhattan distance, and positive real number λ is the

similarity importance factor to weight the importance of data

similarity. Among all the feasible CH nodes, non-CH node

chooses the one with the highest score as final CH and joins

the corresponding cluster by sending a join message (J-msg).

Those still “uncovered” non-CH nodes are forced to be CH

nodes at the end of time TCH . The clusters formation phase

will last for time TCM . At the expiry of TCM , all CH nodes

send the cluster information which includes cluster head ID

and cluster member list to the Sink.
3) Maintenance of clusters: After the clustering operation,

sensor nodes in the same cluster are highly data and spatial

correlated. Then it is desirable to schedule sensor nodes work

alternately to perform approximate data collection [7] [20], so

that the network lifetime of WSN could be extended. Here

we suggest a scheduling scheme that in each cluster, CH

keeps on working and other nodes turn into work state with

probability ρ like randomized intra-cluster scheduling method

[7]. After collecting readings of all active cluster members, CH

restores data following the method in EEDC for all nodes in

the cluster and transmits the results to the Sink. An advantage

of this method is that it facilitates the maintenance of clusters.

Explicitly, cluster maintenance is triggered in two cases. One

case is that CH runs energy low and the other case is that CH

detects that more than one cluster member report seriously

different readings, i.e., local spatial correlation of this cluster

changes. It is worthy to note that spatial correlation is very

stable in many applications even if the monitored phenomenon

changes dramatically. Cluster should be split into several new

clusters if at least one case comes true. To suppress excessive

growth of the number of clusterss, Sink node should broadcast

re-clustering command when the number of clusters increases

to beyond a threshold, e.g., user-defined Maxclusters.

C. Discussion
In this subsection, we firstly analyze the message complex-

ity and time complexity of DSCC algorithm, and then discuss

the setting of several timer in DSCC.
Lemma 1. The message complexity of clustering is O(N),

where N is the number of sensor nodes.
Proof. In the phase of information exchanging, there are

totally N H-msgs. At most there will be rough N/2 nodes to

become CHC nodes and N/2 C-msgs are produced according-

ly. Assume eventually k CH nodes are elected and they send

k A-msgs to neighboring nodes, the left N − k nodes choose

CH node respectively and N − k J-msgs are sent. As a result,

there are totally N +N/2 + k + (N − k) = 2.5N messages,

i.e., the message complexity is O(N).
Lemma 2. The maximal iterations of DSCC algorithm is⌈
log2

πR2
scN

2L2

⌉
, where L is length of the square sensing field

and Rsc is spatial correlation range.
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Fig. 2. Iterations for clustering operations with simulation parameters L =
100m, Rsc = 20m, ε = 0.5, δ = 0.6, α = 0.5, λ = 1.0

Proof. Actually the maximal iterations is decided by the

maximal ranking, i.e., the maximal number of CHC nodes in

a range of Rsc, in the sensor network. We assume there will

be C clusters in the L×L sensing field, and then averagely

each cluster will have N/C sensor nodes. Assume a node

will become CHC node with probability pre to meet Q1 and

with probability prc to meet Q2. In that way, there will be

Nchc = (N/C)·pre·prc CHC nodes in the range of Rsc.

With limitation of spatial correlation range Rsc, the potential

clusters number C meets C ≥ L2/πR2
sc. Generally speaking,

pre ≈ 0.5, and 0 < prc ≤ 1, then we have

Nchc =
N

C
·pre·prc ≤ πR2

scN

2L2
. (13)

According to the ranking updating rule of CHC node, we

can obtain the maximal iterations of DSCC as

Nc = �log2(Nchc)	 ≤
⌈
log2

πR2
scN

2L2

⌉
. (14)

Simulation results in Fig.2 show that the real iterations of

DSCC corresponds with the theoretical value estimated by

Lemma 2. Besides, from Fig.2 we can learn that DSCC spends

much less iterations for clustering than ASAP, which repeats

the CH selection procedure until that all nodes are “covered”.
In DSCC, we have set several timer to assist the clustering,

i.e., TCHC , Trank and TCM , all of which are used to guarantee

each sensor node could obtain all potential messages from

relative nodes, namely C-msg, A-msg or J-msg in different

phases. A node could broadcast such kind of messages using

CSMA MAC protocol, and the total time for each timer is

decided mainly by the number of neighboring nodes in certain

communication range. Assume time delay for one message

between two nodes is κ. Then with reasonable coordination,

a rough time for TCHC would be κNπr2

L2 , and a rough time

for TCM and Trank would be κNπRsc
2

L2 . The real timer setting

in practice can be smaller, especially for Trank. Notice that

TCH = Nc × Trank and Nc could be estimated by Lemma 2.
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V. PERFORMANCE EVALUATION

In this section, the performance of our proposed DSCC

algorithm is evaluated by comparing it with three noteworthy

clustering algorithms, namely ASAP [6], EEDC [7] and DClo-

cal [9]. We choose them as compared algorithms because each

of them is representative. For fairness, we have implemented a

single-hop version of ASAP in our experimental simulations.

With extensive simulations, we will compare the four algo-

rithms on the following metrics which have been mentioned

in subsection III-B: (a) number of clusters; (b) number of

“forced” clusters which have only the CH node; (c) variance of

cluster sizes σcs which is calculated as the standard deviation

of cluster sizes using Eq.(15); (d) energy consumption for

clustering; (e) average residual energy level of the selected

CH nodes; (f ) average dissimilarity of all clusters Vdis which

is defined as Eq.(16) formally. In equations (15) and (16), Ci

is assumed as the i-th cluster and C is the set of all clusters.

We denote the CH node and a cluster members of cluster Ci

as Ci.ch and Ci.cm respectively. Besides, |C∗| denotes size

of the set while |C∗| is the average cluster size.

σcs =

√∑
Ci∈C(|Ci| − |C∗|)2

|C| (15)

Vdis =

∑
Ci∈C

∑
cm∈Ci

fmd(Ci.ch,Ci.cm)

|Ci|−1

|C| (16)

A. Simulation Setup

In our simulations, N sensor nodes are randomly deployed

in a 100m×100m sensing field in uniform distribution, Sink
node is deployed 20m away from center of the right boundary,

i.e., located at (120m, 50m). Residual energy of each node

is randomly chose in the range of [4.0, 5.0] when clustering

begins. Parameters of radio model adopt the same setting

as those in LEACH [12] and they set as follows: Eelec =
50nJ/bit, Efs = 10pJ/bit/m2, Emp = 0.0013pJ/bit/m4,

distance threshold do sets as 75m like the setting in HEED

[13]. It is worth highlighting that it is the threshold do that

decides the energy consumption when transmitting a message

to a distant node. We employ similar method with [9] to

generate a synthetic data set. Twenty-five event sources are

fixed in the sensing field in uniform distribution, and the initial

value of each event source is randomly chose in the range

of [20.0, 30.0]. Value of event source at time t, say ew(t),
follows normal distribution N(ew(0), 1) where ew(0) is the

initial value of event source ew. Sensor readings of node si are

the comprehensive influencing results of all event sources, and

the influence of an event source, say ew, to node si is inversely

proportional to the geographic distance between them.

We assume the size of data packet is 1000bits and the size

of control packet is 100bits. Cluster count factor fc which

decides the rough number of clusters in ASAP [6] sets as 0.05.

Other simulation parameters for ASAP, EEDC and DClocal

adopt the same settings in their corresponding papers. Lastly,
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Fig. 3. Impact of Rsc on DSCC with simulation parameters N = 300,
L = 100m, ε = 0.5, δ = 0.6, α = 0.5, λ = 1.0

notice that all results in this paper are the average values of

100 simulations.

B. Impact of system parameters

There are several system parameters involved in DSCC

algorithm, namely Rsc, ε, δ, α and λ. Both Rsc and ε are the

measurements of spatial correlation and are both application-

specific, and we will discuss the impact of error-tolerance

threshold ε on clustering in subsection V-D with details. As

Rsc is aimed to be an assistant parameter to accelerate the

clustering, it influences the clustering performance of all the

four algorithms in the same way. Therefore, it makes sense for

us to perform simulations on Rsc only with DSCC to study

the relation between Rsc and spatial clustering. From Fig.3,

we learn that greater Rsc will lead to fewer clusters while a

larger average dissimilarity of clusters. Obviously, a greater

spatial correlation range allows more potential nodes to be

grouped into the same cluster. However, the accompanying

result is that the data dissimilarity among cluster members

becomes greater. As indicated in Fig.3, Rsc = 20m could be

a reasonable value to obtain compromised cluster number and

average dissimilarity under the assumption of data and spatial

correlation in our simulation setting. Hence, We set the default

value of spatial correlation range Rsc as 20m in all following

simulations.

Regarding to other parameters, parameter δ is used to

control the quantity of potential CHCs and is quite application-

dependent. Lots of nodes will declare to be CHCs when a

small δ is adopted. However, when δ is set too large, the

number of nodes which are qualified to be CHCs drops a lot.

As mentioned above, α in Eq.(8) is a parameter to weight the

relative importance of Cr and Sr. Fig.4(a) shows that cluster

dissimilarity increases and cluster number decreases against α.

This is because when α adopts a small value, more nodes with

high similarity difference rate will become CHCs, and the final

clusters will own much lower dissimilarity. Similar reasons

for a high value of α, more nodes with strong “covering”
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(b) parameter λ

Fig. 4. Impact of system parameters (α and λ) on DSCC clustering

capability will become CHCs and fewer clusters are needed to

“cover” all nodes. Parameter λ influences the attracting scores

of CHs in listCH of each node. A high value means that nodes

pay more attention on the data similarity, resulting in smaller

dissimilarity among nodes in the same cluster. Impact of λ on

cluster dissimilarity is showed in Fig.4(b). Note that λ will not

affect the number of final clusters. Simulation results of Fig.4

are obtained with N = 300, ε = 0.6, Rsc = 20, δ = 0.7, and

λ = 1.0 for Fig.4(a), α = 0.5 for Fig.4(b) respectively. In the

following simulations, we fix α = 0.5, λ = 1.0.

C. Impact of network density

In this subsection, we evaluate the clustering performance

by varying the number of sensor nodes N from 100 to 600
to enlarge the network density, and we set ε = 0.5, δ = 0.6.

With the increase of network density, the number of clusters

formed by the four algorithms increases correspondingly. From

Fig.5(a) , we can learn that our proposed DSCC algorithm

generates the fewest clusters, which facilitates approximate

data collection as more nodes can turn into sleeping mode. As

ASAP iterates until all nodes can be “covered”, there will be

few “forced” clusters. From Fig.5(b), we can learn that DSCC

still performs the best except ASAP on the metric of number

of “forced” clusters. Just like what we explained before, in the

context of approximate data collection, equal cluster size guar-

antees that each node undertakes approximate the same load

of data sampling. Fig.5(c) describes that though the variance

of cluster sizes of DSCC is little greater than cluster variances

of EEDC and ASAP, DSCC still performs much better than

DClocal. The variance gaps among DSCC, EEDC and ASAP

can be reasonably explained as ASAP and EEDC produce

much more clusters than DSCC. Obviously, more energy is

needed if more nodes are involved in clustering operation. In

Fig. 5(d), energy consumption grows rapidly against network

density except EEDC which performs clustering operation

mainly at the powerful base station. Owing to choosing a small

number of data series of each node for similarity measure,

EEDC consumes the least energy. However, when more data

is needed in similarity measure, EEDC will use up the most

energy without doubt. Compared with the other two distributed

algorithms, DSCC consumes less energy. As dissimilarity of

cluster is mostly affected by error-tolerance threshold ε and

the results on metric of CHs’s average residual energy level

are quite similar with Fig.6(d), i.e., CHs selected by DSCC

have the most residual energy among the four algorithms, the

simulation results of these two metrics are omitted in this

subsection.

D. Impact of error-tolerance threshold

Besides spatial correlation range Rsc, error-tolerance thresh-

old ε is the other critical factor to restrain the spatial clustering.

In this subsection, we fix the number of sensor nodes N at

300, and explore the relation between clustering performance

and ε by varying its value from 0.2 to 1.2. Notice that the

value of pre-defined threshold δ which is used to control the

quantity of CHCs is adjusted among [0.50, 0.95] in accordance

with the increase of ε. From Fig.6(a) and Fig.6(b), we learn

that both cluster number and “forced” cluster number decrease

as ε increases. For the restriction of spatial correlation loosens,

more nodes can be grouped in the same cluster. As a result,

fewer clusters are needed to “cover” all sensor nodes, and the

number of “forced” clusters decreases at the same time. DSCC

can group the most similar nodes into the same cluster and

minimize the dissimilarity of cluster to the best. Just like what

reported by Fig.6(c), DSCC owns the minimal dissimilarity

of clusters among the four compared algorithms. Minimal

dissimilarity among cluster members makes a cluster more

steady to withstand the possible change of spatial correlation.

In theory, the energy gain of approximate data collection come

from the collection of less accurate data. Except EEDC, other

three algorithms have paid attention to select nodes with more

residual energy as cluster heads which bear more load than

ordinary nodes. Fig.6(d) shows that cluster heads elected by

DSCC have the most residual energy, and DClocal takes the

second place. With more residual energy, node could work

as cluster head for a much longer time and undertake more

load. The same reason as before, we omit results of variance

of cluster size and energy consumption for clustering here.

Obviously, these two metrics are more associated with N .

VI. CONCLUSIONS

In this paper, we propose the DSCC clustering algorithm to

support approximate data collection by grouping sensor nodes

with similar readings into the same cluster. By exchanging

sensor nodes information in local region limited by the spatial

correlation range Rsc, capable nodes are selected to be CHC

nodes based on the qualifications of relative energy level

and representative capability. Ranking strategy is proposed to

accelerate the progress of CHs selection, and finally DSCC

can terminate in a small number of iterations. Compared with

previous work, DSCC not only pursues to generate as few

clusters as possible, but also pays more attention to the data

similarity between nodes to produce more data and spatial

correlated cluster members.

Extensive simulations are performed to evaluate DSCC

algorithm. Compared with three noteworthy clustering algo-

rithms, namely EEDC, ASAP and DClocal, simulation results
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(a) Number of clusters
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(b) Number of “forced” clusters
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(c) Variance of cluster sizes σcs
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(d) Energy consumption

Fig. 5. Clustering performance with various network density
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(b) Number of “forced” clusters
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(c) Dissimilarity of clusters Vdis
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(d) Average residual energy of CHs

Fig. 6. Clustering performance with various error-tolerance threshold ε

show that DSCC produces the fewest and the steadiest clusters

which have the smallest dissimilarity. In addition, DSCC

selects CHs with more residual energy and consumes less

energy for clustering when compared with other distributed

algorithms.
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