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Abstract—We focus on the problem of links scheduling
in heterogeneous wireless sensor networks. Links scheduling
becomes more difficult due to the diversity of workload among
sensor nodes. An improper links scheduling strategy will lead to
high end-to-end delay and then diminish the data availability.
We assume the energy cost of state transition cannot be ignored,
especially for wireless multimedia sensor node which equips
with camera and higher performance processor compared to
scalar sensor node. In this paper, we use the conflict graph to
model the conflicts among nodes and then propose a workload-
aware heuristic scheduling algorithm. In the scheduling, each
node can obtain consecutive time-slots to transmit all data
at a schedule transmission, and the number of time-slots is
calculated based on node’s workload. Hence, it is possible for
our scheduling to reduce the end-to-end delay and save energy
consumed by node’s state-switching in heterogeneous wireless
sensor networks. In additional, a metric is proposed to measure
the frequency of node’s state-switching. The numerical results
show that our scheduling can reduce the end-to-end delay and
meanwhile improve energy efficiency by reducing the energy
cost of state-switches.

Keywords-heterogeneous, centralized, conflict graph,
workload-aware

I. INTRODUCTION

A wireless sensor network (WSN) consists of a large num-

ber of low cost, low power sensor nodes to perform moni-

toring task. Sensor nodes may generate different amounts of

data (e.g., they are equipped with different types sensors)

and then send data to the sink node periodically. This

type of data collection can be formulated as heterogeneous

data collection, where each sensor node generates different

amounts of data in one operation.

Time Division Media Access (TDMA) [1] usually is used

to eliminate conflict among sensor nodes and achieve high

wireless capacity. With TDMA protocol, links are allowed to

use whole link bandwidth when they are scheduled to access

the wireless channel. Scheduling TDMA is a valid method

to achieve the optimal throughput of a WSN. Many previous

literatures formulated scheduling TDMA as a graph coloring

problem. Based on the communication graph of a WSN, a

conflict graph consists of communication links as vertices

and conflicts of communication links as arcs. The vertices

connected with arc cannot transmit simultaneously due to

mutual interference in conflict graph. Therefore, the result

of coloring conflict graph is a conflict-free link schedule.

Different graph coloring algorithms are proposed to obtain

a conflict-free link schedule [2].

However, most of these algorithms assume that each

sensor node generates exactly the same amount of data at

the same rate, and use uniform slots in scheduling, such

as one time-slot for a assignment. In many applications of

heterogeneous WSN, uniform slots allocation of existing

scheduling algorithms cannot adapt to highly variable data

traffic on sensor nodes because discontinuous time-slots are

allocated to each node if a node has a large amount of data

needed to be transmission, resulting in a great degradation

in performance of network, e.g., latency. In addition, each

node needs frequently state switching which also causes

large energy cost for sensor node, e.g., wireless multimedia

sensor node.

This paper presents a workload-aware heuristic schedul-

ing algorithm for heterogeneous data collection in WSNs.

Taking the workload of sensor nodes into account, our

scheduling employs a workload-aware time-slots allocation

mechanism to minimize influence of heterogeneous work-

load in WSNs while guaranteeing low delay. In addition,

our scheduling also considers the energy EA,B consumes

by transiting from state A to state B for a sensor and other

control units. A metric is proposed to measure the frequency

of node’s state-switching, and it also can be use to denote

the consecutiveness of node’s schedule.

The rest of the paper is organized as follows: Section

III describes the heterogeneous network and physical inter-

ference model. Section IV shows the detail of workload-

aware link scheduling algorithm and section V analyzes the

performance of scheduling algorithm. Section VI collects

some conclusions.

II. RELATED WORK

The main task in determining a TDMA schedule is to find

a conflict-free schedule for all links in the network. A related

problem is to find the interference information on a set of

links, which shows these links whether or not can active

simultaneously - they can be scheduled, while this prob-

lem has been proven to be NP-hard [2]. Many scheduling

mechanisms based on TDMA adopt the protocol interference

model [3], [4], [5]. Compared to protocols interference

model, physical interference model has better accuracy on

the degree of interference among nodes [6]. Therefore, in
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order to improve the effective of links scheduling, we use

the latter to represent the relationship among links.

Jain et al. [7], formulate the problem of links scheduling

under protocol and physical interference model as an LP

problem. Unfortunately, the solution requires computing all

possible sets of conflict-free transmissions to achieve the

optimal link schedule, which needs exponential time. In this

paper, the authors provide theoretical performance base on

MATLAB and CPLEX, and propose a column generation

approach which also requires complexity computation and

exponential time.

In [8], Wang et al., study links scheduling problem under

the RTS/CTS interference model and protocol interference

model. Although they present both centralized and dis-

tributed algorithms in the paper, the results of links schedul-

ing may be not optimal solution under some networks, such

as tree-based network. Similarly, there are some literatures

have considered physical interference for links scheduling

in wireless networks [9], [10], [11], [12].

In [13], Mao et al., proposes an optimization framework

where genetic algorithm and particle swarm optimization

algorithm are hybridized to enhance the searching ability.

However their algorithm does not provide any guarantees on

the performance. Djukick and Valaee[1] design an algorithm

that finds the transmission order with the minimum delay on

overlay tree topology. Combined it with a modified Bellman-

Ford algorithm, the author wanted to find minimum delay

schedule in polynomial time. However, the algorithm has

possibility of failure in searching the minimum number

of slots required to schedule all links. In [14], the author

proposed a heuristic algorithm that schedules as many in-

dependent set of links as possible to increase the degree

of parallel transmission. In [2], Ergen and Varaiya provided

another heuristic algorithm based on scheduling the levels

in the routing tree and whose performance depends on the

distribution of the nodes across the levels in routing tree.

As the previous scheduling algorithms assign fixed num-

ber of time-slots to a set of conflict-free links at a sched-

ule transmission, these algorithms unable to adapt to the

heterogeneous workload in wireless heterogeneous sensor

networks, and lead to large end-to-end delay and waste

energy. Hence, the need of an efficient scheduling which

provides adaptability for workload motivates us to design

our scheduling algorithm.

III. NETWORK MODEL AND ASSUMPTION

We consider a network that is composed of a single access

point (AP) and several sensor nodes. Each sensor node

has different initial workload. Links among the nodes are

assumed to be bidirectional, so sensor node can receive the

link-layer acknowledgement when data is delivered success-

fully to destination. Besides, we assume all sensor nodes

transmit at the same power.

A physical interference model is used in our scheduling.

According to the model shown in [15], successful reception

of a packet that is sent from node u to node v depends on the

cumulative signal-to-interference and noise ratio (SINR) at

v. To be specific, Pv(i) denotes the received power at node

v, and the signal transmitted by node i, so a packet along

with link (u,v) is correctly received if and only if:

Pv(u)

N0 +
∑

i∈(V ′/u) Pv(i)
≥ β

where N0 is the background noise, V
′

denotes the subset

of nodes in V that are transmitting simultaneously, and β
is a constant which depends on the modulation scheme for

channel, data rate, etc. Note that we do not assume any

specific radio propagation model in our scheduling.

We represent the network with the physical communica-

tion graph G = (V,E), where V is the set of sensor nodes,

N = |V | is the number of vertices in G. The directed edge

(u,v) ∈ E exists if and only if a link between node u and

v exists in network. Each edge e in E is labeled with we

which is equivalent to the initial workload of source end of

e. The graph G forms a data collection tree T for a WSN at

last, and AP is the destination of all data.

To build interference graph GI = (VI , EI) according to

the interference model is necessary for links scheduling in

network. An edge e = (u,v) ⊆ I is labeled with weight Ie
which represents the signal strength at node v when node

u is transmitting and is able to use dBm to express. Note

that I is the subset of edges V x V. Interference graph was

also referred in [10]. We assume interference graph GI is

known in this paper. However, it is worth pointing out that

some interference detection approaches have been proposed

for wireless sensor networks [16]. These approaches can be

effectively integrated with our scheduling algorithm.

The conflict graph corresponding to G = (V,E) and GI =
(V, I) is called GCI = (VCI , ECI) which is constructed by

having a node for each link in G, and adding the undirected

edge(e1, e2) if link e1 and e2 conflict or interference with

each other (according to GI described above). GCI is

defined as follows:

• Transferring links into vertices: for each link in G, we

builds a quaternion to represent it. Each quaternion

includes vertex id, source sensor node, destination, and

initial workload of link, we use (ID, S, D, W) to

describe the vertex.

• Building conflict edges: if ((i,j) ∪ (j,k)) ∈ E,

vertex x (IDij , Sij , Dij ,Wij) and vertex y

(IDjk, Sjk, Djk,Wjk) are connected with an edge.

As a parent node and a child node cannot transmit at

the same time, that is (x,y) ∈ ECI .

• Building interference edges: if (i,j) ∈ I or (i,j) ∈ E and

cj is a child of j in G, (x,y) ∈ ECI , note that i or cj is

a source or destination of vertex x and it has the same
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meaning for vertex y, and the edge is an interference

arc. Because i and j interference each other, while i is

transmitting, the data transmission from child cj to j

may fail because j would hear from both j and cj . The

physical interference model can be used to determine

whether x and y can transmit at the same time.

Given a links set M=e1, e2, · · · , en, M is a feasible sched-

ule if and only if the corresponding nodes in GCI construct

an independent set, in other words, M is a matching in G.

Hence, a necessary condition for links set M to be feasible

is that M is a match on the graph G.

In this paper, time is divided into time-slots. A time-slot is

long enough to transmit one packet and an acknowledgement

between two sensor nodes. The length of scheduling frame

is the amount of time-slots used by sensor nodes to transmit

all data to AP.

Let G to be the tree rooted at AP, and GCI is a conflict

graph under physical interference model. A schedule S

composed of N slots t1, t2, · · · , tN is feasible for G if and

only if the following conditions are satisfied:

-the selected set of vertices in GCI form an independent

set in each time slot ti ⊆ N

-each link (i,j) in G is scheduled for at least Wij slots

-Wij = W
′
s + wij , where W

′
s is the total workload of

subtree s which roots at i in G and wij is initial workload

of link (i,j).

IV. WORKLOAD-AWARE GREEDY SCHEDULING

ALGORITHM (WAGS)

A. The detail of algorithm

Our scheduling is a workload adaptive greedy algorithm.

At the beginning of scheduling, the nodes are ordered

according to ascending order of degree since low-degree ver-

tices have less conflict constraints and so are more likely to

obtain largely independent set of nodes for each time-slot. In

this paper, each time-slot represents a schedule transmission.

The scheduling then allocates time-slots to nodes based on

the workload of nodes in that order. After determining the

first node for a time-slot, additional nodes are added if the

node set for time-slot is conflict-free. Note that the member

of node set for each time-slot is dynamical because nodes

have different initial workload in heterogeneous WSNs. The

advantage of our scheduling is that node can transmit all data

to next-hop once it is scheduled, and this can remarkably

reduce the frequency of state transition. Energy is saved

when the amount of energy wasted on state transition cannot

be neglected, such as wireless multimedia sensor node which

equips with camera, meanwhile, the end-to-end delay is

reduced. The scheduling algorithm is reported in Algorithm

1. Table I shows some notations and terminologies used in

Algorithm 1.

When WAGS initializes completely, the function

UPDATE DEGREE(setos) (line 16) is called to update

Table I
NOTATIONS AND TERMINOLOGIES

Symbol Meaning
setp set of vertices that prior to schedule in current time-slot
sets set of vertices already scheduled in current time-slot
setos set of candidate vertices can be scheduled in current time-slot
setlast set of vertices scheduled at last time-slot
Wi the workload of vertice i
T set of time-slots

Algorithm 1 Workload-aware Greedy Scheduling Algorithm

Require: a communication graph G and the conflict graph

GCI

Ensure: a feasible schedule S for G under physical

interference model

1: set S = φ
2: ordering vertices according to ascending order of degree

using depth-first-search (DFS)

3: while (at least one packet has not reached AP) do
4: sets = NULL, setp = NULL

5: while Wi > 0 do
6: setos ← i
7: end while
8: while Wj > 0 and j ∈ setlast do
9: setp ← j

10: setos ← setos − j
11: end while
12: if setp != NULL then
13: sets = setp
14: end if
15: if setos! = NULL then
16: UPDATE DEGREE(setos)
17: end if
18: for (setos != NULL) do
19: CHECK:

20: if κ ∈ setos and κ has the minimum degree then
21: if (κ, ψ) �∈ ECI and (∀ψ ∈ sets) then
22: for each vertice k ∈ sets do
23: if SINR(κ, k) ≤ β then
24: goto CHECK

25: end if
26: end for
27: sets ← κ, setos = setos − κ
28: end if
29: end if
30: end for
31: setlast = sets, T = T + 1, S ← sets
32: update workload of vertices

33: end while
34: return S, and schedule length |S|

the degree of candidate vertices in GCI , and then the

candidate vertices are scheduled in ascending order of

degree. Note that GCI consists of conflict edges and
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Figure 1. Communication graph G = (V,E) and Conflict graph
GCI=(VCI , ECI )

interference edges. Vertices cannot work simultaneously

when there are conflict edges, however, if they only have

interference edge, SINR must be checked by calling

function SINR(e1, e2) (line 23), and if SINR(e1, e2) ≥ β
is true, vertice will be included into simultaneous set which

belongs to the current time-slot, or else it should be give up

in current time slot. When setos is empty, there is no more

vertex can be included into current time-slot. At last, if

some packets still cannot reach to AP, additional time-slots

are needed to transmit these packets.

B. The degree of spread of heterogeneous workload (χ)

In WAGS, the degree of spread of heterogeneous work-

load (χ) is used to describe the difference of initial workload

of sensor nodes. The value of χ is larger, the difference of

initial workload jumps over bigger. Considering a heteroge-

neous wireless sensor network which has n sensor nodes, and

the initial workload of node i is Wi. WAGS uses equation

(1) to calculate χ.

χ =

√√√√ 1

n

n∑
i=1

(Wi − W̄ )2 (1)

W̄ =
1

n

n∑
i=1

Wi (2)

C. The dispersion of schedule (ϕ)

A large number of discrete time-slots can lead to frequent

state transition, and hence waste considerable energy such

as wireless multimedia sensor nodes. However, assigning

consecutive time-slots to sensor node if possible can reduce

energy cost caused by node’s state transition. In WAGS,

the dispersion of schedule (ϕ) is used to measure the

consecutiveness of data transmission. The value of ϕ is

larger, the discrete degree of schedule is higher and the

number of inconsecutive time-slot is larger so that each

sensor node needs more frequent state transition. WAGS uses

the same equation as χ to calculate ϕ, the only difference

between χ and ϕ is that Wi is replaced by the number of

inconsecutive time-slots included in the schedule of node i.

D. Example analysis

We give an example of a typical tree topology of hetero-

geneous wireless sensor networks, and χ=1.5. G = (V,E)
and GCI = (VCI , ECI) are shown in Fig.1. There are

two interference edges: (2,6) and (3,5) in GCI . In the

scheduling example, we assume that two interference edges

cause serious interference between these vertices and cannot

be scheduled in the same time-slot. The scheduling results

are shown in Fig.2. Table II shows the performance data of

example.

Table II
THE PERFORMANCE RESULTS OF EXAMPLE

Algorithm Total workload χ ϕ State transition Delay
node-based 18 1.5 1.2 3.0 37

WAGS 18 1.5 1.0 1.0 20

As we can see from Fig.2, WAGS has the same scheduling

length when compared with Node-based scheduling. How-

ever, as WAGS allocates consecutive time slots to vertices

using workload-aware method, WAGS can remarkably re-

duce the state transition of sensor nodes, and it is clearly

shown in Table II. We consider node s1, its state transi-

tion reach up to 5 times under the node-based scheduling,

however, it can decrease to only 1 times according to

WAGS. For some sensor nodes which has high circuit power

consumption, WAGS owns obvious advantage on energy

efficiency, meanwhile it can reach the similar performance

on schedule. Besides, WAGS does not need coloring conflict

graph which can increase the complexity of scheduling, and

this is different from node-based scheduling.

V. PERFORMANCE EVALUATION

We conduct extensive simulations to compare the perfor-

mance of WAGS with some methods in the literature. All

algorithms are implemented in Matlab. The size of network

topology is 300m x 300m. We take the arithmetic mean

of 50 runs. We assume a range based interference model

and regulate that every sensor’s communication range is 1

hop (about 50m) and its interference range is 2 hop. The

first set compares the frequency of state transition. Reducing

frequency of state transition can saved energy when the

energy cost of state transition cannot be ignored, especially

when referring to the wireless multimedia sensor networks.

Meanwhile, the dispersion of schedule is also evaluated in

our simulations. The second set of results are related to

end-to-end delay. In all simulations, we compare WAGS

with the node-based scheduling algorithm provided in [2].

The node-based scheduling algorithm assigns time-slots to

each node according to the coloring of conflict graph. Each

time only one time-slot is assigned. Besides node-based

scheduling algorithm, we also implement another two greedy

scheduling algorithm referred to maximum- and minimum-

first scheduling algorithm (Max-prior and Min-prior). Two
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Figure 2. The scheduling results of example
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Figure 3. The total initial workload of network and the degree of spread
of heterogeneous workload (χ)

scheduling assign time-slots to each sensor node according

to the descending and ascending order of degree respectively,

and they have not use the workload-aware mechanism.

A. Impact of number of nodes

In this simulation, we study the relationship among the

number of sensor nodes, the end-to-end delay and the

frequency of state transition. We vary the number of sensor

nodes from 20 to 100 in the network. The workload of each

sensor node is w time-slots which lies in the interval [1,10].

Only one packet is transmitted in a time-slot. The total

workload of heterogeneous network and corresponding χ
are shown in Fig.3. The total workload increases remarkably

when the number of nodes increases, and χ changes among

the interval [2.0, 3.0].

We found that under WAGS, sensor nodes need to wake

up less times to transmit or receive , while many sensor

nodes need to wake up numerous times under the schedule

by node-based method. This is because the total traffic load

in data collection application increases when the number

of nodes increases so that it will increase the dispersion

of schedule. Figure 4 and 5 also show that WAGS has the

lowest state-switches and the smallest dispersion of schedule

when compared with node-based method, max-prior, or min-

prior. This is because we assign the consecutive time-slots

to each node using workload-aware method, meanwhile only

one time-slot can be assigned for each coloring using node-

based method so that each sensor node needs more than one

discrete time-slot to transmit traffic load.
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Figure 4. The average frequency of state transition under different sensor
node densities
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Figure 5. The degree of spread of time-slots under different sensor node
densities

�

$

�$

�$


$

"$

�$$

��$

��$

�
$

�$ �$ �$ 	$ 
$ !$ "$ #$ �$$

��
��

��
��

��
��

�

��

��
��

��
��

���
��

 ��
���

���
�

��

�


�
 ��

���
���

���
���

���
���

���
���

���

����
����
�������
����
	
�������

�
��

������
���

-�� 
����'+,���
5,0'2����
5��'2����

Figure 6. The average end-to-end delay under different sensor node
densities
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Figure 7. The average times of state transition with different χ, N=50

Fig.6 shows the end-to-end delay under different node

densities. We found that the average end-to-end delay in-

creases along with the number of nodes increases. This is

because adding sensor nodes lengthen the scheduling length

and thus increase the queue delay of each packet. We observe

that WAGS has smaller delay than node-based method.

B. Impact of heterogeneous workload

We then study the impact of the degree of spread of

heterogeneous workload on network performances. We vary

the value of χ from 1 to 10 in a sensor network with 50

nodes.

Figure 7 shows that the trend of state-switches increases

when χ increases, except WAGS. This is because the work-

load increases when χ increases and sensor nodes need more

discrete time-slots to transmit data. Under the WAGS, each

node can use finite times of state transition to accomplish

the data transmission by workload-aware method, and the

times of state-switches depends on the position of node in

data collection tree which is formed by the sensor network.

As a result, the average time of state transition almost

unchanged for WAGS under different χ. The continuity

of schedule is shown in figure 8. WAGS also has the

best performance when compared with node-based method,

max-prior, and min-prior. From figure 9, we observe that

the delay of WAGS is far less than node-based, and the

delay of node-based scheduling increases obviously with

χ increases. The max- and min-prior methods have similar

delay performance compared with WAGS. This is because

some sensor nodes may have consecutive time-slots so that

they will be scheduled sequentially.

C. Energy efficiency

In this paper, node’s energy can be consumed by state

switching from one to another, such as from sleeping to

transmitting. Table III summarizes some symbols for energy

computation. We calculate the number of saved energy

using equation (3). As there are many types of sensor nodes

which have different energy cost for state transition, it is very
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Figure 8. The dispersion of schedule with different χ, N=50
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Figure 9. The average end-to-end delay with different χ, N=50

Table III
SYMBOLS FOR ENERGY COMPUTATION

Symbol Meaning Value

PH
Energy consumption in state-switch
of non-scalar node

α

PS
Energy consumption in state-switch
of scalar node

β

γ
The ratio of non-scalar sensor nodes
to the size of network (e.g., N)

[0,1]

FWAGS
The average times of state switching
under WAGS

Fnode
The average times of state switching
under node-based method

hard to measure the effect of energy saving under WAGS.

However, according to figure 4 and 7, we have Es > 0 which

means WAGS can save energy because of less frequency of

state-transition.

Es = N(γPH + (1− γ)PS)(Fnode − FWAGS) (3)

VI. CONCLUSION

Wireless sensor networks are characterized by limited

hardware resource, bandwidth and variable channel capacity.

In this paper, we propose workload-aware greedy scheduling

algorithm (WAGS) for heterogeneous WSNs. A physical in-

terference model is used to describe the interference among

sensor nodes. We use conflict graph which includes inter-

ference edges as the basis of adaptive greedy scheduling.
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Under the workload-aware greedy scheduling, consecutive

time-slots are assigned to each sensor node, and this can

remarkably reduce the frequency of state transition which

can cause energy consumption for some complicated sensor

node, such as wireless multimedia sensor node. In addition,

the degree of spread of initial workload is considered in

WAGS. The numerical results show that WAGS is energy

efficient and has lower end-to-end delay than node-based

scheduling.
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